1 | MODULE caldyn_gcm_mod |
---|
2 | USE icosa |
---|
3 | USE transfert_mod |
---|
4 | PRIVATE |
---|
5 | |
---|
6 | INTEGER, PARAMETER :: energy=1, enstrophy=2 |
---|
7 | TYPE(t_field),POINTER :: f_out_u(:), f_qu(:), f_qv(:) |
---|
8 | REAL(rstd),SAVE,POINTER :: out_u(:,:), p(:,:), qu(:,:) |
---|
9 | !$OMP THREADPRIVATE(out_u, p, qu) |
---|
10 | |
---|
11 | TYPE(t_field),POINTER :: f_buf_i(:), f_buf_ulon(:), f_buf_ulat(:), f_buf_u3d(:) |
---|
12 | TYPE(t_field),POINTER :: f_buf_v(:), f_buf_s(:), f_buf_p(:) |
---|
13 | |
---|
14 | ! temporary shared variable for caldyn |
---|
15 | TYPE(t_field),POINTER :: f_theta(:) |
---|
16 | TYPE(t_field),POINTER :: f_pk(:) |
---|
17 | TYPE(t_field),POINTER :: f_geopot(:) |
---|
18 | TYPE(t_field),POINTER :: f_wwuu(:) |
---|
19 | TYPE(t_field),POINTER :: f_planetvel(:) |
---|
20 | |
---|
21 | INTEGER :: caldyn_conserv |
---|
22 | !$OMP THREADPRIVATE(caldyn_conserv) |
---|
23 | |
---|
24 | TYPE(t_message) :: req_ps, req_mass, req_theta_rhodz, req_u, req_qu |
---|
25 | |
---|
26 | PUBLIC init_caldyn, caldyn_BC, caldyn, write_output_fields, & |
---|
27 | req_ps, req_mass |
---|
28 | |
---|
29 | CONTAINS |
---|
30 | |
---|
31 | SUBROUTINE init_caldyn |
---|
32 | USE icosa |
---|
33 | USE exner_mod |
---|
34 | USE mpipara |
---|
35 | USE omp_para |
---|
36 | IMPLICIT NONE |
---|
37 | CHARACTER(len=255) :: def |
---|
38 | INTEGER :: ind |
---|
39 | REAL(rstd),POINTER :: planetvel(:) |
---|
40 | |
---|
41 | def='energy' |
---|
42 | CALL getin('caldyn_conserv',def) |
---|
43 | SELECT CASE(TRIM(def)) |
---|
44 | CASE('energy') |
---|
45 | caldyn_conserv=energy |
---|
46 | CASE('enstrophy') |
---|
47 | caldyn_conserv=enstrophy |
---|
48 | CASE DEFAULT |
---|
49 | IF (is_mpi_root) PRINT *,'Bad selector for variable caldyn_conserv : <', & |
---|
50 | TRIM(def),'> options are <energy>, <enstrophy>' |
---|
51 | STOP |
---|
52 | END SELECT |
---|
53 | IF (is_master) PRINT *, 'caldyn_conserv=',def |
---|
54 | |
---|
55 | CALL allocate_caldyn |
---|
56 | |
---|
57 | DO ind=1,ndomain |
---|
58 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
59 | CALL swap_dimensions(ind) |
---|
60 | CALL swap_geometry(ind) |
---|
61 | planetvel=f_planetvel(ind) |
---|
62 | CALL compute_planetvel(planetvel) |
---|
63 | END DO |
---|
64 | |
---|
65 | END SUBROUTINE init_caldyn |
---|
66 | |
---|
67 | SUBROUTINE allocate_caldyn |
---|
68 | USE icosa |
---|
69 | IMPLICIT NONE |
---|
70 | |
---|
71 | CALL allocate_field(f_out_u,field_u,type_real,llm) |
---|
72 | CALL allocate_field(f_qu,field_u,type_real,llm) |
---|
73 | CALL allocate_field(f_qv,field_z,type_real,llm) |
---|
74 | |
---|
75 | CALL allocate_field(f_buf_i, field_t,type_real,llm,name="buffer_i") |
---|
76 | CALL allocate_field(f_buf_p, field_t,type_real,llm+1) |
---|
77 | CALL allocate_field(f_buf_u3d, field_t,type_real,3,llm) ! 3D vel at cell centers |
---|
78 | CALL allocate_field(f_buf_ulon,field_t,type_real,llm) |
---|
79 | CALL allocate_field(f_buf_ulat,field_t,type_real,llm) |
---|
80 | CALL allocate_field(f_buf_v, field_z,type_real,llm) |
---|
81 | CALL allocate_field(f_buf_s, field_t,type_real) |
---|
82 | |
---|
83 | CALL allocate_field(f_theta, field_t,type_real,llm, name='theta') ! potential temperature |
---|
84 | CALL allocate_field(f_pk, field_t,type_real,llm, name='pk') |
---|
85 | CALL allocate_field(f_geopot,field_t,type_real,llm+1,name='geopot') ! geopotential |
---|
86 | CALL allocate_field(f_wwuu, field_u,type_real,llm+1,name='wwuu') |
---|
87 | CALL allocate_field(f_planetvel, field_u,type_real, name='planetvel') ! planetary velocity at r=a |
---|
88 | |
---|
89 | END SUBROUTINE allocate_caldyn |
---|
90 | |
---|
91 | SUBROUTINE caldyn_BC(f_phis, f_wflux) |
---|
92 | USE icosa |
---|
93 | USE mpipara |
---|
94 | USE omp_para |
---|
95 | IMPLICIT NONE |
---|
96 | TYPE(t_field),POINTER :: f_phis(:) |
---|
97 | TYPE(t_field),POINTER :: f_wflux(:) |
---|
98 | REAL(rstd),POINTER :: phis(:) |
---|
99 | REAL(rstd),POINTER :: wflux(:,:) |
---|
100 | REAL(rstd),POINTER :: geopot(:,:) |
---|
101 | REAL(rstd),POINTER :: wwuu(:,:) |
---|
102 | |
---|
103 | INTEGER :: ind,i,j,ij,l |
---|
104 | |
---|
105 | IF (is_omp_first_level) THEN |
---|
106 | DO ind=1,ndomain |
---|
107 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
108 | CALL swap_dimensions(ind) |
---|
109 | CALL swap_geometry(ind) |
---|
110 | geopot=f_geopot(ind) |
---|
111 | phis=f_phis(ind) |
---|
112 | wflux=f_wflux(ind) |
---|
113 | wwuu=f_wwuu(ind) |
---|
114 | |
---|
115 | DO ij=ij_begin_ext,ij_end_ext |
---|
116 | ! lower BCs : geopot=phis, wflux=0, wwuu=0 |
---|
117 | geopot(ij,1) = phis(ij) |
---|
118 | wflux(ij,1) = 0. |
---|
119 | wwuu(ij+u_right,1)=0 |
---|
120 | wwuu(ij+u_lup,1)=0 |
---|
121 | wwuu(ij+u_ldown,1)=0 |
---|
122 | ! top BCs : wflux=0, wwuu=0 |
---|
123 | wflux(ij,llm+1) = 0. |
---|
124 | wwuu(ij+u_right,llm+1)=0 |
---|
125 | wwuu(ij+u_lup,llm+1)=0 |
---|
126 | wwuu(ij+u_ldown,llm+1)=0 |
---|
127 | ENDDO |
---|
128 | END DO |
---|
129 | ENDIF |
---|
130 | |
---|
131 | !$OMP BARRIER |
---|
132 | END SUBROUTINE caldyn_BC |
---|
133 | |
---|
134 | SUBROUTINE caldyn(write_out,f_phis, f_ps, f_mass, f_theta_rhodz, f_u, f_q, & |
---|
135 | f_hflux, f_wflux, f_dps, f_dmass, f_dtheta_rhodz, f_du) |
---|
136 | USE icosa |
---|
137 | USE disvert_mod, ONLY : caldyn_eta, eta_mass |
---|
138 | USE vorticity_mod |
---|
139 | USE kinetic_mod |
---|
140 | USE theta2theta_rhodz_mod |
---|
141 | USE wind_mod |
---|
142 | USE mpipara |
---|
143 | USE trace |
---|
144 | USE omp_para |
---|
145 | USE output_field_mod |
---|
146 | USE checksum_mod |
---|
147 | IMPLICIT NONE |
---|
148 | LOGICAL,INTENT(IN) :: write_out |
---|
149 | TYPE(t_field),POINTER :: f_phis(:) |
---|
150 | TYPE(t_field),POINTER :: f_ps(:) |
---|
151 | TYPE(t_field),POINTER :: f_mass(:) |
---|
152 | TYPE(t_field),POINTER :: f_theta_rhodz(:) |
---|
153 | TYPE(t_field),POINTER :: f_u(:) |
---|
154 | TYPE(t_field),POINTER :: f_q(:) |
---|
155 | TYPE(t_field),POINTER :: f_hflux(:), f_wflux(:) |
---|
156 | TYPE(t_field),POINTER :: f_dps(:) |
---|
157 | TYPE(t_field),POINTER :: f_dmass(:) |
---|
158 | TYPE(t_field),POINTER :: f_dtheta_rhodz(:) |
---|
159 | TYPE(t_field),POINTER :: f_du(:) |
---|
160 | |
---|
161 | REAL(rstd),POINTER :: ps(:), dps(:) |
---|
162 | REAL(rstd),POINTER :: mass(:,:), theta_rhodz(:,:), dtheta_rhodz(:,:) |
---|
163 | REAL(rstd),POINTER :: u(:,:), du(:,:), hflux(:,:), wflux(:,:) |
---|
164 | REAL(rstd),POINTER :: qu(:,:) |
---|
165 | REAL(rstd),POINTER :: qv(:,:) |
---|
166 | |
---|
167 | ! temporary shared variable |
---|
168 | REAL(rstd),POINTER :: theta(:,:) |
---|
169 | REAL(rstd),POINTER :: pk(:,:) |
---|
170 | REAL(rstd),POINTER :: geopot(:,:) |
---|
171 | REAL(rstd),POINTER :: convm(:,:) |
---|
172 | REAL(rstd),POINTER :: wwuu(:,:) |
---|
173 | |
---|
174 | INTEGER :: ind |
---|
175 | LOGICAL,SAVE :: first=.TRUE. |
---|
176 | !$OMP THREADPRIVATE(first) |
---|
177 | |
---|
178 | ! MPI messages need to be sent at first call to caldyn |
---|
179 | ! This is needed only once : the next ones will be sent by timeloop |
---|
180 | IF (first) THEN |
---|
181 | first=.FALSE. |
---|
182 | IF(caldyn_eta==eta_mass) THEN |
---|
183 | CALL init_message(f_ps,req_i1,req_ps) |
---|
184 | ELSE |
---|
185 | CALL init_message(f_mass,req_i1,req_mass) |
---|
186 | END IF |
---|
187 | CALL init_message(f_theta_rhodz,req_i1,req_theta_rhodz) |
---|
188 | CALL init_message(f_u,req_e1_vect,req_u) |
---|
189 | CALL init_message(f_qu,req_e1_scal,req_qu) |
---|
190 | ! IF(caldyn_eta==eta_mass) THEN |
---|
191 | ! CALL send_message(f_ps,req_ps) |
---|
192 | ! CALL wait_message(req_ps) |
---|
193 | ! ELSE |
---|
194 | ! CALL send_message(f_mass,req_mass) |
---|
195 | ! CALL wait_message(req_mass) |
---|
196 | ! END IF |
---|
197 | ENDIF |
---|
198 | |
---|
199 | CALL trace_start("caldyn") |
---|
200 | |
---|
201 | IF(caldyn_eta==eta_mass) THEN |
---|
202 | CALL send_message(f_ps,req_ps) |
---|
203 | ELSE |
---|
204 | CALL send_message(f_mass,req_mass) |
---|
205 | END IF |
---|
206 | |
---|
207 | CALL send_message(f_theta_rhodz,req_theta_rhodz) |
---|
208 | CALL send_message(f_u,req_u) |
---|
209 | |
---|
210 | SELECT CASE(caldyn_conserv) |
---|
211 | CASE(energy) ! energy-conserving |
---|
212 | DO ind=1,ndomain |
---|
213 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
214 | CALL swap_dimensions(ind) |
---|
215 | CALL swap_geometry(ind) |
---|
216 | ps=f_ps(ind) |
---|
217 | u=f_u(ind) |
---|
218 | theta_rhodz = f_theta_rhodz(ind) |
---|
219 | mass=f_mass(ind) |
---|
220 | theta = f_theta(ind) |
---|
221 | qu=f_qu(ind) |
---|
222 | qv=f_qv(ind) |
---|
223 | CALL compute_pvort(ps,u,theta_rhodz, mass,theta,qu,qv) |
---|
224 | ENDDO |
---|
225 | ! CALL checksum(f_mass) |
---|
226 | ! CALL checksum(f_theta) |
---|
227 | |
---|
228 | CALL send_message(f_qu,req_qu) |
---|
229 | ! CALL wait_message(req_qu) |
---|
230 | |
---|
231 | DO ind=1,ndomain |
---|
232 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
233 | CALL swap_dimensions(ind) |
---|
234 | CALL swap_geometry(ind) |
---|
235 | ps=f_ps(ind) |
---|
236 | u=f_u(ind) |
---|
237 | theta_rhodz=f_theta_rhodz(ind) |
---|
238 | mass=f_mass(ind) |
---|
239 | theta = f_theta(ind) |
---|
240 | qu=f_qu(ind) |
---|
241 | pk = f_pk(ind) |
---|
242 | geopot = f_geopot(ind) |
---|
243 | CALL compute_geopot(ps,mass,theta, pk,geopot) |
---|
244 | hflux=f_hflux(ind) |
---|
245 | convm = f_dmass(ind) |
---|
246 | dtheta_rhodz=f_dtheta_rhodz(ind) |
---|
247 | du=f_du(ind) |
---|
248 | CALL compute_caldyn_horiz(u,mass,qu,theta,pk,geopot, hflux,convm,dtheta_rhodz,du) |
---|
249 | IF(caldyn_eta==eta_mass) THEN |
---|
250 | wflux=f_wflux(ind) |
---|
251 | wwuu=f_wwuu(ind) |
---|
252 | dps=f_dps(ind) |
---|
253 | CALL compute_caldyn_vert(u,theta,mass,convm, wflux,wwuu, dps, dtheta_rhodz, du) |
---|
254 | END IF |
---|
255 | ENDDO |
---|
256 | |
---|
257 | ! CALL checksum(f_geopot) |
---|
258 | ! CALL checksum(f_dmass) |
---|
259 | ! CALL checksum(f_pk) |
---|
260 | ! CALL checksum(f_pk) |
---|
261 | |
---|
262 | CASE(enstrophy) ! enstrophy-conserving |
---|
263 | DO ind=1,ndomain |
---|
264 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
265 | CALL swap_dimensions(ind) |
---|
266 | CALL swap_geometry(ind) |
---|
267 | ps=f_ps(ind) |
---|
268 | u=f_u(ind) |
---|
269 | theta_rhodz=f_theta_rhodz(ind) |
---|
270 | mass=f_mass(ind) |
---|
271 | theta = f_theta(ind) |
---|
272 | qu=f_qu(ind) |
---|
273 | qv=f_qv(ind) |
---|
274 | CALL compute_pvort(ps,u,theta_rhodz, mass,theta,qu,qv) |
---|
275 | pk = f_pk(ind) |
---|
276 | geopot = f_geopot(ind) |
---|
277 | CALL compute_geopot(ps,mass,theta, pk,geopot) |
---|
278 | hflux=f_hflux(ind) |
---|
279 | convm = f_dmass(ind) |
---|
280 | dtheta_rhodz=f_dtheta_rhodz(ind) |
---|
281 | du=f_du(ind) |
---|
282 | CALL compute_caldyn_horiz(u,mass,qu,theta,pk,geopot, hflux,convm,dtheta_rhodz,du) |
---|
283 | IF(caldyn_eta==eta_mass) THEN |
---|
284 | wflux=f_wflux(ind) |
---|
285 | wwuu=f_wwuu(ind) |
---|
286 | dps=f_dps(ind) |
---|
287 | CALL compute_caldyn_vert(u,theta,mass,convm, wflux,wwuu, dps, dtheta_rhodz, du) |
---|
288 | END IF |
---|
289 | ENDDO |
---|
290 | |
---|
291 | CASE DEFAULT |
---|
292 | STOP |
---|
293 | END SELECT |
---|
294 | |
---|
295 | !$OMP BARRIER |
---|
296 | IF (write_out) THEN |
---|
297 | |
---|
298 | IF (is_master) PRINT *,'CALL write_output_fields' |
---|
299 | |
---|
300 | ! ---> for openMP test to fix later |
---|
301 | ! CALL write_output_fields(f_ps, f_phis, f_dps, f_u, f_theta_rhodz, f_q, & |
---|
302 | ! f_buf_i, f_buf_v, f_buf_u3d, f_buf_ulon, f_buf_ulat, f_buf_s, f_buf_p) |
---|
303 | CALL un2ulonlat(f_u, f_buf_ulon, f_buf_ulat) |
---|
304 | CALL output_field("ulon",f_buf_ulon) |
---|
305 | CALL output_field("ulat",f_buf_ulat) |
---|
306 | |
---|
307 | CALL output_field("ps",f_ps) |
---|
308 | CALL output_field("dps",f_dps) |
---|
309 | CALL output_field("mass",f_mass) |
---|
310 | CALL output_field("dmass",f_dmass) |
---|
311 | CALL output_field("vort",f_qv) |
---|
312 | CALL output_field("theta",f_theta) |
---|
313 | CALL output_field("exner",f_pk) |
---|
314 | CALL output_field("pv",f_qv) |
---|
315 | |
---|
316 | END IF |
---|
317 | |
---|
318 | ! CALL check_mass_conservation(f_ps,f_dps) |
---|
319 | CALL trace_end("caldyn") |
---|
320 | !!$OMP BARRIER |
---|
321 | |
---|
322 | END SUBROUTINE caldyn |
---|
323 | |
---|
324 | SUBROUTINE compute_planetvel(planetvel) |
---|
325 | USE wind_mod |
---|
326 | REAL(rstd),INTENT(OUT) :: planetvel(iim*3*jjm) |
---|
327 | REAL(rstd) :: ulon(iim*3*jjm) |
---|
328 | REAL(rstd) :: ulat(iim*3*jjm) |
---|
329 | REAL(rstd) :: lon,lat |
---|
330 | INTEGER :: ij |
---|
331 | DO ij=ij_begin_ext,ij_end_ext |
---|
332 | ulon(ij+u_right)=a*omega*cos(lat_e(ij+u_right)) |
---|
333 | ulat(ij+u_right)=0 |
---|
334 | |
---|
335 | ulon(ij+u_lup)=a*omega*cos(lat_e(ij+u_lup)) |
---|
336 | ulat(ij+u_lup)=0 |
---|
337 | |
---|
338 | ulon(ij+u_ldown)=a*omega*cos(lat_e(ij+u_ldown)) |
---|
339 | ulat(ij+u_ldown)=0 |
---|
340 | END DO |
---|
341 | CALL compute_wind2D_perp_from_lonlat_compound(ulon, ulat, planetvel) |
---|
342 | END SUBROUTINE compute_planetvel |
---|
343 | |
---|
344 | SUBROUTINE compute_pvort(ps,u,theta_rhodz, rhodz,theta,qu,qv) |
---|
345 | USE icosa |
---|
346 | USE disvert_mod, ONLY : mass_dak, mass_dbk, caldyn_eta, eta_mass |
---|
347 | USE exner_mod |
---|
348 | USE trace |
---|
349 | USE omp_para |
---|
350 | IMPLICIT NONE |
---|
351 | REAL(rstd),INTENT(IN) :: u(iim*3*jjm,llm) |
---|
352 | REAL(rstd),INTENT(IN) :: ps(iim*jjm) |
---|
353 | REAL(rstd),INTENT(IN) :: theta_rhodz(iim*jjm,llm) |
---|
354 | REAL(rstd),INTENT(INOUT) :: rhodz(iim*jjm,llm) |
---|
355 | REAL(rstd),INTENT(OUT) :: theta(iim*jjm,llm) |
---|
356 | REAL(rstd),INTENT(OUT) :: qu(iim*3*jjm,llm) |
---|
357 | REAL(rstd),INTENT(OUT) :: qv(iim*2*jjm,llm) |
---|
358 | |
---|
359 | INTEGER :: i,j,ij,l |
---|
360 | REAL(rstd) :: etav,hv, m |
---|
361 | ! REAL(rstd) :: qv(2*iim*jjm,llm) ! potential velocity |
---|
362 | |
---|
363 | CALL trace_start("compute_pvort") |
---|
364 | |
---|
365 | IF(caldyn_eta==eta_mass) THEN |
---|
366 | CALL wait_message(req_ps) |
---|
367 | ELSE |
---|
368 | CALL wait_message(req_mass) |
---|
369 | END IF |
---|
370 | CALL wait_message(req_theta_rhodz) |
---|
371 | |
---|
372 | IF(caldyn_eta==eta_mass) THEN ! Compute mass & theta |
---|
373 | DO l = ll_begin,ll_end |
---|
374 | CALL test_message(req_u) |
---|
375 | !DIR$ SIMD |
---|
376 | DO ij=ij_begin_ext,ij_end_ext |
---|
377 | m = ( mass_dak(l)+ps(ij)*mass_dbk(l) )/g |
---|
378 | rhodz(ij,l) = m |
---|
379 | theta(ij,l) = theta_rhodz(ij,l)/rhodz(ij,l) |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | ELSE ! Compute only theta |
---|
383 | DO l = ll_begin,ll_end |
---|
384 | CALL test_message(req_u) |
---|
385 | !DIR$ SIMD |
---|
386 | DO ij=ij_begin_ext,ij_end_ext |
---|
387 | theta(ij,l) = theta_rhodz(ij,l)/rhodz(ij,l) |
---|
388 | ENDDO |
---|
389 | ENDDO |
---|
390 | END IF |
---|
391 | |
---|
392 | CALL wait_message(req_u) |
---|
393 | |
---|
394 | !!! Compute shallow-water potential vorticity |
---|
395 | DO l = ll_begin,ll_end |
---|
396 | !DIR$ SIMD |
---|
397 | DO ij=ij_begin_ext,ij_end_ext |
---|
398 | etav= 1./Av(ij+z_up)*( ne_rup * u(ij+u_rup,l) * de(ij+u_rup) & |
---|
399 | + ne_left * u(ij+t_rup+u_left,l) * de(ij+t_rup+u_left) & |
---|
400 | - ne_lup * u(ij+u_lup,l) * de(ij+u_lup) ) |
---|
401 | |
---|
402 | hv = Riv2(ij,vup) * rhodz(ij,l) & |
---|
403 | + Riv2(ij+t_rup,vldown) * rhodz(ij+t_rup,l) & |
---|
404 | + Riv2(ij+t_lup,vrdown) * rhodz(ij+t_lup,l) |
---|
405 | |
---|
406 | qv(ij+z_up,l) = ( etav+fv(ij+z_up) )/hv |
---|
407 | |
---|
408 | etav = 1./Av(ij+z_down)*( ne_ldown * u(ij+u_ldown,l) * de(ij+u_ldown) & |
---|
409 | + ne_right * u(ij+t_ldown+u_right,l) * de(ij+t_ldown+u_right) & |
---|
410 | - ne_rdown * u(ij+u_rdown,l) * de(ij+u_rdown) ) |
---|
411 | |
---|
412 | hv = Riv2(ij,vdown) * rhodz(ij,l) & |
---|
413 | + Riv2(ij+t_ldown,vrup) * rhodz(ij+t_ldown,l) & |
---|
414 | + Riv2(ij+t_rdown,vlup) * rhodz(ij+t_rdown,l) |
---|
415 | |
---|
416 | qv(ij+z_down,l) =( etav+fv(ij+z_down) )/hv |
---|
417 | |
---|
418 | ENDDO |
---|
419 | |
---|
420 | !DIR$ SIMD |
---|
421 | DO ij=ij_begin,ij_end |
---|
422 | qu(ij+u_right,l) = 0.5*(qv(ij+z_rdown,l)+qv(ij+z_rup,l)) |
---|
423 | qu(ij+u_lup,l) = 0.5*(qv(ij+z_up,l)+qv(ij+z_lup,l)) |
---|
424 | qu(ij+u_ldown,l) = 0.5*(qv(ij+z_ldown,l)+qv(ij+z_down,l)) |
---|
425 | END DO |
---|
426 | |
---|
427 | ENDDO |
---|
428 | |
---|
429 | CALL trace_end("compute_pvort") |
---|
430 | |
---|
431 | END SUBROUTINE compute_pvort |
---|
432 | |
---|
433 | SUBROUTINE compute_geopot(ps,rhodz,theta, pk,geopot) |
---|
434 | USE icosa |
---|
435 | USE disvert_mod |
---|
436 | USE exner_mod |
---|
437 | USE trace |
---|
438 | USE omp_para |
---|
439 | IMPLICIT NONE |
---|
440 | REAL(rstd),INTENT(INOUT) :: ps(iim*jjm) |
---|
441 | REAL(rstd),INTENT(IN) :: rhodz(iim*jjm,llm) |
---|
442 | REAL(rstd),INTENT(IN) :: theta(iim*jjm,llm) ! potential temperature |
---|
443 | REAL(rstd),INTENT(INOUT) :: pk(iim*jjm,llm) ! Exner function |
---|
444 | REAL(rstd),INTENT(INOUT) :: geopot(iim*jjm,llm+1) ! geopotential |
---|
445 | |
---|
446 | INTEGER :: i,j,ij,l |
---|
447 | REAL(rstd) :: p_ik, exner_ik |
---|
448 | INTEGER :: ij_omp_begin_ext, ij_omp_end_ext |
---|
449 | |
---|
450 | |
---|
451 | CALL trace_start("compute_geopot") |
---|
452 | |
---|
453 | CALL distrib_level(ij_end_ext-ij_begin_ext+1,ij_omp_begin_ext,ij_omp_end_ext) |
---|
454 | ij_omp_begin_ext=ij_omp_begin_ext+ij_begin_ext-1 |
---|
455 | ij_omp_end_ext=ij_omp_end_ext+ij_begin_ext-1 |
---|
456 | |
---|
457 | IF(caldyn_eta==eta_mass) THEN |
---|
458 | |
---|
459 | !!! Compute exner function and geopotential |
---|
460 | DO l = 1,llm |
---|
461 | !DIR$ SIMD |
---|
462 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
463 | p_ik = ptop + mass_ak(l) + mass_bk(l)*ps(ij) ! FIXME : leave ps for the moment ; change ps to Ms later |
---|
464 | ! p_ik = ptop + g*(mass_ak(l)+ mass_bk(l)*ps(i,j)) |
---|
465 | exner_ik = cpp * (p_ik/preff) ** kappa |
---|
466 | pk(ij,l) = exner_ik |
---|
467 | ! specific volume v = kappa*theta*pi/p = dphi/g/rhodz |
---|
468 | geopot(ij,l+1) = geopot(ij,l) + (g*kappa)*rhodz(ij,l)*theta(ij,l)*exner_ik/p_ik |
---|
469 | ENDDO |
---|
470 | ENDDO |
---|
471 | ! ENDIF |
---|
472 | ELSE |
---|
473 | ! We are using a Lagrangian vertical coordinate |
---|
474 | ! Pressure must be computed first top-down (temporarily stored in pk) |
---|
475 | ! Then Exner pressure and geopotential are computed bottom-up |
---|
476 | ! Notice that the computation below should work also when caldyn_eta=eta_mass |
---|
477 | |
---|
478 | IF(boussinesq) THEN ! compute only geopotential : pressure pk will be computed in compute_caldyn_horiz |
---|
479 | ! specific volume 1 = dphi/g/rhodz |
---|
480 | ! IF (is_omp_level_master) THEN ! no openMP on vertical due to dependency |
---|
481 | DO l = 1,llm |
---|
482 | !DIR$ SIMD |
---|
483 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
484 | geopot(ij,l+1) = geopot(ij,l) + g*rhodz(ij,l) |
---|
485 | ENDDO |
---|
486 | ENDDO |
---|
487 | ELSE ! non-Boussinesq, compute geopotential and Exner pressure |
---|
488 | ! uppermost layer |
---|
489 | |
---|
490 | !DIR$ SIMD |
---|
491 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
492 | pk(ij,llm) = ptop + (.5*g)*rhodz(ij,llm) |
---|
493 | END DO |
---|
494 | ! other layers |
---|
495 | DO l = llm-1, 1, -1 |
---|
496 | !DIR$ SIMD |
---|
497 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
498 | pk(ij,l) = pk(ij,l+1) + (.5*g)*(rhodz(ij,l)+rhodz(ij,l+1)) |
---|
499 | END DO |
---|
500 | END DO |
---|
501 | ! surface pressure (for diagnostics) |
---|
502 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
503 | ps(ij) = pk(ij,1) + (.5*g)*rhodz(ij,1) |
---|
504 | END DO |
---|
505 | |
---|
506 | ! specific volume v = kappa*theta*pi/p = dphi/g/rhodz |
---|
507 | DO l = 1,llm |
---|
508 | !DIR$ SIMD |
---|
509 | DO ij=ij_omp_begin_ext,ij_omp_end_ext |
---|
510 | p_ik = pk(ij,l) |
---|
511 | exner_ik = cpp * (p_ik/preff) ** kappa |
---|
512 | geopot(ij,l+1) = geopot(ij,l) + (g*kappa)*rhodz(ij,l)*theta(ij,l)*exner_ik/p_ik |
---|
513 | pk(ij,l) = exner_ik |
---|
514 | ENDDO |
---|
515 | ENDDO |
---|
516 | END IF |
---|
517 | |
---|
518 | END IF |
---|
519 | |
---|
520 | !ym flush geopot |
---|
521 | !$OMP BARRIER |
---|
522 | |
---|
523 | CALL trace_end("compute_geopot") |
---|
524 | |
---|
525 | END SUBROUTINE compute_geopot |
---|
526 | |
---|
527 | SUBROUTINE compute_caldyn_horiz(u,rhodz,qu,theta,pk,geopot, hflux,convm, dtheta_rhodz, du) |
---|
528 | USE icosa |
---|
529 | USE disvert_mod |
---|
530 | USE exner_mod |
---|
531 | USE trace |
---|
532 | USE omp_para |
---|
533 | IMPLICIT NONE |
---|
534 | REAL(rstd),INTENT(IN) :: u(iim*3*jjm,llm) ! prognostic "velocity" |
---|
535 | REAL(rstd),INTENT(IN) :: rhodz(iim*jjm,llm) |
---|
536 | REAL(rstd),INTENT(IN) :: qu(iim*3*jjm,llm) |
---|
537 | REAL(rstd),INTENT(IN) :: theta(iim*jjm,llm) ! potential temperature |
---|
538 | REAL(rstd),INTENT(INOUT) :: pk(iim*jjm,llm) ! Exner function |
---|
539 | REAL(rstd),INTENT(IN) :: geopot(iim*jjm,llm+1) ! geopotential |
---|
540 | |
---|
541 | REAL(rstd),INTENT(OUT) :: hflux(iim*3*jjm,llm) ! hflux in kg/s |
---|
542 | REAL(rstd),INTENT(OUT) :: convm(iim*jjm,llm) ! mass flux convergence |
---|
543 | REAL(rstd),INTENT(OUT) :: dtheta_rhodz(iim*jjm,llm) |
---|
544 | REAL(rstd),INTENT(OUT) :: du(iim*3*jjm,llm) |
---|
545 | |
---|
546 | REAL(rstd) :: cor_NT(iim*jjm,llm) ! NT coriolis force u.(du/dPhi) |
---|
547 | REAL(rstd) :: urel(3*iim*jjm,llm) ! relative velocity |
---|
548 | REAL(rstd) :: Ftheta(3*iim*jjm,llm) ! theta flux |
---|
549 | REAL(rstd) :: berni(iim*jjm,llm) ! Bernoulli function |
---|
550 | |
---|
551 | INTEGER :: i,j,ij,l |
---|
552 | REAL(rstd) :: ww,uu |
---|
553 | |
---|
554 | CALL trace_start("compute_caldyn_horiz") |
---|
555 | |
---|
556 | ! CALL wait_message(req_theta_rhodz) |
---|
557 | |
---|
558 | DO l = ll_begin, ll_end |
---|
559 | !!! Compute mass and theta fluxes |
---|
560 | IF (caldyn_conserv==energy) CALL test_message(req_qu) |
---|
561 | !DIR$ SIMD |
---|
562 | DO ij=ij_begin_ext,ij_end_ext |
---|
563 | hflux(ij+u_right,l)=0.5*(rhodz(ij,l)+rhodz(ij+t_right,l))*u(ij+u_right,l)*le(ij+u_right) |
---|
564 | hflux(ij+u_lup,l)=0.5*(rhodz(ij,l)+rhodz(ij+t_lup,l))*u(ij+u_lup,l)*le(ij+u_lup) |
---|
565 | hflux(ij+u_ldown,l)=0.5*(rhodz(ij,l)+rhodz(ij+t_ldown,l))*u(ij+u_ldown,l)*le(ij+u_ldown) |
---|
566 | |
---|
567 | Ftheta(ij+u_right,l)=0.5*(theta(ij,l)+theta(ij+t_right,l))*hflux(ij+u_right,l) |
---|
568 | Ftheta(ij+u_lup,l)=0.5*(theta(ij,l)+theta(ij+t_lup,l))*hflux(ij+u_lup,l) |
---|
569 | Ftheta(ij+u_ldown,l)=0.5*(theta(ij,l)+theta(ij+t_ldown,l))*hflux(ij+u_ldown,l) |
---|
570 | ENDDO |
---|
571 | |
---|
572 | !!! compute horizontal divergence of fluxes |
---|
573 | !DIR$ SIMD |
---|
574 | DO ij=ij_begin,ij_end |
---|
575 | ! convm = -div(mass flux), sign convention as in Ringler et al. 2012, eq. 21 |
---|
576 | convm(ij,l)= -1./Ai(ij)*(ne_right*hflux(ij+u_right,l) + & |
---|
577 | ne_rup*hflux(ij+u_rup,l) + & |
---|
578 | ne_lup*hflux(ij+u_lup,l) + & |
---|
579 | ne_left*hflux(ij+u_left,l) + & |
---|
580 | ne_ldown*hflux(ij+u_ldown,l) + & |
---|
581 | ne_rdown*hflux(ij+u_rdown,l)) |
---|
582 | |
---|
583 | ! signe ? attention d (rho theta dz) |
---|
584 | ! dtheta_rhodz = -div(flux.theta) |
---|
585 | dtheta_rhodz(ij,l)=-1./Ai(ij)*(ne_right*Ftheta(ij+u_right,l) + & |
---|
586 | ne_rup*Ftheta(ij+u_rup,l) + & |
---|
587 | ne_lup*Ftheta(ij+u_lup,l) + & |
---|
588 | ne_left*Ftheta(ij+u_left,l) + & |
---|
589 | ne_ldown*Ftheta(ij+u_ldown,l) + & |
---|
590 | ne_rdown*Ftheta(ij+u_rdown,l)) |
---|
591 | ENDDO |
---|
592 | |
---|
593 | END DO |
---|
594 | |
---|
595 | !!! Compute potential vorticity (Coriolis) contribution to du |
---|
596 | |
---|
597 | SELECT CASE(caldyn_conserv) |
---|
598 | CASE(energy) ! energy-conserving TRiSK |
---|
599 | |
---|
600 | CALL wait_message(req_qu) |
---|
601 | |
---|
602 | DO l=ll_begin,ll_end |
---|
603 | !DIR$ SIMD |
---|
604 | DO ij=ij_begin,ij_end |
---|
605 | |
---|
606 | uu = wee(ij+u_right,1,1)*hflux(ij+u_rup,l)*(qu(ij+u_right,l)+qu(ij+u_rup,l))+ & |
---|
607 | wee(ij+u_right,2,1)*hflux(ij+u_lup,l)*(qu(ij+u_right,l)+qu(ij+u_lup,l))+ & |
---|
608 | wee(ij+u_right,3,1)*hflux(ij+u_left,l)*(qu(ij+u_right,l)+qu(ij+u_left,l))+ & |
---|
609 | wee(ij+u_right,4,1)*hflux(ij+u_ldown,l)*(qu(ij+u_right,l)+qu(ij+u_ldown,l))+ & |
---|
610 | wee(ij+u_right,5,1)*hflux(ij+u_rdown,l)*(qu(ij+u_right,l)+qu(ij+u_rdown,l))+ & |
---|
611 | wee(ij+u_right,1,2)*hflux(ij+t_right+u_ldown,l)*(qu(ij+u_right,l)+qu(ij+t_right+u_ldown,l))+ & |
---|
612 | wee(ij+u_right,2,2)*hflux(ij+t_right+u_rdown,l)*(qu(ij+u_right,l)+qu(ij+t_right+u_rdown,l))+ & |
---|
613 | wee(ij+u_right,3,2)*hflux(ij+t_right+u_right,l)*(qu(ij+u_right,l)+qu(ij+t_right+u_right,l))+ & |
---|
614 | wee(ij+u_right,4,2)*hflux(ij+t_right+u_rup,l)*(qu(ij+u_right,l)+qu(ij+t_right+u_rup,l))+ & |
---|
615 | wee(ij+u_right,5,2)*hflux(ij+t_right+u_lup,l)*(qu(ij+u_right,l)+qu(ij+t_right+u_lup,l)) |
---|
616 | du(ij+u_right,l) = .5*uu/de(ij+u_right) |
---|
617 | |
---|
618 | uu = wee(ij+u_lup,1,1)*hflux(ij+u_left,l)*(qu(ij+u_lup,l)+qu(ij+u_left,l)) + & |
---|
619 | wee(ij+u_lup,2,1)*hflux(ij+u_ldown,l)*(qu(ij+u_lup,l)+qu(ij+u_ldown,l)) + & |
---|
620 | wee(ij+u_lup,3,1)*hflux(ij+u_rdown,l)*(qu(ij+u_lup,l)+qu(ij+u_rdown,l)) + & |
---|
621 | wee(ij+u_lup,4,1)*hflux(ij+u_right,l)*(qu(ij+u_lup,l)+qu(ij+u_right,l)) + & |
---|
622 | wee(ij+u_lup,5,1)*hflux(ij+u_rup,l)*(qu(ij+u_lup,l)+qu(ij+u_rup,l)) + & |
---|
623 | wee(ij+u_lup,1,2)*hflux(ij+t_lup+u_right,l)*(qu(ij+u_lup,l)+qu(ij+t_lup+u_right,l)) + & |
---|
624 | wee(ij+u_lup,2,2)*hflux(ij+t_lup+u_rup,l)*(qu(ij+u_lup,l)+qu(ij+t_lup+u_rup,l)) + & |
---|
625 | wee(ij+u_lup,3,2)*hflux(ij+t_lup+u_lup,l)*(qu(ij+u_lup,l)+qu(ij+t_lup+u_lup,l)) + & |
---|
626 | wee(ij+u_lup,4,2)*hflux(ij+t_lup+u_left,l)*(qu(ij+u_lup,l)+qu(ij+t_lup+u_left,l)) + & |
---|
627 | wee(ij+u_lup,5,2)*hflux(ij+t_lup+u_ldown,l)*(qu(ij+u_lup,l)+qu(ij+t_lup+u_ldown,l)) |
---|
628 | du(ij+u_lup,l) = .5*uu/de(ij+u_lup) |
---|
629 | |
---|
630 | |
---|
631 | uu = wee(ij+u_ldown,1,1)*hflux(ij+u_rdown,l)*(qu(ij+u_ldown,l)+qu(ij+u_rdown,l)) + & |
---|
632 | wee(ij+u_ldown,2,1)*hflux(ij+u_right,l)*(qu(ij+u_ldown,l)+qu(ij+u_right,l)) + & |
---|
633 | wee(ij+u_ldown,3,1)*hflux(ij+u_rup,l)*(qu(ij+u_ldown,l)+qu(ij+u_rup,l)) + & |
---|
634 | wee(ij+u_ldown,4,1)*hflux(ij+u_lup,l)*(qu(ij+u_ldown,l)+qu(ij+u_lup,l)) + & |
---|
635 | wee(ij+u_ldown,5,1)*hflux(ij+u_left,l)*(qu(ij+u_ldown,l)+qu(ij+u_left,l)) + & |
---|
636 | wee(ij+u_ldown,1,2)*hflux(ij+t_ldown+u_lup,l)*(qu(ij+u_ldown,l)+qu(ij+t_ldown+u_lup,l)) + & |
---|
637 | wee(ij+u_ldown,2,2)*hflux(ij+t_ldown+u_left,l)*(qu(ij+u_ldown,l)+qu(ij+t_ldown+u_left,l)) + & |
---|
638 | wee(ij+u_ldown,3,2)*hflux(ij+t_ldown+u_ldown,l)*(qu(ij+u_ldown,l)+qu(ij+t_ldown+u_ldown,l)) + & |
---|
639 | wee(ij+u_ldown,4,2)*hflux(ij+t_ldown+u_rdown,l)*(qu(ij+u_ldown,l)+qu(ij+t_ldown+u_rdown,l)) + & |
---|
640 | wee(ij+u_ldown,5,2)*hflux(ij+t_ldown+u_right,l)*(qu(ij+u_ldown,l)+qu(ij+t_ldown+u_right,l)) |
---|
641 | du(ij+u_ldown,l) = .5*uu/de(ij+u_ldown) |
---|
642 | |
---|
643 | ENDDO |
---|
644 | ENDDO |
---|
645 | |
---|
646 | CASE(enstrophy) ! enstrophy-conserving TRiSK |
---|
647 | |
---|
648 | DO l=ll_begin,ll_end |
---|
649 | !DIR$ SIMD |
---|
650 | DO ij=ij_begin,ij_end |
---|
651 | |
---|
652 | uu = wee(ij+u_right,1,1)*hflux(ij+u_rup,l)+ & |
---|
653 | wee(ij+u_right,2,1)*hflux(ij+u_lup,l)+ & |
---|
654 | wee(ij+u_right,3,1)*hflux(ij+u_left,l)+ & |
---|
655 | wee(ij+u_right,4,1)*hflux(ij+u_ldown,l)+ & |
---|
656 | wee(ij+u_right,5,1)*hflux(ij+u_rdown,l)+ & |
---|
657 | wee(ij+u_right,1,2)*hflux(ij+t_right+u_ldown,l)+ & |
---|
658 | wee(ij+u_right,2,2)*hflux(ij+t_right+u_rdown,l)+ & |
---|
659 | wee(ij+u_right,3,2)*hflux(ij+t_right+u_right,l)+ & |
---|
660 | wee(ij+u_right,4,2)*hflux(ij+t_right+u_rup,l)+ & |
---|
661 | wee(ij+u_right,5,2)*hflux(ij+t_right+u_lup,l) |
---|
662 | du(ij+u_right,l) = qu(ij+u_right,l)*uu/de(ij+u_right) |
---|
663 | |
---|
664 | |
---|
665 | uu = wee(ij+u_lup,1,1)*hflux(ij+u_left,l)+ & |
---|
666 | wee(ij+u_lup,2,1)*hflux(ij+u_ldown,l)+ & |
---|
667 | wee(ij+u_lup,3,1)*hflux(ij+u_rdown,l)+ & |
---|
668 | wee(ij+u_lup,4,1)*hflux(ij+u_right,l)+ & |
---|
669 | wee(ij+u_lup,5,1)*hflux(ij+u_rup,l)+ & |
---|
670 | wee(ij+u_lup,1,2)*hflux(ij+t_lup+u_right,l)+ & |
---|
671 | wee(ij+u_lup,2,2)*hflux(ij+t_lup+u_rup,l)+ & |
---|
672 | wee(ij+u_lup,3,2)*hflux(ij+t_lup+u_lup,l)+ & |
---|
673 | wee(ij+u_lup,4,2)*hflux(ij+t_lup+u_left,l)+ & |
---|
674 | wee(ij+u_lup,5,2)*hflux(ij+t_lup+u_ldown,l) |
---|
675 | du(ij+u_lup,l) = qu(ij+u_lup,l)*uu/de(ij+u_lup) |
---|
676 | |
---|
677 | uu = wee(ij+u_ldown,1,1)*hflux(ij+u_rdown,l)+ & |
---|
678 | wee(ij+u_ldown,2,1)*hflux(ij+u_right,l)+ & |
---|
679 | wee(ij+u_ldown,3,1)*hflux(ij+u_rup,l)+ & |
---|
680 | wee(ij+u_ldown,4,1)*hflux(ij+u_lup,l)+ & |
---|
681 | wee(ij+u_ldown,5,1)*hflux(ij+u_left,l)+ & |
---|
682 | wee(ij+u_ldown,1,2)*hflux(ij+t_ldown+u_lup,l)+ & |
---|
683 | wee(ij+u_ldown,2,2)*hflux(ij+t_ldown+u_left,l)+ & |
---|
684 | wee(ij+u_ldown,3,2)*hflux(ij+t_ldown+u_ldown,l)+ & |
---|
685 | wee(ij+u_ldown,4,2)*hflux(ij+t_ldown+u_rdown,l)+ & |
---|
686 | wee(ij+u_ldown,5,2)*hflux(ij+t_ldown+u_right,l) |
---|
687 | du(ij+u_ldown,l) = qu(ij+u_ldown,l)*uu/de(ij+u_ldown) |
---|
688 | |
---|
689 | ENDDO |
---|
690 | ENDDO |
---|
691 | |
---|
692 | CASE DEFAULT |
---|
693 | STOP |
---|
694 | END SELECT |
---|
695 | |
---|
696 | !!! Compute bernouilli term = Kinetic Energy + geopotential |
---|
697 | IF(boussinesq) THEN |
---|
698 | ! first use hydrostatic balance with theta*rhodz to find pk (Lagrange multiplier=pressure) |
---|
699 | ! uppermost layer |
---|
700 | !DIR$ SIMD |
---|
701 | DO ij=ij_begin_ext,ij_end_ext |
---|
702 | pk(ij,llm) = ptop + (.5*g)*theta(ij,llm)*rhodz(ij,llm) |
---|
703 | END DO |
---|
704 | ! other layers |
---|
705 | DO l = llm-1, 1, -1 |
---|
706 | ! !$OMP DO SCHEDULE(STATIC) |
---|
707 | !DIR$ SIMD |
---|
708 | DO ij=ij_begin_ext,ij_end_ext |
---|
709 | pk(ij,l) = pk(ij,l+1) + (.5*g)*(theta(ij,l)*rhodz(ij,l)+theta(ij,l+1)*rhodz(ij,l+1)) |
---|
710 | END DO |
---|
711 | END DO |
---|
712 | ! surface pressure (for diagnostics) FIXME |
---|
713 | ! DO ij=ij_begin_ext,ij_end_ext |
---|
714 | ! ps(ij) = pk(ij,1) + (.5*g)*theta(ij,1)*rhodz(ij,1) |
---|
715 | ! END DO |
---|
716 | ! now pk contains the Lagrange multiplier (pressure) |
---|
717 | |
---|
718 | DO l=ll_begin,ll_end |
---|
719 | !DIR$ SIMD |
---|
720 | DO ij=ij_begin,ij_end |
---|
721 | |
---|
722 | berni(ij,l) = pk(ij,l) + & |
---|
723 | 1/(4*Ai(ij))*(le(ij+u_right)*de(ij+u_right)*u(ij+u_right,l)**2 + & |
---|
724 | le(ij+u_rup)*de(ij+u_rup)*u(ij+u_rup,l)**2 + & |
---|
725 | le(ij+u_lup)*de(ij+u_lup)*u(ij+u_lup,l)**2 + & |
---|
726 | le(ij+u_left)*de(ij+u_left)*u(ij+u_left,l)**2 + & |
---|
727 | le(ij+u_ldown)*de(ij+u_ldown)*u(ij+u_ldown,l)**2 + & |
---|
728 | le(ij+u_rdown)*de(ij+u_rdown)*u(ij+u_rdown,l)**2 ) |
---|
729 | ! from now on pk contains the vertically-averaged geopotential |
---|
730 | pk(ij,l) = .5*(geopot(ij,l)+geopot(ij,l+1)) |
---|
731 | ENDDO |
---|
732 | ENDDO |
---|
733 | |
---|
734 | ELSE ! compressible |
---|
735 | |
---|
736 | DO l=ll_begin,ll_end |
---|
737 | !DIR$ SIMD |
---|
738 | DO ij=ij_begin,ij_end |
---|
739 | |
---|
740 | berni(ij,l) = .5*(geopot(ij,l)+geopot(ij,l+1)) & |
---|
741 | + 1/(4*Ai(ij))*(le(ij+u_right)*de(ij+u_right)*u(ij+u_right,l)**2 + & |
---|
742 | le(ij+u_rup)*de(ij+u_rup)*u(ij+u_rup,l)**2 + & |
---|
743 | le(ij+u_lup)*de(ij+u_lup)*u(ij+u_lup,l)**2 + & |
---|
744 | le(ij+u_left)*de(ij+u_left)*u(ij+u_left,l)**2 + & |
---|
745 | le(ij+u_ldown)*de(ij+u_ldown)*u(ij+u_ldown,l)**2 + & |
---|
746 | le(ij+u_rdown)*de(ij+u_rdown)*u(ij+u_rdown,l)**2 ) |
---|
747 | ENDDO |
---|
748 | ENDDO |
---|
749 | |
---|
750 | END IF ! Boussinesq/compressible |
---|
751 | |
---|
752 | !!! Add gradients of Bernoulli and Exner functions to du |
---|
753 | DO l=ll_begin,ll_end |
---|
754 | !DIR$ SIMD |
---|
755 | DO ij=ij_begin,ij_end |
---|
756 | |
---|
757 | du(ij+u_right,l) = du(ij+u_right,l) + 1/de(ij+u_right) * ( & |
---|
758 | 0.5*(theta(ij,l)+theta(ij+t_right,l)) & |
---|
759 | *( ne_right*pk(ij,l)+ne_left*pk(ij+t_right,l)) & |
---|
760 | + ne_right*berni(ij,l)+ne_left*berni(ij+t_right,l) ) |
---|
761 | |
---|
762 | |
---|
763 | du(ij+u_lup,l) = du(ij+u_lup,l) + 1/de(ij+u_lup) * ( & |
---|
764 | 0.5*(theta(ij,l)+theta(ij+t_lup,l)) & |
---|
765 | *( ne_lup*pk(ij,l)+ne_rdown*pk(ij+t_lup,l)) & |
---|
766 | + ne_lup*berni(ij,l)+ne_rdown*berni(ij+t_lup,l) ) |
---|
767 | |
---|
768 | du(ij+u_ldown,l) = du(ij+u_ldown,l) + 1/de(ij+u_ldown) * ( & |
---|
769 | 0.5*(theta(ij,l)+theta(ij+t_ldown,l)) & |
---|
770 | *( ne_ldown*pk(ij,l)+ne_rup*pk(ij+t_ldown,l)) & |
---|
771 | + ne_ldown*berni(ij,l)+ne_rup*berni(ij+t_ldown,l) ) |
---|
772 | |
---|
773 | ENDDO |
---|
774 | ENDDO |
---|
775 | |
---|
776 | CALL trace_end("compute_caldyn_horiz") |
---|
777 | |
---|
778 | END SUBROUTINE compute_caldyn_horiz |
---|
779 | |
---|
780 | SUBROUTINE compute_caldyn_vert(u,theta,rhodz,convm, wflux,wwuu, dps,dtheta_rhodz,du) |
---|
781 | USE icosa |
---|
782 | USE disvert_mod |
---|
783 | USE exner_mod |
---|
784 | USE trace |
---|
785 | USE omp_para |
---|
786 | IMPLICIT NONE |
---|
787 | REAL(rstd),INTENT(IN) :: u(iim*3*jjm,llm) |
---|
788 | REAL(rstd),INTENT(IN) :: theta(iim*jjm,llm) |
---|
789 | REAL(rstd),INTENT(IN) :: rhodz(iim*jjm,llm) |
---|
790 | REAL(rstd),INTENT(INOUT) :: convm(iim*jjm,llm) ! mass flux convergence |
---|
791 | |
---|
792 | REAL(rstd),INTENT(INOUT) :: wflux(iim*jjm,llm+1) ! vertical mass flux (kg/m2/s) |
---|
793 | REAL(rstd),INTENT(INOUT) :: wwuu(iim*3*jjm,llm+1) |
---|
794 | REAL(rstd),INTENT(INOUT) :: du(iim*3*jjm,llm) |
---|
795 | REAL(rstd),INTENT(INOUT) :: dtheta_rhodz(iim*jjm,llm) |
---|
796 | REAL(rstd),INTENT(OUT) :: dps(iim*jjm) |
---|
797 | |
---|
798 | ! temporary variable |
---|
799 | INTEGER :: i,j,ij,l |
---|
800 | REAL(rstd) :: p_ik, exner_ik |
---|
801 | INTEGER :: ij_omp_begin, ij_omp_end |
---|
802 | |
---|
803 | |
---|
804 | CALL trace_start("compute_geopot") |
---|
805 | |
---|
806 | CALL distrib_level(ij_end-ij_begin+1,ij_omp_begin,ij_omp_end) |
---|
807 | ij_omp_begin=ij_omp_begin+ij_begin-1 |
---|
808 | ij_omp_end=ij_omp_end+ij_begin-1 |
---|
809 | |
---|
810 | ! REAL(rstd) :: wwuu(iim*3*jjm,llm+1) ! tmp var, don't know why but gain 30% on the whole code in opemp |
---|
811 | ! need to be understood |
---|
812 | |
---|
813 | ! wwuu=wwuu_out |
---|
814 | CALL trace_start("compute_caldyn_vert") |
---|
815 | |
---|
816 | !$OMP BARRIER |
---|
817 | !!! cumulate mass flux convergence from top to bottom |
---|
818 | ! IF (is_omp_level_master) THEN |
---|
819 | DO l = llm-1, 1, -1 |
---|
820 | ! IF (caldyn_conserv==energy) CALL test_message(req_qu) |
---|
821 | |
---|
822 | !!$OMP DO SCHEDULE(STATIC) |
---|
823 | !DIR$ SIMD |
---|
824 | DO ij=ij_omp_begin,ij_omp_end |
---|
825 | convm(ij,l) = convm(ij,l) + convm(ij,l+1) |
---|
826 | ENDDO |
---|
827 | ENDDO |
---|
828 | ! ENDIF |
---|
829 | |
---|
830 | !$OMP BARRIER |
---|
831 | ! FLUSH on convm |
---|
832 | !!!!!!!!!!!!!!!!!!!!!!!!! |
---|
833 | |
---|
834 | ! compute dps |
---|
835 | IF (is_omp_first_level) THEN |
---|
836 | !DIR$ SIMD |
---|
837 | DO ij=ij_begin,ij_end |
---|
838 | ! dps/dt = -int(div flux)dz |
---|
839 | dps(ij) = convm(ij,1) * g |
---|
840 | ENDDO |
---|
841 | ENDIF |
---|
842 | |
---|
843 | !!! Compute vertical mass flux (l=1,llm+1 done by caldyn_BC) |
---|
844 | DO l=ll_beginp1,ll_end |
---|
845 | ! IF (caldyn_conserv==energy) CALL test_message(req_qu) |
---|
846 | !DIR$ SIMD |
---|
847 | DO ij=ij_begin,ij_end |
---|
848 | ! w = int(z,ztop,div(flux)dz) + B(eta)dps/dt |
---|
849 | ! => w>0 for upward transport |
---|
850 | wflux( ij, l ) = bp(l) * convm( ij, 1 ) - convm( ij, l ) |
---|
851 | ENDDO |
---|
852 | ENDDO |
---|
853 | |
---|
854 | !--> flush wflux |
---|
855 | !$OMP BARRIER |
---|
856 | |
---|
857 | DO l=ll_begin,ll_endm1 |
---|
858 | !DIR$ SIMD |
---|
859 | DO ij=ij_begin,ij_end |
---|
860 | dtheta_rhodz(ij, l ) = dtheta_rhodz(ij, l ) - 0.5 * ( wflux(ij,l+1) * (theta(ij,l) + theta(ij,l+1))) |
---|
861 | ENDDO |
---|
862 | ENDDO |
---|
863 | |
---|
864 | DO l=ll_beginp1,ll_end |
---|
865 | !DIR$ SIMD |
---|
866 | DO ij=ij_begin,ij_end |
---|
867 | dtheta_rhodz(ij, l ) = dtheta_rhodz(ij, l ) + 0.5 * ( wflux(ij,l ) * (theta(ij,l-1) + theta(ij,l) ) ) |
---|
868 | ENDDO |
---|
869 | ENDDO |
---|
870 | |
---|
871 | |
---|
872 | ! Compute vertical transport |
---|
873 | DO l=ll_beginp1,ll_end |
---|
874 | !DIR$ SIMD |
---|
875 | DO ij=ij_begin,ij_end |
---|
876 | wwuu(ij+u_right,l) = 0.5*( wflux(ij,l) + wflux(ij+t_right,l)) * (u(ij+u_right,l) - u(ij+u_right,l-1)) |
---|
877 | wwuu(ij+u_lup,l) = 0.5* ( wflux(ij,l) + wflux(ij+t_lup,l)) * (u(ij+u_lup,l) - u(ij+u_lup,l-1)) |
---|
878 | wwuu(ij+u_ldown,l) = 0.5*( wflux(ij,l) + wflux(ij+t_ldown,l)) * (u(ij+u_ldown,l) - u(ij+u_ldown,l-1)) |
---|
879 | ENDDO |
---|
880 | ENDDO |
---|
881 | |
---|
882 | !--> flush wwuu |
---|
883 | !$OMP BARRIER |
---|
884 | |
---|
885 | ! Add vertical transport to du |
---|
886 | DO l=ll_begin,ll_end |
---|
887 | !DIR$ SIMD |
---|
888 | DO ij=ij_begin,ij_end |
---|
889 | du(ij+u_right, l ) = du(ij+u_right,l) - (wwuu(ij+u_right,l+1)+ wwuu(ij+u_right,l)) / (rhodz(ij,l)+rhodz(ij+t_right,l)) |
---|
890 | du(ij+u_lup, l ) = du(ij+u_lup,l) - (wwuu(ij+u_lup,l+1) + wwuu(ij+u_lup,l)) / (rhodz(ij,l)+rhodz(ij+t_lup,l)) |
---|
891 | du(ij+u_ldown, l ) = du(ij+u_ldown,l) - (wwuu(ij+u_ldown,l+1)+ wwuu(ij+u_ldown,l)) / (rhodz(ij,l)+rhodz(ij+t_ldown,l)) |
---|
892 | ENDDO |
---|
893 | ENDDO |
---|
894 | |
---|
895 | ! DO l=ll_beginp1,ll_end |
---|
896 | !!DIR$ SIMD |
---|
897 | ! DO ij=ij_begin,ij_end |
---|
898 | ! wwuu_out(ij+u_right,l) = wwuu(ij+u_right,l) |
---|
899 | ! wwuu_out(ij+u_lup,l) = wwuu(ij+u_lup,l) |
---|
900 | ! wwuu_out(ij+u_ldown,l) = wwuu(ij+u_ldown,l) |
---|
901 | ! ENDDO |
---|
902 | ! ENDDO |
---|
903 | |
---|
904 | CALL trace_end("compute_caldyn_vert") |
---|
905 | |
---|
906 | END SUBROUTINE compute_caldyn_vert |
---|
907 | |
---|
908 | !-------------------------------- Diagnostics ---------------------------- |
---|
909 | |
---|
910 | SUBROUTINE check_mass_conservation(f_ps,f_dps) |
---|
911 | USE icosa |
---|
912 | USE mpipara |
---|
913 | IMPLICIT NONE |
---|
914 | TYPE(t_field),POINTER :: f_ps(:) |
---|
915 | TYPE(t_field),POINTER :: f_dps(:) |
---|
916 | REAL(rstd),POINTER :: ps(:) |
---|
917 | REAL(rstd),POINTER :: dps(:) |
---|
918 | REAL(rstd) :: mass_tot,dmass_tot |
---|
919 | INTEGER :: ind,i,j,ij |
---|
920 | |
---|
921 | mass_tot=0 |
---|
922 | dmass_tot=0 |
---|
923 | |
---|
924 | CALL transfert_request(f_dps,req_i1) |
---|
925 | CALL transfert_request(f_ps,req_i1) |
---|
926 | |
---|
927 | DO ind=1,ndomain |
---|
928 | CALL swap_dimensions(ind) |
---|
929 | CALL swap_geometry(ind) |
---|
930 | |
---|
931 | ps=f_ps(ind) |
---|
932 | dps=f_dps(ind) |
---|
933 | |
---|
934 | DO j=jj_begin,jj_end |
---|
935 | DO i=ii_begin,ii_end |
---|
936 | ij=(j-1)*iim+i |
---|
937 | IF (domain(ind)%own(i,j)) THEN |
---|
938 | mass_tot=mass_tot+ps(ij)*Ai(ij)/g |
---|
939 | dmass_tot=dmass_tot+dps(ij)*Ai(ij)/g |
---|
940 | ENDIF |
---|
941 | ENDDO |
---|
942 | ENDDO |
---|
943 | |
---|
944 | ENDDO |
---|
945 | IF (is_mpi_root) PRINT*, "mass_tot ", mass_tot," dmass_tot ",dmass_tot |
---|
946 | |
---|
947 | END SUBROUTINE check_mass_conservation |
---|
948 | |
---|
949 | SUBROUTINE write_output_fields(f_ps, f_phis, f_dps, f_u, f_theta_rhodz, f_q, & |
---|
950 | f_buf_i, f_buf_v, f_buf_i3, f_buf1_i, f_buf2_i, f_buf_s, f_buf_p) |
---|
951 | USE icosa |
---|
952 | USE vorticity_mod |
---|
953 | USE theta2theta_rhodz_mod |
---|
954 | USE pression_mod |
---|
955 | USE omega_mod |
---|
956 | USE write_field_mod |
---|
957 | USE vertical_interp_mod |
---|
958 | USE wind_mod |
---|
959 | TYPE(t_field),POINTER :: f_ps(:), f_phis(:), f_u(:), f_theta_rhodz(:), f_q(:), f_dps(:), & |
---|
960 | f_buf_i(:), f_buf_v(:), f_buf_i3(:), f_buf1_i(:), f_buf2_i(:), f_buf_s(:), f_buf_p(:) |
---|
961 | |
---|
962 | REAL(rstd) :: out_pression_lev |
---|
963 | CHARACTER(LEN=255) :: str_pression |
---|
964 | CHARACTER(LEN=255) :: physics_type |
---|
965 | |
---|
966 | out_pression_level=0 |
---|
967 | CALL getin("out_pression_level",out_pression_level) |
---|
968 | WRITE(str_pression,*) INT(out_pression_level/100) |
---|
969 | str_pression=ADJUSTL(str_pression) |
---|
970 | |
---|
971 | CALL writefield("ps",f_ps) |
---|
972 | CALL writefield("dps",f_dps) |
---|
973 | CALL writefield("phis",f_phis) |
---|
974 | CALL vorticity(f_u,f_buf_v) |
---|
975 | CALL writefield("vort",f_buf_v) |
---|
976 | |
---|
977 | CALL w_omega(f_ps, f_u, f_buf_i) |
---|
978 | CALL writefield('omega', f_buf_i) |
---|
979 | IF (out_pression_level<=preff .AND. out_pression_level > 0) THEN |
---|
980 | CALL vertical_interp(f_ps,f_buf_i,f_buf_s,out_pression_level) |
---|
981 | CALL writefield("omega"//TRIM(str_pression),f_buf_s) |
---|
982 | ENDIF |
---|
983 | |
---|
984 | ! Temperature |
---|
985 | ! CALL theta_rhodz2temperature(f_ps,f_theta_rhodz,f_buf_i) ; ! FIXME |
---|
986 | |
---|
987 | CALL getin('physics',physics_type) |
---|
988 | IF (TRIM(physics_type)=='dcmip') THEN |
---|
989 | CALL Tv2T(f_buf_i,f_q,f_buf1_i) |
---|
990 | CALL writefield("T",f_buf1_i) |
---|
991 | IF (out_pression_level<=preff .AND. out_pression_level > 0) THEN |
---|
992 | CALL vertical_interp(f_ps,f_buf1_i,f_buf_s,out_pression_level) |
---|
993 | CALL writefield("T"//TRIM(str_pression),f_buf_s) |
---|
994 | ENDIF |
---|
995 | ELSE |
---|
996 | CALL writefield("T",f_buf_i) |
---|
997 | IF (out_pression_level<=preff .AND. out_pression_level > 0) THEN |
---|
998 | CALL vertical_interp(f_ps,f_buf_i,f_buf_s,out_pression_level) |
---|
999 | CALL writefield("T"//TRIM(str_pression),f_buf_s) |
---|
1000 | ENDIF |
---|
1001 | ENDIF |
---|
1002 | |
---|
1003 | ! velocity components |
---|
1004 | CALL un2ulonlat(f_u, f_buf1_i, f_buf2_i) |
---|
1005 | CALL writefield("ulon",f_buf1_i) |
---|
1006 | CALL writefield("ulat",f_buf2_i) |
---|
1007 | |
---|
1008 | IF (out_pression_level<=preff .AND. out_pression_level > 0) THEN |
---|
1009 | CALL vertical_interp(f_ps,f_buf1_i,f_buf_s,out_pression_level) |
---|
1010 | CALL writefield("ulon"//TRIM(str_pression),f_buf_s) |
---|
1011 | CALL vertical_interp(f_ps,f_buf2_i,f_buf_s,out_pression_level) |
---|
1012 | CALL writefield("ulat"//TRIM(str_pression),f_buf_s) |
---|
1013 | ENDIF |
---|
1014 | |
---|
1015 | ! geopotential ! FIXME |
---|
1016 | CALL thetarhodz2geopot(f_ps,f_phis,f_theta_rhodz, f_buf_s,f_buf_p,f_buf1_i,f_buf2_i,f_buf_i) |
---|
1017 | CALL writefield("p",f_buf_p) |
---|
1018 | CALL writefield("phi",f_geopot) ! geopotential |
---|
1019 | CALL writefield("theta",f_buf1_i) ! potential temperature |
---|
1020 | CALL writefield("pk",f_buf2_i) ! Exner pressure |
---|
1021 | |
---|
1022 | END SUBROUTINE write_output_fields |
---|
1023 | |
---|
1024 | SUBROUTINE thetarhodz2geopot(f_ps,f_phis,f_theta_rhodz, f_pks,f_p,f_theta,f_pk,f_phi) |
---|
1025 | USE field_mod |
---|
1026 | USE pression_mod |
---|
1027 | USE exner_mod |
---|
1028 | USE geopotential_mod |
---|
1029 | USE theta2theta_rhodz_mod |
---|
1030 | TYPE(t_field), POINTER :: f_ps(:), f_phis(:), f_theta_rhodz(:), & ! IN |
---|
1031 | f_pks(:), f_p(:), f_theta(:), f_pk(:), f_phi(:) ! OUT |
---|
1032 | REAL(rstd),POINTER :: pk(:,:), p(:,:), theta(:,:), theta_rhodz(:,:), & |
---|
1033 | phi(:,:), phis(:), ps(:), pks(:) |
---|
1034 | INTEGER :: ind |
---|
1035 | |
---|
1036 | DO ind=1,ndomain |
---|
1037 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
1038 | CALL swap_dimensions(ind) |
---|
1039 | CALL swap_geometry(ind) |
---|
1040 | ps = f_ps(ind) |
---|
1041 | p = f_p(ind) |
---|
1042 | !$OMP BARRIER |
---|
1043 | CALL compute_pression(ps,p,0) |
---|
1044 | pk = f_pk(ind) |
---|
1045 | pks = f_pks(ind) |
---|
1046 | !$OMP BARRIER |
---|
1047 | CALL compute_exner(ps,p,pks,pk,0) |
---|
1048 | !$OMP BARRIER |
---|
1049 | theta_rhodz = f_theta_rhodz(ind) |
---|
1050 | theta = f_theta(ind) |
---|
1051 | CALL compute_theta_rhodz2theta(ps, theta_rhodz,theta,0) |
---|
1052 | phis = f_phis(ind) |
---|
1053 | phi = f_phi(ind) |
---|
1054 | CALL compute_geopotential(phis,pks,pk,theta,phi,0) |
---|
1055 | END DO |
---|
1056 | |
---|
1057 | END SUBROUTINE thetarhodz2geopot |
---|
1058 | |
---|
1059 | SUBROUTINE Tv2T(f_Tv, f_q, f_T) |
---|
1060 | USE icosa |
---|
1061 | IMPLICIT NONE |
---|
1062 | TYPE(t_field), POINTER :: f_TV(:) |
---|
1063 | TYPE(t_field), POINTER :: f_q(:) |
---|
1064 | TYPE(t_field), POINTER :: f_T(:) |
---|
1065 | |
---|
1066 | REAL(rstd),POINTER :: Tv(:,:), q(:,:,:), T(:,:) |
---|
1067 | INTEGER :: ind |
---|
1068 | |
---|
1069 | DO ind=1,ndomain |
---|
1070 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
1071 | CALL swap_dimensions(ind) |
---|
1072 | CALL swap_geometry(ind) |
---|
1073 | Tv=f_Tv(ind) |
---|
1074 | q=f_q(ind) |
---|
1075 | T=f_T(ind) |
---|
1076 | T=Tv/(1+0.608*q(:,:,1)) |
---|
1077 | END DO |
---|
1078 | |
---|
1079 | END SUBROUTINE Tv2T |
---|
1080 | |
---|
1081 | END MODULE caldyn_gcm_mod |
---|