[3810] | 1 | MODULE etat0_dcmip3_mod |
---|
| 2 | |
---|
| 3 | ! test cases DCMIP 2012, category 3 : Non-hydrostatic gravity waves |
---|
| 4 | |
---|
| 5 | ! Questions |
---|
| 6 | ! Replace ps0 by preff ?? |
---|
| 7 | |
---|
| 8 | USE genmod |
---|
| 9 | USE dcmip_initial_conditions_test_1_2_3 |
---|
| 10 | |
---|
| 11 | PRIVATE |
---|
| 12 | |
---|
| 13 | PUBLIC etat0 |
---|
| 14 | |
---|
| 15 | CONTAINS |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | SUBROUTINE etat0(f_ps,f_phis,f_theta_rhodz,f_u, f_q) |
---|
| 19 | USE icosa |
---|
| 20 | USE theta2theta_rhodz_mod |
---|
| 21 | IMPLICIT NONE |
---|
| 22 | TYPE(t_field),POINTER :: f_ps(:) |
---|
| 23 | TYPE(t_field),POINTER :: f_phis(:) |
---|
| 24 | TYPE(t_field),POINTER :: f_theta_rhodz(:) |
---|
| 25 | TYPE(t_field),POINTER :: f_u(:) |
---|
| 26 | TYPE(t_field),POINTER :: f_q(:) |
---|
| 27 | TYPE(t_field),POINTER,SAVE :: f_temp(:) |
---|
| 28 | |
---|
| 29 | REAL(rstd),POINTER :: ps(:) |
---|
| 30 | REAL(rstd),POINTER :: phis(:) |
---|
| 31 | REAL(rstd),POINTER :: u(:,:) |
---|
| 32 | REAL(rstd),POINTER :: Temp(:,:) |
---|
| 33 | REAL(rstd),POINTER :: q(:,:,:) |
---|
| 34 | |
---|
| 35 | INTEGER :: ind |
---|
| 36 | |
---|
| 37 | CALL allocate_field(f_temp,field_t,type_real,llm,name='temp') |
---|
| 38 | |
---|
| 39 | DO ind=1,ndomain |
---|
| 40 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
| 41 | CALL swap_dimensions(ind) |
---|
| 42 | CALL swap_geometry(ind) |
---|
| 43 | |
---|
| 44 | ps=f_ps(ind) |
---|
| 45 | phis=f_phis(ind) |
---|
| 46 | u=f_u(ind) |
---|
| 47 | q=f_q(ind) |
---|
| 48 | temp=f_temp(ind) |
---|
| 49 | CALL compute_etat0_DCMIP3(ps,phis,u,Temp,q) |
---|
| 50 | ENDDO |
---|
| 51 | |
---|
| 52 | CALL temperature2theta_rhodz(f_ps,f_temp,f_theta_rhodz) |
---|
| 53 | CALL deallocate_field(f_temp) |
---|
| 54 | |
---|
| 55 | END SUBROUTINE etat0 |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | SUBROUTINE compute_etat0_DCMIP3(ps, phis, u, temp,q) |
---|
| 59 | USE icosa |
---|
| 60 | USE pression_mod |
---|
| 61 | USE theta2theta_rhodz_mod |
---|
| 62 | USE wind_mod |
---|
| 63 | IMPLICIT NONE |
---|
| 64 | REAL(rstd),PARAMETER :: u0=20. ! Maximum amplitude of the zonal wind (m.s-1) |
---|
| 65 | REAL(rstd),PARAMETER :: N=0.01 ! Brunt-Vaisala frequency (s-1) |
---|
| 66 | REAL(rstd),PARAMETER :: Teq=300. ! Surface temperature at the equator (K) |
---|
| 67 | REAL(rstd),PARAMETER :: Peq=1e5 ! Reference surface pressure at the equator (hPa) |
---|
| 68 | REAL(rstd),PARAMETER :: d=5000. ! Witdth parameter for theta |
---|
| 69 | REAL(rstd),PARAMETER :: lonc=2*pi/3 ! Longitudinal centerpoint of theta |
---|
| 70 | REAL(rstd),PARAMETER :: latc=0 ! Longitudinal centerpoint of theta |
---|
| 71 | REAL(rstd),PARAMETER :: dtheta=1. ! Maximum amplitude of theta (K) |
---|
| 72 | REAL(rstd),PARAMETER :: Lz=20000. ! Vertical wave lenght of the theta perturbation |
---|
| 73 | |
---|
| 74 | REAL(rstd), INTENT(OUT) :: ps(iim*jjm) |
---|
| 75 | REAL(rstd), INTENT(OUT) :: phis(iim*jjm) |
---|
| 76 | REAL(rstd), INTENT(OUT) :: u(3*iim*jjm,llm) |
---|
| 77 | REAL(rstd), INTENT(OUT) :: Temp(iim*jjm,llm) |
---|
| 78 | REAL(rstd), INTENT(OUT) :: q(iim*jjm,llm,nqtot) |
---|
| 79 | |
---|
| 80 | REAL(rstd) :: Ts(iim*jjm) |
---|
| 81 | REAL(rstd) :: s(iim*jjm) |
---|
| 82 | REAL(rstd) :: p(iim*jjm,llm+1) |
---|
| 83 | REAL(rstd) :: theta(iim*jjm,llm) |
---|
| 84 | REAL(rstd) :: ulon(3*iim*jjm,llm) |
---|
| 85 | REAL(rstd) :: ulat(3*iim*jjm,llm) |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | INTEGER :: i,j,l,ij |
---|
| 89 | REAL(rstd) :: Rd ! gas constant of dry air, P=rho.Rd.T |
---|
| 90 | REAL(rstd) :: alpha, rm |
---|
| 91 | REAL(rstd) :: C0, C1, GG |
---|
| 92 | REAL(rstd) :: p0psk, pspsk,r,zz, thetab, thetap |
---|
| 93 | REAL(rstd) :: dummy, pp |
---|
| 94 | LOGICAL :: use_dcmip_routine |
---|
| 95 | |
---|
| 96 | Rd=cpp*kappa |
---|
| 97 | |
---|
| 98 | GG=(g/N)**2/cpp |
---|
| 99 | C0=0.25*u0*(u0+2.*Omega*radius) |
---|
| 100 | |
---|
| 101 | q(:,:,:)=0 |
---|
| 102 | |
---|
| 103 | ! use_dcmip_routine=.TRUE. |
---|
| 104 | use_dcmip_routine=.FALSE. |
---|
| 105 | dummy=0. |
---|
| 106 | |
---|
| 107 | pp=peq |
---|
| 108 | DO j=jj_begin,jj_end |
---|
| 109 | DO i=ii_begin,ii_end |
---|
| 110 | ij=(j-1)*iim+i |
---|
| 111 | |
---|
| 112 | IF(use_dcmip_routine) THEN |
---|
| 113 | CALL test3_gravity_wave(lon_i(ij),lat_i(ij),pp,dummy,0, dummy,dummy,dummy,dummy,phis(ij),ps(ij),dummy,dummy) |
---|
| 114 | ELSE |
---|
| 115 | C1=C0*(cos(2*lat_i(ij))-1) |
---|
| 116 | |
---|
| 117 | !--- GROUND GEOPOTENTIAL |
---|
| 118 | phis(ij)=0. |
---|
| 119 | |
---|
| 120 | !--- GROUND TEMPERATURE |
---|
| 121 | Ts(ij) = GG+(Teq-GG)*EXP(-C1*(N/g)**2) |
---|
| 122 | |
---|
| 123 | !--- GROUND PRESSURE |
---|
| 124 | Ps(ij) = peq*EXP(C1/GG/Rd)*(Ts(ij)/Teq)**(1/kappa) |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | r=radius*acos(sin(latc)*sin(lat_i(ij))+cos(latc)*cos(lat_i(ij))*cos(lon_i(ij)-lonc)) |
---|
| 128 | s(ij)= d**2/(d**2+r**2) |
---|
| 129 | END IF |
---|
| 130 | END DO |
---|
| 131 | END DO |
---|
| 132 | |
---|
| 133 | !$OMP BARRIER |
---|
| 134 | CALL compute_pression(ps,p,0) |
---|
| 135 | !$OMP BARRIER |
---|
| 136 | |
---|
| 137 | DO l=1,llm |
---|
| 138 | DO j=jj_begin,jj_end |
---|
| 139 | DO i=ii_begin,ii_end |
---|
| 140 | ij=(j-1)*iim+i |
---|
| 141 | pp=0.5*(p(ij,l+1)+p(ij,l)) ! full-layer pressure |
---|
| 142 | IF(use_dcmip_routine) THEN |
---|
| 143 | CALL test3_gravity_wave(lon_i(ij),lat_i(ij),pp,dummy,0, & |
---|
| 144 | dummy,dummy,dummy,Temp(ij,l),dummy,dummy,dummy,dummy) |
---|
| 145 | ELSE |
---|
| 146 | pspsk=(pp/ps(ij))**kappa |
---|
| 147 | p0psk=(Peq/ps(ij))**kappa |
---|
| 148 | thetab = Ts(ij)*p0psk / ( Ts(ij) / GG * ( pspsk-1) +1) ! background pot. temp. |
---|
| 149 | zz = -g/N**2*log( Ts(ij)/GG * (pspsk -1)+1) ! altitude |
---|
| 150 | thetap = dtheta *sin(2*Pi*zz/Lz) * s(ij) ! perturbation pot. temp. |
---|
| 151 | theta(ij,l) = thetab + thetap |
---|
| 152 | Temp(ij,l) = theta(ij,l)* ((pp/peq)**kappa) |
---|
| 153 | ! T(ij,l) = Ts(ij)*pspsk / ( Ts(ij) / GG * ( pspsk-1) +1) ! background temp. |
---|
| 154 | END IF |
---|
| 155 | ENDDO |
---|
| 156 | ENDDO |
---|
| 157 | ENDDO |
---|
| 158 | |
---|
| 159 | ! IF(use_dcmip_routine) THEN |
---|
| 160 | ! CALL compute_temperature2theta_rhodz(ps,T,theta_rhodz,0) |
---|
| 161 | ! ELSE |
---|
| 162 | ! CALL compute_temperature2theta_rhodz(ps,T,theta_rhodz,0) |
---|
| 163 | ! END IF |
---|
| 164 | |
---|
| 165 | pp=peq |
---|
| 166 | DO l=1,llm |
---|
| 167 | DO j=jj_begin-1,jj_end+1 |
---|
| 168 | DO i=ii_begin-1,ii_end+1 |
---|
| 169 | ij=(j-1)*iim+i |
---|
| 170 | IF(use_dcmip_routine) THEN |
---|
| 171 | CALL test3_gravity_wave(lon_e(ij+u_right),lat_e(ij+u_right), & |
---|
| 172 | pp,0.,0, ulon(ij+u_right,l),ulat(ij+u_right,l),& |
---|
| 173 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
| 174 | CALL test3_gravity_wave(lon_e(ij+u_lup),lat_e(ij+u_lup), & |
---|
| 175 | pp,0.,0, ulon(ij+u_lup,l),ulat(ij+u_lup,l),& |
---|
| 176 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
| 177 | CALL test3_gravity_wave(lon_e(ij+u_ldown),lat_e(ij+u_ldown), & |
---|
| 178 | pp,0.,0, ulon(ij+u_ldown,l),ulat(ij+u_ldown,l),& |
---|
| 179 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
| 180 | ELSE |
---|
| 181 | ulon(ij+u_right,l) = u0*cos(lat_e(ij+u_right)) |
---|
| 182 | ulat(ij+u_right,l) = 0 |
---|
| 183 | ulon(ij+u_lup,l) = u0*cos(lat_e(ij+u_lup)) |
---|
| 184 | ulat(ij+u_lup,l) = 0 |
---|
| 185 | ulon(ij+u_ldown,l) = u0*cos(lat_e(ij+u_ldown)) |
---|
| 186 | ulat(ij+u_ldown,l) = 0 |
---|
| 187 | END IF |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | CALL compute_wind_perp_from_lonlat_compound(ulon,ulat,u) |
---|
| 193 | |
---|
| 194 | END SUBROUTINE compute_etat0_DCMIP3 |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | END MODULE etat0_DCMIP3_mod |
---|