1 | MODULE advect_mod |
---|
2 | USE icosa |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | PRIVATE |
---|
6 | |
---|
7 | PUBLIC :: init_advect, compute_backward_traj, compute_gradq3d, compute_advect_horiz |
---|
8 | |
---|
9 | CONTAINS |
---|
10 | |
---|
11 | !========================================================================== |
---|
12 | |
---|
13 | SUBROUTINE init_advect(normal,tangent,sqrt_leng) |
---|
14 | IMPLICIT NONE |
---|
15 | REAL(rstd),INTENT(OUT) :: normal(3*iim*jjm,3) |
---|
16 | REAL(rstd),INTENT(OUT) :: tangent(3*iim*jjm,3) |
---|
17 | REAL(rstd),INTENT(OUT) :: sqrt_leng(iim*jjm) |
---|
18 | |
---|
19 | INTEGER :: ij |
---|
20 | |
---|
21 | !$SIMD |
---|
22 | DO ij=ij_begin,ij_end |
---|
23 | |
---|
24 | CALL cross_product2(xyz_v(ij+z_rdown,:),xyz_v(ij+z_rup,:),normal(ij+u_right,:)) |
---|
25 | normal(ij+u_right,:)=normal(ij+u_right,:)/sqrt(sum(normal(ij+u_right,:)**2)+1e-50)*ne(ij,right) |
---|
26 | |
---|
27 | CALL cross_product2(xyz_v(ij+z_up,:),xyz_v(ij+z_lup,:),normal(ij+u_lup,:)) |
---|
28 | normal(ij+u_lup,:)=normal(ij+u_lup,:)/sqrt(sum(normal(ij+u_lup,:)**2)+1e-50)*ne(ij,lup) |
---|
29 | |
---|
30 | CALL cross_product2(xyz_v(ij+z_ldown,:),xyz_v(ij+z_down,:),normal(ij+u_ldown,:)) |
---|
31 | normal(ij+u_ldown,:)=normal(ij+u_ldown,:)/sqrt(sum(normal(ij+u_ldown,:)**2)+1e-50)*ne(ij,ldown) |
---|
32 | |
---|
33 | tangent(ij+u_right,:)=xyz_v(ij+z_rup,:)-xyz_v(ij+z_rdown,:) |
---|
34 | tangent(ij+u_right,:)=tangent(ij+u_right,:)/sqrt(sum(tangent(ij+u_right,:)**2)+1e-50) |
---|
35 | |
---|
36 | tangent(ij+u_lup,:)=xyz_v(ij+z_lup,:)-xyz_v(ij+z_up,:) |
---|
37 | tangent(ij+u_lup,:)=tangent(ij+u_lup,:)/sqrt(sum(tangent(ij+u_lup,:)**2)+1e-50) |
---|
38 | |
---|
39 | tangent(ij+u_ldown,:)=xyz_v(ij+z_down,:)-xyz_v(ij+z_ldown,:) |
---|
40 | tangent(ij+u_ldown,:)=tangent(ij+u_ldown,:)/sqrt(sum(tangent(ij+u_ldown,:)**2)+1e-50) |
---|
41 | |
---|
42 | sqrt_leng(ij) = sqrt(max(sum((xyz_v(ij+z_up,:) - xyz_i(ij,:))**2),sum((xyz_v(ij+z_down,:) - xyz_i(ij,:))**2), & |
---|
43 | sum((xyz_v(ij+z_rup,:) - xyz_i(ij,:))**2),sum((xyz_v(ij+z_rdown,:) - xyz_i(ij,:))**2), & |
---|
44 | sum((xyz_v(ij+z_lup,:) - xyz_i(ij,:))**2),sum((xyz_v(ij+z_ldown,:) - xyz_i(ij,:))**2)) ) |
---|
45 | ENDDO |
---|
46 | |
---|
47 | END SUBROUTINE init_advect |
---|
48 | |
---|
49 | !======================================================================================= |
---|
50 | |
---|
51 | SUBROUTINE compute_gradq3d(qi_in,sqrt_leng_in,gradq3d_out,xyz_i,xyz_v) |
---|
52 | USE trace |
---|
53 | USE omp_para |
---|
54 | IMPLICIT NONE |
---|
55 | REAL(rstd),INTENT(IN) :: qi_in(iim*jjm,llm) |
---|
56 | REAL(rstd),INTENT(IN) :: sqrt_leng_in(iim*jjm) |
---|
57 | REAL(rstd),INTENT(IN) :: xyz_i(iim*jjm,3) |
---|
58 | REAL(rstd),INTENT(IN) :: xyz_v(2*iim*jjm,3) |
---|
59 | REAL(rstd),INTENT(OUT) :: gradq3d_out(iim*jjm,llm,3) |
---|
60 | REAL(rstd) :: maxq,minq,minq_c,maxq_c |
---|
61 | REAL(rstd) :: alphamx,alphami,alpha ,maggrd |
---|
62 | REAL(rstd) :: leng1,leng2 |
---|
63 | REAL(rstd) :: arr(2*iim*jjm) |
---|
64 | REAL(rstd) :: ar(iim*jjm) |
---|
65 | REAL(rstd) :: gradtri(2*iim*jjm,llm,3) |
---|
66 | INTEGER :: ij,k,ind,l |
---|
67 | REAL(rstd) :: qi(iim*jjm,llm) |
---|
68 | REAL(rstd) :: sqrt_leng(iim*jjm) |
---|
69 | REAL(rstd) :: gradq3d(iim*jjm,llm,3) |
---|
70 | REAL(rstd) :: detx,dety,detz,det |
---|
71 | REAL(rstd) :: A(3,3), a11,a12,a13,a21,a22,a23,a31,a32,a33 |
---|
72 | REAL(rstd) :: x1,x2,x3 |
---|
73 | REAL(rstd) :: dq(3) |
---|
74 | |
---|
75 | qi=qi_in |
---|
76 | sqrt_leng=sqrt_leng_in |
---|
77 | |
---|
78 | CALL trace_start("compute_gradq3d1") |
---|
79 | |
---|
80 | ! TODO : precompute ar, drop arr as output argument of gradq ? |
---|
81 | |
---|
82 | !========================================================================================== GRADIENT |
---|
83 | ! Compute gradient at triangles solving a linear system |
---|
84 | ! arr = area of triangle joining centroids of hexagons |
---|
85 | ! DO l = ll_begin,ll_end |
---|
86 | !!$SIMD |
---|
87 | ! DO ij=ij_begin_ext,ij_end_ext |
---|
88 | !! CALL gradq(ij,l,ij+t_rup,ij+t_lup,ij+z_up,qi,gradtri(ij+z_up,l,:),arr(ij+z_up)) |
---|
89 | !! CALL gradq(ij,l,ij+t_ldown,ij+t_rdown,ij+z_down,qi,gradtri(ij+z_down,l,:),arr(ij+z_down)) |
---|
90 | ! CALL gradq(ij,l,ij+t_rup,ij+t_lup,ij+z_up,qi,gradtri(ij+z_up,l,1),gradtri(ij+z_up,l,2),gradtri(ij+z_up,l,3),arr(ij+z_up)) |
---|
91 | ! CALL gradq(ij,l,ij+t_ldown,ij+t_rdown,ij+z_down,qi,gradtri(ij+z_down,l,1),gradtri(ij+z_down,l,2),gradtri(ij+z_down,l,3),arr(ij+z_down)) |
---|
92 | ! END DO |
---|
93 | ! END DO |
---|
94 | |
---|
95 | DO l = ll_begin,ll_end |
---|
96 | !$SIMD |
---|
97 | DO ij=ij_begin_ext,ij_end_ext |
---|
98 | ! CALL gradq(ij,l,ij+t_rup,ij+t_lup,ij+z_up,qi,gradtri(ij+z_up,l,1),gradtri(ij+z_up,l,2),gradtri(ij+z_up,l,3),arr(ij+z_up)) |
---|
99 | |
---|
100 | |
---|
101 | A(1,1)=xyz_i(ij+t_rup,1)-xyz_i(ij,1); A(1,2)=xyz_i(ij+t_rup,2)-xyz_i(ij,2); A(1,3)=xyz_i(ij+t_rup,3)-xyz_i(ij,3) |
---|
102 | A(2,1)=xyz_i(ij+t_lup,1)-xyz_i(ij,1); A(2,2)=xyz_i(ij+t_lup,2)-xyz_i(ij,2); A(2,3)=xyz_i(ij+t_lup,3)-xyz_i(ij,3) |
---|
103 | A(3,1)=xyz_v(ij+z_up,1); A(3,2)= xyz_v(ij+z_up,2); A(3,3)=xyz_v(ij+z_up,3) |
---|
104 | |
---|
105 | dq(1) = qi(ij+t_rup,l)-qi(ij,l) |
---|
106 | dq(2) = qi(ij+t_lup,l)-qi(ij,l) |
---|
107 | dq(3) = 0.0 |
---|
108 | |
---|
109 | |
---|
110 | ! CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),det) |
---|
111 | |
---|
112 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
113 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
114 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
115 | |
---|
116 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
117 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
118 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
119 | det = x1 - x2 + x3 |
---|
120 | |
---|
121 | ! CALL determinant(dq(1),dq(2),dq(3),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),detx) |
---|
122 | |
---|
123 | a11=dq(1) ; a12=dq(2) ; a13=dq(3) |
---|
124 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
125 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
126 | |
---|
127 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
128 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
129 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
130 | detx = x1 - x2 + x3 |
---|
131 | |
---|
132 | ! CALL determinant(A(1,1),A(2,1),A(3,1),dq(1),dq(2),dq(3),A(1,3),A(2,3),A(3,3),dety) |
---|
133 | |
---|
134 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
135 | a21=dq(1) ; a22=dq(2) ; a23=dq(3) |
---|
136 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
137 | |
---|
138 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
139 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
140 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
141 | dety = x1 - x2 + x3 |
---|
142 | |
---|
143 | ! CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),dq(1),dq(2),dq(3),detz) |
---|
144 | |
---|
145 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
146 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
147 | a31=dq(1) ; a32=dq(2) ; a33=dq(3) |
---|
148 | |
---|
149 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
150 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
151 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
152 | detz = x1 - x2 + x3 |
---|
153 | |
---|
154 | gradtri(ij+z_up,l,1) = detx |
---|
155 | gradtri(ij+z_up,l,2) = dety |
---|
156 | gradtri(ij+z_up,l,3) = detz |
---|
157 | arr(ij+z_up) = det |
---|
158 | |
---|
159 | ENDDO |
---|
160 | |
---|
161 | DO ij=ij_begin_ext,ij_end_ext |
---|
162 | |
---|
163 | |
---|
164 | ! CALL gradq(ij,l,ij+t_ldown,ij+t_rdown,ij+z_down,qi,gradtri(ij+z_down,l,1),gradtri(ij+z_down,l,2),gradtri(ij+z_down,l,3),arr(ij+z_down)) |
---|
165 | |
---|
166 | A(1,1)=xyz_i(ij+t_ldown,1)-xyz_i(ij,1); A(1,2)=xyz_i(ij+t_ldown,2)-xyz_i(ij,2); A(1,3)=xyz_i(ij+t_ldown,3)-xyz_i(ij,3) |
---|
167 | A(2,1)=xyz_i(ij+t_rdown,1)-xyz_i(ij,1); A(2,2)=xyz_i(ij+t_rdown,2)-xyz_i(ij,2); A(2,3)=xyz_i(ij+t_rdown,3)-xyz_i(ij,3) |
---|
168 | A(3,1)=xyz_v(ij+z_down,1); A(3,2)= xyz_v(ij+z_down,2); A(3,3)=xyz_v(ij+z_down,3) |
---|
169 | |
---|
170 | dq(1) = qi(ij+t_ldown,l)-qi(ij,l) |
---|
171 | dq(2) = qi(ij+t_rdown,l)-qi(ij,l) |
---|
172 | dq(3) = 0.0 |
---|
173 | |
---|
174 | |
---|
175 | ! CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),det) |
---|
176 | |
---|
177 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
178 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
179 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
180 | |
---|
181 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
182 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
183 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
184 | det = x1 - x2 + x3 |
---|
185 | |
---|
186 | ! CALL determinant(dq(1),dq(2),dq(3),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),detx) |
---|
187 | |
---|
188 | a11=dq(1) ; a12=dq(2) ; a13=dq(3) |
---|
189 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
190 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
191 | |
---|
192 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
193 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
194 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
195 | detx = x1 - x2 + x3 |
---|
196 | |
---|
197 | ! CALL determinant(A(1,1),A(2,1),A(3,1),dq(1),dq(2),dq(3),A(1,3),A(2,3),A(3,3),dety) |
---|
198 | |
---|
199 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
200 | a21=dq(1) ; a22=dq(2) ; a23=dq(3) |
---|
201 | a31=A(1,3) ; a32=A(2,3) ; a33=A(3,3) |
---|
202 | |
---|
203 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
204 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
205 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
206 | dety = x1 - x2 + x3 |
---|
207 | |
---|
208 | ! CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),dq(1),dq(2),dq(3),detz) |
---|
209 | |
---|
210 | a11=A(1,1) ; a12=A(2,1) ; a13=A(3,1) |
---|
211 | a21=A(1,2) ; a22=A(2,2) ; a23=A(3,2) |
---|
212 | a31=dq(1) ; a32=dq(2) ; a33=dq(3) |
---|
213 | |
---|
214 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
215 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
216 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
217 | detz = x1 - x2 + x3 |
---|
218 | |
---|
219 | gradtri(ij+z_down,l,1) = detx |
---|
220 | gradtri(ij+z_down,l,2) = dety |
---|
221 | gradtri(ij+z_down,l,3) = detz |
---|
222 | arr(ij+z_down) = det |
---|
223 | |
---|
224 | END DO |
---|
225 | END DO |
---|
226 | |
---|
227 | !$SIMD |
---|
228 | DO ij=ij_begin,ij_end |
---|
229 | ar(ij) = arr(ij+z_up)+arr(ij+z_lup)+arr(ij+z_ldown)+arr(ij+z_down)+arr(ij+z_rdown)+arr(ij+z_rup)+1.e-50 |
---|
230 | ENDDO |
---|
231 | CALL trace_end("compute_gradq3d1") |
---|
232 | CALL trace_start2("compute_gradq3d2") |
---|
233 | |
---|
234 | DO k=1,3 |
---|
235 | DO l =ll_begin,ll_end |
---|
236 | !$SIMD |
---|
237 | DO ij=ij_begin,ij_end |
---|
238 | gradq3d(ij,l,k) = ( gradtri(ij+z_up,l,k) + gradtri(ij+z_down,l,k) + & |
---|
239 | gradtri(ij+z_rup,l,k) + gradtri(ij+z_ldown,l,k) + & |
---|
240 | gradtri(ij+z_lup,l,k)+ gradtri(ij+z_rdown,l,k) ) / ar(ij) |
---|
241 | END DO |
---|
242 | END DO |
---|
243 | ENDDO |
---|
244 | CALL trace_end2("compute_gradq3d2") |
---|
245 | CALL trace_start("compute_gradq3d3") |
---|
246 | |
---|
247 | !============================================================================================= LIMITING |
---|
248 | DO l =ll_begin,ll_end |
---|
249 | !$SIMD |
---|
250 | DO ij=ij_begin,ij_end |
---|
251 | ! maggrd = dot_product(gradq3d(ij,l,:),gradq3d(ij,l,:)) |
---|
252 | maggrd = gradq3d(ij,l,1)*gradq3d(ij,l,1) + gradq3d(ij,l,2)*gradq3d(ij,l,2) + gradq3d(ij,l,3)*gradq3d(ij,l,3) |
---|
253 | maggrd = sqrt(maggrd) |
---|
254 | maxq_c = qi(ij,l) + maggrd*sqrt_leng(ij) |
---|
255 | minq_c = qi(ij,l) - maggrd*sqrt_leng(ij) |
---|
256 | maxq = max(qi(ij,l),qi(ij+t_right,l),qi(ij+t_lup,l),qi(ij+t_rup,l),qi(ij+t_left,l), & |
---|
257 | qi(ij+t_rdown,l),qi(ij+t_ldown,l)) |
---|
258 | minq = min(qi(ij,l),qi(ij+t_right,l),qi(ij+t_lup,l),qi(ij+t_rup,l),qi(ij+t_left,l), & |
---|
259 | qi(ij+t_rdown,l),qi(ij+t_ldown,l)) |
---|
260 | alphamx = (maxq - qi(ij,l)) ; alphamx = alphamx/(maxq_c - qi(ij,l) ) |
---|
261 | alphamx = max(alphamx,0.0) |
---|
262 | alphami = (minq - qi(ij,l)); alphami = alphami/(minq_c - qi(ij,l)) |
---|
263 | alphami = max(alphami,0.0) |
---|
264 | alpha = min(alphamx,alphami,1.0) |
---|
265 | ! gradq3d(ij,l,:) = alpha*gradq3d(ij,l,:) |
---|
266 | gradq3d(ij,l,1) = alpha*gradq3d(ij,l,1) |
---|
267 | gradq3d(ij,l,2) = alpha*gradq3d(ij,l,2) |
---|
268 | gradq3d(ij,l,3) = alpha*gradq3d(ij,l,3) |
---|
269 | END DO |
---|
270 | END DO |
---|
271 | |
---|
272 | CALL trace_end("compute_gradq3d3") |
---|
273 | |
---|
274 | |
---|
275 | DO k=1,3 |
---|
276 | DO l = ll_begin,ll_end |
---|
277 | DO ij=ij_begin,ij_end |
---|
278 | gradq3d_out(ij,l,k)=gradq3d(ij,l,k) |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | ENDDO |
---|
282 | |
---|
283 | CONTAINS |
---|
284 | |
---|
285 | SUBROUTINE gradq(n0,l,n1,n2,n3,q,dq1,dq2,dq3,det) |
---|
286 | IMPLICIT NONE |
---|
287 | INTEGER, INTENT(IN) :: n0,l,n1,n2,n3 |
---|
288 | REAL(rstd), INTENT(IN) :: q(iim*jjm,llm) |
---|
289 | ! REAL(rstd), INTENT(OUT) :: dq(3), det |
---|
290 | REAL(rstd), INTENT(OUT) :: dq1,dq2,dq3,det |
---|
291 | REAL(rstd) :: dq(3) |
---|
292 | |
---|
293 | REAL(rstd) ::detx,dety,detz |
---|
294 | INTEGER :: info |
---|
295 | INTEGER :: IPIV(3) |
---|
296 | |
---|
297 | REAL(rstd) :: A(3,3) |
---|
298 | REAL(rstd) :: B(3) |
---|
299 | |
---|
300 | ! TODO : replace A by A1,A2,A3 |
---|
301 | A(1,1)=xyz_i(n1,1)-xyz_i(n0,1); A(1,2)=xyz_i(n1,2)-xyz_i(n0,2); A(1,3)=xyz_i(n1,3)-xyz_i(n0,3) |
---|
302 | A(2,1)=xyz_i(n2,1)-xyz_i(n0,1); A(2,2)=xyz_i(n2,2)-xyz_i(n0,2); A(2,3)=xyz_i(n2,3)-xyz_i(n0,3) |
---|
303 | A(3,1)=xyz_v(n3,1); A(3,2)= xyz_v(n3,2); A(3,3)=xyz_v(n3,3) |
---|
304 | |
---|
305 | dq(1) = q(n1,l)-q(n0,l) |
---|
306 | dq(2) = q(n2,l)-q(n0,l) |
---|
307 | dq(3) = 0.0 |
---|
308 | |
---|
309 | ! CALL DGESV(3,1,A,3,IPIV,dq(:),3,info) |
---|
310 | ! CALL determinant(A(:,1),A(:,2),A(:,3),det) |
---|
311 | ! CALL determinant(dq,A(:,2),A(:,3),detx) |
---|
312 | ! CALL determinant(A(:,1),dq,A(:,3),dety) |
---|
313 | ! CALL determinant(A(:,1),A(:,2),dq,detz) |
---|
314 | ! dq(1) = detx |
---|
315 | ! dq(2) = dety |
---|
316 | ! dq(3) = detz |
---|
317 | |
---|
318 | CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),det) |
---|
319 | CALL determinant(dq(1),dq(2),dq(3),A(1,2),A(2,2),A(3,2),A(1,3),A(2,3),A(3,3),dq1) |
---|
320 | CALL determinant(A(1,1),A(2,1),A(3,1),dq(1),dq(2),dq(3),A(1,3),A(2,3),A(3,3),dq2) |
---|
321 | CALL determinant(A(1,1),A(2,1),A(3,1),A(1,2),A(2,2),A(3,2),dq(1),dq(2),dq(3),dq3) |
---|
322 | |
---|
323 | END SUBROUTINE gradq |
---|
324 | |
---|
325 | !========================================================================== |
---|
326 | ! PURE SUBROUTINE determinant(a1,a2,a3,det) |
---|
327 | ! IMPLICIT NONE |
---|
328 | ! REAL(rstd), DIMENSION(3), INTENT(IN) :: a1,a2,a3 |
---|
329 | ! REAL(rstd), INTENT(OUT) :: det |
---|
330 | ! REAL(rstd) :: x1,x2,x3 |
---|
331 | ! x1 = a1(1) * (a2(2) * a3(3) - a2(3) * a3(2)) |
---|
332 | ! x2 = a1(2) * (a2(1) * a3(3) - a2(3) * a3(1)) |
---|
333 | ! x3 = a1(3) * (a2(1) * a3(2) - a2(2) * a3(1)) |
---|
334 | ! det = x1 - x2 + x3 |
---|
335 | ! END SUBROUTINE determinant |
---|
336 | |
---|
337 | SUBROUTINE determinant(a11,a12,a13,a21,a22,a23,a31,a32,a33,det) |
---|
338 | IMPLICIT NONE |
---|
339 | REAL(rstd), INTENT(IN) :: a11,a12,a13,a21,a22,a23,a31,a32,a33 |
---|
340 | REAL(rstd), INTENT(OUT) :: det |
---|
341 | REAL(rstd) :: x1,x2,x3 |
---|
342 | x1 = a11 * (a22 * a33 - a23 * a32) |
---|
343 | x2 = a12 * (a21 * a33 - a23 * a31) |
---|
344 | x3 = a13 * (a21 * a32 - a22 * a31) |
---|
345 | det = x1 - x2 + x3 |
---|
346 | END SUBROUTINE determinant |
---|
347 | |
---|
348 | |
---|
349 | END SUBROUTINE compute_gradq3d |
---|
350 | |
---|
351 | ! Backward trajectories, for use with Miura approach |
---|
352 | SUBROUTINE compute_backward_traj(normal,tangent,ue,tau, cc) |
---|
353 | USE trace |
---|
354 | USE omp_para |
---|
355 | IMPLICIT NONE |
---|
356 | REAL(rstd),INTENT(IN) :: normal(3*iim*jjm,3) |
---|
357 | REAL(rstd),INTENT(IN) :: tangent(3*iim*jjm,3) |
---|
358 | REAL(rstd),INTENT(IN) :: ue(iim*3*jjm,llm) |
---|
359 | REAL(rstd),INTENT(OUT) :: cc(3*iim*jjm,llm,3) ! start of backward trajectory |
---|
360 | REAL(rstd),INTENT(IN) :: tau |
---|
361 | |
---|
362 | REAL(rstd) :: v_e(3), up_e, qe, ed(3) |
---|
363 | INTEGER :: ij,l |
---|
364 | |
---|
365 | CALL trace_start("compute_backward_traj") |
---|
366 | |
---|
367 | ! TODO : compute normal displacement ue*tau as hfluxt / mass(upwind) then reconstruct tangential displacement |
---|
368 | |
---|
369 | ! reconstruct tangential wind then 3D wind at edge then cc = edge midpoint - u*tau |
---|
370 | DO l = ll_begin,ll_end |
---|
371 | !$SIMD |
---|
372 | DO ij=ij_begin,ij_end |
---|
373 | up_e =1/de(ij+u_right)*( & |
---|
374 | wee(ij+u_right,1,1)*le(ij+u_rup)*ue(ij+u_rup,l)+ & |
---|
375 | wee(ij+u_right,2,1)*le(ij+u_lup)*ue(ij+u_lup,l)+ & |
---|
376 | wee(ij+u_right,3,1)*le(ij+u_left)*ue(ij+u_left,l)+ & |
---|
377 | wee(ij+u_right,4,1)*le(ij+u_ldown)*ue(ij+u_ldown,l)+ & |
---|
378 | wee(ij+u_right,5,1)*le(ij+u_rdown)*ue(ij+u_rdown,l)+ & |
---|
379 | wee(ij+u_right,1,2)*le(ij+t_right+u_ldown)*ue(ij+t_right+u_ldown,l)+ & |
---|
380 | wee(ij+u_right,2,2)*le(ij+t_right+u_rdown)*ue(ij+t_right+u_rdown,l)+ & |
---|
381 | wee(ij+u_right,3,2)*le(ij+t_right+u_right)*ue(ij+t_right+u_right,l)+ & |
---|
382 | wee(ij+u_right,4,2)*le(ij+t_right+u_rup)*ue(ij+t_right+u_rup,l)+ & |
---|
383 | wee(ij+u_right,5,2)*le(ij+t_right+u_lup)*ue(ij+t_right+u_lup,l) & |
---|
384 | ) |
---|
385 | v_e = ue(ij+u_right,l)*normal(ij+u_right,:) + up_e*tangent(ij+u_right,:) |
---|
386 | cc(ij+u_right,l,:) = xyz_e(ij+u_right,:) - v_e*tau |
---|
387 | |
---|
388 | up_e=1/de(ij+u_lup)*( & |
---|
389 | wee(ij+u_lup,1,1)*le(ij+u_left)*ue(ij+u_left,l)+ & |
---|
390 | wee(ij+u_lup,2,1)*le(ij+u_ldown)*ue(ij+u_ldown,l)+ & |
---|
391 | wee(ij+u_lup,3,1)*le(ij+u_rdown)*ue(ij+u_rdown,l)+ & |
---|
392 | wee(ij+u_lup,4,1)*le(ij+u_right)*ue(ij+u_right,l)+ & |
---|
393 | wee(ij+u_lup,5,1)*le(ij+u_rup)*ue(ij+u_rup,l)+ & |
---|
394 | wee(ij+u_lup,1,2)*le(ij+t_lup+u_right)*ue(ij+t_lup+u_right,l)+ & |
---|
395 | wee(ij+u_lup,2,2)*le(ij+t_lup+u_rup)*ue(ij+t_lup+u_rup,l)+ & |
---|
396 | wee(ij+u_lup,3,2)*le(ij+t_lup+u_lup)*ue(ij+t_lup+u_lup,l)+ & |
---|
397 | wee(ij+u_lup,4,2)*le(ij+t_lup+u_left)*ue(ij+t_lup+u_left,l)+ & |
---|
398 | wee(ij+u_lup,5,2)*le(ij+t_lup+u_ldown)*ue(ij+t_lup+u_ldown,l) & |
---|
399 | ) |
---|
400 | v_e = ue(ij+u_lup,l)*normal(ij+u_lup,:) + up_e*tangent(ij+u_lup,:) |
---|
401 | cc(ij+u_lup,l,:) = xyz_e(ij+u_lup,:) - v_e*tau |
---|
402 | |
---|
403 | |
---|
404 | up_e=1/de(ij+u_ldown)*( & |
---|
405 | wee(ij+u_ldown,1,1)*le(ij+u_rdown)*ue(ij+u_rdown,l)+ & |
---|
406 | wee(ij+u_ldown,2,1)*le(ij+u_right)*ue(ij+u_right,l)+ & |
---|
407 | wee(ij+u_ldown,3,1)*le(ij+u_rup)*ue(ij+u_rup,l)+ & |
---|
408 | wee(ij+u_ldown,4,1)*le(ij+u_lup)*ue(ij+u_lup,l)+ & |
---|
409 | wee(ij+u_ldown,5,1)*le(ij+u_left)*ue(ij+u_left,l)+ & |
---|
410 | wee(ij+u_ldown,1,2)*le(ij+t_ldown+u_lup)*ue(ij+t_ldown+u_lup,l)+ & |
---|
411 | wee(ij+u_ldown,2,2)*le(ij+t_ldown+u_left)*ue(ij+t_ldown+u_left,l)+ & |
---|
412 | wee(ij+u_ldown,3,2)*le(ij+t_ldown+u_ldown)*ue(ij+t_ldown+u_ldown,l)+ & |
---|
413 | wee(ij+u_ldown,4,2)*le(ij+t_ldown+u_rdown)*ue(ij+t_ldown+u_rdown,l)+ & |
---|
414 | wee(ij+u_ldown,5,2)*le(ij+t_ldown+u_right)*ue(ij+t_ldown+u_right,l) & |
---|
415 | ) |
---|
416 | v_e = ue(ij+u_ldown,l)*normal(ij+u_ldown,:) + up_e*tangent(ij+u_ldown,:) |
---|
417 | cc(ij+u_ldown,l,:) = xyz_e(ij+u_ldown,:) - v_e*tau |
---|
418 | ENDDO |
---|
419 | END DO |
---|
420 | |
---|
421 | CALL trace_end("compute_backward_traj") |
---|
422 | |
---|
423 | END SUBROUTINE compute_backward_traj |
---|
424 | |
---|
425 | ! Horizontal transport (S. Dubey, T. Dubos) |
---|
426 | ! Slope-limited van Leer approach with hexagons |
---|
427 | SUBROUTINE compute_advect_horiz(update_mass,hfluxt,cc,gradq3d, mass,qi) |
---|
428 | USE trace |
---|
429 | USE omp_para |
---|
430 | IMPLICIT NONE |
---|
431 | LOGICAL, INTENT(IN) :: update_mass |
---|
432 | REAL(rstd), INTENT(IN) :: gradq3d(iim*jjm,llm,3) |
---|
433 | REAL(rstd), INTENT(IN) :: hfluxt(3*iim*jjm,llm) ! mass flux |
---|
434 | REAL(rstd), INTENT(IN) :: cc(3*iim*jjm,llm,3) ! barycenter of quadrilateral, where q is evaluated (1-point quadrature) |
---|
435 | REAL(rstd), INTENT(INOUT) :: mass(iim*jjm,llm) |
---|
436 | REAL(rstd), INTENT(INOUT) :: qi(iim*jjm,llm) |
---|
437 | |
---|
438 | REAL(rstd) :: dq,dmass,qe,ed(3), newmass |
---|
439 | REAL(rstd) :: qflux(3*iim*jjm,llm) |
---|
440 | INTEGER :: ij,k,l |
---|
441 | |
---|
442 | CALL trace_start("compute_advect_horiz") |
---|
443 | |
---|
444 | ! evaluate tracer field at point cc using piecewise linear reconstruction |
---|
445 | ! q(cc)= q0 + gradq.(cc-xyz_i) with xi centroid of hexagon |
---|
446 | ! ne*hfluxt>0 iff outgoing |
---|
447 | DO l = ll_begin,ll_end |
---|
448 | |
---|
449 | !$SIMD |
---|
450 | DO ij=ij_begin_ext,ij_end_ext |
---|
451 | |
---|
452 | IF (ne(ij,right)*hfluxt(ij+u_right,l)>0) THEN |
---|
453 | ed = cc(ij+u_right,l,:) - xyz_i(ij,:) |
---|
454 | ! qe = qi(ij,l)+sum2(gradq3d(ij,l,:),ed) |
---|
455 | qe = qi(ij,l)+gradq3d(ij,l,1)*ed(1)+gradq3d(ij,l,2)*ed(2)+gradq3d(ij,l,3)*ed(3) |
---|
456 | ELSE |
---|
457 | ed = cc(ij+u_right,l,:) - xyz_i(ij+t_right,:) |
---|
458 | ! qe = qi(ij+t_right,l)+sum2(gradq3d(ij+t_right,l,:),ed) |
---|
459 | qe = qi(ij+t_right,l) + gradq3d(ij+t_right,l,1)*ed(1)+gradq3d(ij+t_right,l,2)*ed(2)+gradq3d(ij+t_right,l,3)*ed(3) |
---|
460 | ENDIF |
---|
461 | qflux(ij+u_right,l) = hfluxt(ij+u_right,l)*qe |
---|
462 | |
---|
463 | IF (ne(ij,lup)*hfluxt(ij+u_lup,l)>0) THEN |
---|
464 | ed = cc(ij+u_lup,l,:) - xyz_i(ij,:) |
---|
465 | ! qe = qi(ij,l)+sum2(gradq3d(ij,l,:),ed) |
---|
466 | qe = qi(ij,l) + gradq3d(ij,l,1)*ed(1)+gradq3d(ij,l,2)*ed(2)+gradq3d(ij,l,3)*ed(3) |
---|
467 | ELSE |
---|
468 | ed = cc(ij+u_lup,l,:) - xyz_i(ij+t_lup,:) |
---|
469 | ! qe = qi(ij+t_lup,l)+sum2(gradq3d(ij+t_lup,l,:),ed) |
---|
470 | qe = qi(ij+t_lup,l) + gradq3d(ij+t_lup,l,1)*ed(1)+gradq3d(ij+t_lup,l,2)*ed(2)+gradq3d(ij+t_lup,l,3)*ed(3) |
---|
471 | ENDIF |
---|
472 | qflux(ij+u_lup,l) = hfluxt(ij+u_lup,l)*qe |
---|
473 | |
---|
474 | IF (ne(ij,ldown)*hfluxt(ij+u_ldown,l)>0) THEN |
---|
475 | ed = cc(ij+u_ldown,l,:) - xyz_i(ij,:) |
---|
476 | ! qe = qi(ij,l)+sum2(gradq3d(ij,l,:),ed) |
---|
477 | qe = qi(ij,l) + gradq3d(ij,l,1)*ed(1)+gradq3d(ij,l,2)*ed(2)+gradq3d(ij,l,3)*ed(3) |
---|
478 | ELSE |
---|
479 | ed = cc(ij+u_ldown,l,:) - xyz_i(ij+t_ldown,:) |
---|
480 | ! qe = qi(ij+t_ldown,l)+sum2(gradq3d(ij+t_ldown,l,:),ed) |
---|
481 | qe = qi(ij+t_ldown,l)+gradq3d(ij+t_ldown,l,1)*ed(1)+gradq3d(ij+t_ldown,l,2)*ed(2)+gradq3d(ij+t_ldown,l,3)*ed(3) |
---|
482 | ENDIF |
---|
483 | qflux(ij+u_ldown,l) = hfluxt(ij+u_ldown,l)*qe |
---|
484 | END DO |
---|
485 | END DO |
---|
486 | |
---|
487 | ! update q and, if update_mass, update mass |
---|
488 | DO l = ll_begin,ll_end |
---|
489 | !$SIMD |
---|
490 | DO ij=ij_begin,ij_end |
---|
491 | ! sign convention as Ringler et al. (2010) eq. 21 |
---|
492 | dmass = hfluxt(ij+u_right,l)*ne(ij,right) & |
---|
493 | + hfluxt(ij+u_lup,l) *ne(ij,lup) & |
---|
494 | + hfluxt(ij+u_ldown,l)*ne(ij,ldown) & |
---|
495 | + hfluxt(ij+u_rup,l) *ne(ij,rup) & |
---|
496 | + hfluxt(ij+u_left,l) *ne(ij,left) & |
---|
497 | + hfluxt(ij+u_rdown,l)*ne(ij,rdown) |
---|
498 | |
---|
499 | dq = qflux(ij+u_right,l) *ne(ij,right) & |
---|
500 | + qflux(ij+u_lup,l) *ne(ij,lup) & |
---|
501 | + qflux(ij+u_ldown,l) *ne(ij,ldown) & |
---|
502 | + qflux(ij+u_rup,l) *ne(ij,rup) & |
---|
503 | + qflux(ij+u_left,l) *ne(ij,left) & |
---|
504 | + qflux(ij+u_rdown,l) *ne(ij,rdown) |
---|
505 | |
---|
506 | |
---|
507 | newmass = mass(ij,l) - dmass/Ai(ij) |
---|
508 | qi(ij,l) = (qi(ij,l)*mass(ij,l) - dq/Ai(ij) ) / newmass |
---|
509 | IF(update_mass) mass(ij,l) = newmass |
---|
510 | |
---|
511 | END DO |
---|
512 | END DO |
---|
513 | |
---|
514 | CALL trace_end("compute_advect_horiz") |
---|
515 | CONTAINS |
---|
516 | |
---|
517 | !==================================================================================== |
---|
518 | PURE REAL(rstd) FUNCTION sum2(a1,a2) |
---|
519 | IMPLICIT NONE |
---|
520 | REAL(rstd),INTENT(IN):: a1(3), a2(3) |
---|
521 | sum2 = a1(1)*a2(1)+a1(2)*a2(2)+a1(3)*a2(3) |
---|
522 | ! sum2 = 0. ! Godunov scheme |
---|
523 | END FUNCTION sum2 |
---|
524 | |
---|
525 | END SUBROUTINE compute_advect_horiz |
---|
526 | |
---|
527 | |
---|
528 | END MODULE advect_mod |
---|