[1992] | 1 | |
---|
[1403] | 2 | ! $Id: thermcell.F90 3102 2017-12-03 20:27:42Z oboucher $ |
---|
[878] | 3 | |
---|
[1992] | 4 | SUBROUTINE calcul_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, pu, & |
---|
| 5 | pv, pt, po, zmax, wmax, zw2, lmix & ! s |
---|
| 6 | ! ,pu_therm,pv_therm |
---|
| 7 | , r_aspect, l_mix, w2di, tho) |
---|
[542] | 8 | |
---|
[1992] | 9 | USE dimphy |
---|
| 10 | IMPLICIT NONE |
---|
[542] | 11 | |
---|
[1992] | 12 | ! ======================================================================= |
---|
[542] | 13 | |
---|
[1992] | 14 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 15 | ! de "thermiques" explicitement representes |
---|
[542] | 16 | |
---|
[1992] | 17 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[542] | 18 | |
---|
[1992] | 19 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 20 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 21 | ! mélange |
---|
[542] | 22 | |
---|
[1992] | 23 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 24 | ! en compte: |
---|
| 25 | ! 1. un flux de masse montant |
---|
| 26 | ! 2. un flux de masse descendant |
---|
| 27 | ! 3. un entrainement |
---|
| 28 | ! 4. un detrainement |
---|
[542] | 29 | |
---|
[1992] | 30 | ! ======================================================================= |
---|
[542] | 31 | |
---|
[1992] | 32 | ! ----------------------------------------------------------------------- |
---|
| 33 | ! declarations: |
---|
| 34 | ! ------------- |
---|
[542] | 35 | |
---|
[1992] | 36 | include "YOMCST.h" |
---|
[542] | 37 | |
---|
[1992] | 38 | ! arguments: |
---|
| 39 | ! ---------- |
---|
[878] | 40 | |
---|
[1992] | 41 | INTEGER ngrid, nlay, w2di |
---|
| 42 | REAL tho |
---|
| 43 | REAL ptimestep, l_mix, r_aspect |
---|
| 44 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 45 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 46 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 47 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 48 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 49 | REAL pphi(ngrid, nlay) |
---|
[542] | 50 | |
---|
[1992] | 51 | INTEGER idetr |
---|
| 52 | SAVE idetr |
---|
| 53 | DATA idetr/3/ |
---|
| 54 | !$OMP THREADPRIVATE(idetr) |
---|
| 55 | ! local: |
---|
| 56 | ! ------ |
---|
[542] | 57 | |
---|
[1992] | 58 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 59 | REAL zsortie1d(klon) |
---|
| 60 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 61 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 62 | REAL linter(klon) |
---|
| 63 | REAL zmix(klon), fracazmix(klon) |
---|
| 64 | ! RC |
---|
| 65 | REAL zmax(klon), zw, zw2(klon, klev+1), ztva(klon, klev) |
---|
[542] | 66 | |
---|
[1992] | 67 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 68 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 69 | REAL ztv(klon, klev) |
---|
| 70 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 71 | REAL wh(klon, klev+1) |
---|
| 72 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 73 | REAL zla(klon, klev+1) |
---|
| 74 | REAL zwa(klon, klev+1) |
---|
| 75 | REAL zld(klon, klev+1) |
---|
| 76 | ! real zwd(klon,klev+1) |
---|
| 77 | REAL zsortie(klon, klev) |
---|
| 78 | REAL zva(klon, klev) |
---|
| 79 | REAL zua(klon, klev) |
---|
| 80 | REAL zoa(klon, klev) |
---|
[1403] | 81 | |
---|
[1992] | 82 | REAL zha(klon, klev) |
---|
| 83 | REAL wa_moy(klon, klev+1) |
---|
| 84 | REAL fraca(klon, klev+1) |
---|
| 85 | REAL fracc(klon, klev+1) |
---|
| 86 | REAL zf, zf2 |
---|
| 87 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 88 | ! common/comtherm/thetath2,wth2 |
---|
[1403] | 89 | |
---|
[1992] | 90 | REAL count_time |
---|
| 91 | ! integer isplit,nsplit |
---|
| 92 | INTEGER isplit, nsplit, ialt |
---|
| 93 | PARAMETER (nsplit=10) |
---|
| 94 | DATA isplit/0/ |
---|
| 95 | SAVE isplit |
---|
| 96 | !$OMP THREADPRIVATE(isplit) |
---|
[542] | 97 | |
---|
[1992] | 98 | LOGICAL sorties |
---|
| 99 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 100 | REAL zpspsk(klon, klev) |
---|
[542] | 101 | |
---|
[1992] | 102 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 103 | REAL wmax(klon), wmaxa(klon) |
---|
| 104 | REAL wa(klon, klev, klev+1) |
---|
| 105 | REAL wd(klon, klev+1) |
---|
| 106 | REAL larg_part(klon, klev, klev+1) |
---|
| 107 | REAL fracd(klon, klev+1) |
---|
| 108 | REAL xxx(klon, klev+1) |
---|
| 109 | REAL larg_cons(klon, klev+1) |
---|
| 110 | REAL larg_detr(klon, klev+1) |
---|
| 111 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 112 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 113 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 114 | REAL fmc(klon, klev+1) |
---|
[542] | 115 | |
---|
[1992] | 116 | ! CR:nouvelles variables |
---|
| 117 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 118 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 119 | REAL zalim(klon) |
---|
| 120 | INTEGER lalim(klon) |
---|
| 121 | REAL norme(klon) |
---|
| 122 | REAL f(klon), f0(klon) |
---|
| 123 | REAL zlevinter(klon) |
---|
| 124 | LOGICAL therm |
---|
| 125 | LOGICAL first |
---|
| 126 | DATA first/.FALSE./ |
---|
| 127 | SAVE first |
---|
| 128 | !$OMP THREADPRIVATE(first) |
---|
| 129 | ! RC |
---|
[542] | 130 | |
---|
[1992] | 131 | CHARACTER *2 str2 |
---|
| 132 | CHARACTER *10 str10 |
---|
[542] | 133 | |
---|
[1992] | 134 | CHARACTER (LEN=20) :: modname = 'calcul_sec' |
---|
| 135 | CHARACTER (LEN=80) :: abort_message |
---|
[542] | 136 | |
---|
| 137 | |
---|
[1992] | 138 | ! LOGICAL vtest(klon),down |
---|
[542] | 139 | |
---|
[1992] | 140 | EXTERNAL scopy |
---|
[542] | 141 | |
---|
[1992] | 142 | INTEGER ncorrec |
---|
| 143 | SAVE ncorrec |
---|
| 144 | DATA ncorrec/0/ |
---|
| 145 | !$OMP THREADPRIVATE(ncorrec) |
---|
[542] | 146 | |
---|
| 147 | |
---|
[1992] | 148 | ! ----------------------------------------------------------------------- |
---|
| 149 | ! initialisation: |
---|
| 150 | ! --------------- |
---|
[542] | 151 | |
---|
[1992] | 152 | sorties = .TRUE. |
---|
| 153 | IF (ngrid/=klon) THEN |
---|
| 154 | PRINT * |
---|
| 155 | PRINT *, 'STOP dans convadj' |
---|
| 156 | PRINT *, 'ngrid =', ngrid |
---|
| 157 | PRINT *, 'klon =', klon |
---|
| 158 | END IF |
---|
[542] | 159 | |
---|
[1992] | 160 | ! ----------------------------------------------------------------------- |
---|
| 161 | ! incrementation eventuelle de tendances precedentes: |
---|
| 162 | ! --------------------------------------------------- |
---|
[542] | 163 | |
---|
[1992] | 164 | ! print*,'0 OK convect8' |
---|
[542] | 165 | |
---|
[1992] | 166 | DO l = 1, nlay |
---|
| 167 | DO ig = 1, ngrid |
---|
| 168 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 169 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 170 | zu(ig, l) = pu(ig, l) |
---|
| 171 | zv(ig, l) = pv(ig, l) |
---|
| 172 | zo(ig, l) = po(ig, l) |
---|
| 173 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 174 | END DO |
---|
| 175 | END DO |
---|
[542] | 176 | |
---|
[1992] | 177 | ! print*,'1 OK convect8' |
---|
| 178 | ! -------------------- |
---|
[542] | 179 | |
---|
| 180 | |
---|
[1992] | 181 | ! + + + + + + + + + + + |
---|
[542] | 182 | |
---|
| 183 | |
---|
[1992] | 184 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 185 | ! wh,wt,wo ... |
---|
[542] | 186 | |
---|
[1992] | 187 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[542] | 188 | |
---|
| 189 | |
---|
[1992] | 190 | ! -------------------- zlev(1) |
---|
| 191 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[542] | 192 | |
---|
| 193 | |
---|
| 194 | |
---|
[1992] | 195 | ! ----------------------------------------------------------------------- |
---|
| 196 | ! Calcul des altitudes des couches |
---|
| 197 | ! ----------------------------------------------------------------------- |
---|
[542] | 198 | |
---|
[1992] | 199 | DO l = 2, nlay |
---|
| 200 | DO ig = 1, ngrid |
---|
| 201 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 202 | END DO |
---|
| 203 | END DO |
---|
| 204 | DO ig = 1, ngrid |
---|
| 205 | zlev(ig, 1) = 0. |
---|
| 206 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 207 | END DO |
---|
| 208 | DO l = 1, nlay |
---|
| 209 | DO ig = 1, ngrid |
---|
| 210 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 211 | END DO |
---|
| 212 | END DO |
---|
[542] | 213 | |
---|
[1992] | 214 | ! print*,'2 OK convect8' |
---|
| 215 | ! ----------------------------------------------------------------------- |
---|
| 216 | ! Calcul des densites |
---|
| 217 | ! ----------------------------------------------------------------------- |
---|
[542] | 218 | |
---|
[1992] | 219 | DO l = 1, nlay |
---|
| 220 | DO ig = 1, ngrid |
---|
| 221 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 222 | END DO |
---|
| 223 | END DO |
---|
[542] | 224 | |
---|
[1992] | 225 | DO l = 2, nlay |
---|
| 226 | DO ig = 1, ngrid |
---|
| 227 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 228 | END DO |
---|
| 229 | END DO |
---|
[1403] | 230 | |
---|
[1992] | 231 | DO k = 1, nlay |
---|
| 232 | DO l = 1, nlay + 1 |
---|
| 233 | DO ig = 1, ngrid |
---|
| 234 | wa(ig, k, l) = 0. |
---|
| 235 | END DO |
---|
| 236 | END DO |
---|
| 237 | END DO |
---|
[542] | 238 | |
---|
[1992] | 239 | ! print*,'3 OK convect8' |
---|
| 240 | ! ------------------------------------------------------------------ |
---|
| 241 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 242 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[542] | 243 | |
---|
[1992] | 244 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 245 | ! w2 est stoke dans wa |
---|
[542] | 246 | |
---|
[1992] | 247 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 248 | ! independants par couches que pour calculer l'entrainement |
---|
| 249 | ! a la base et la hauteur max de l'ascendance. |
---|
[542] | 250 | |
---|
[1992] | 251 | ! Indicages: |
---|
| 252 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 253 | ! une vitesse wa(k,l). |
---|
[542] | 254 | |
---|
[1992] | 255 | ! -------------------- |
---|
[542] | 256 | |
---|
[1992] | 257 | ! + + + + + + + + + + |
---|
[542] | 258 | |
---|
[1992] | 259 | ! wa(k,l) ---- -------------------- l |
---|
| 260 | ! /\ |
---|
| 261 | ! /||\ + + + + + + + + + + |
---|
| 262 | ! || |
---|
| 263 | ! || -------------------- |
---|
| 264 | ! || |
---|
| 265 | ! || + + + + + + + + + + |
---|
| 266 | ! || |
---|
| 267 | ! || -------------------- |
---|
| 268 | ! ||__ |
---|
| 269 | ! |___ + + + + + + + + + + k |
---|
[542] | 270 | |
---|
[1992] | 271 | ! -------------------- |
---|
[542] | 272 | |
---|
| 273 | |
---|
| 274 | |
---|
[1992] | 275 | ! ------------------------------------------------------------------ |
---|
[542] | 276 | |
---|
[1992] | 277 | ! CR: ponderation entrainement des couches instables |
---|
| 278 | ! def des entr_star tels que entr=f*entr_star |
---|
| 279 | DO l = 1, klev |
---|
| 280 | DO ig = 1, ngrid |
---|
| 281 | entr_star(ig, l) = 0. |
---|
| 282 | END DO |
---|
| 283 | END DO |
---|
| 284 | ! determination de la longueur de la couche d entrainement |
---|
| 285 | DO ig = 1, ngrid |
---|
| 286 | lentr(ig) = 1 |
---|
| 287 | END DO |
---|
[542] | 288 | |
---|
[1992] | 289 | ! on ne considere que les premieres couches instables |
---|
| 290 | therm = .FALSE. |
---|
| 291 | DO k = nlay - 2, 1, -1 |
---|
| 292 | DO ig = 1, ngrid |
---|
| 293 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 294 | lentr(ig) = k + 1 |
---|
| 295 | therm = .TRUE. |
---|
| 296 | END IF |
---|
| 297 | END DO |
---|
| 298 | END DO |
---|
| 299 | ! limitation de la valeur du lentr |
---|
| 300 | ! do ig=1,ngrid |
---|
| 301 | ! lentr(ig)=min(5,lentr(ig)) |
---|
| 302 | ! enddo |
---|
| 303 | ! determination du lmin: couche d ou provient le thermique |
---|
| 304 | DO ig = 1, ngrid |
---|
| 305 | lmin(ig) = 1 |
---|
| 306 | END DO |
---|
| 307 | DO ig = 1, ngrid |
---|
| 308 | DO l = nlay, 2, -1 |
---|
| 309 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 310 | lmin(ig) = l - 1 |
---|
| 311 | END IF |
---|
| 312 | END DO |
---|
| 313 | END DO |
---|
| 314 | ! initialisations |
---|
| 315 | DO ig = 1, ngrid |
---|
| 316 | zalim(ig) = 0. |
---|
| 317 | norme(ig) = 0. |
---|
| 318 | lalim(ig) = 1 |
---|
| 319 | END DO |
---|
| 320 | DO k = 1, klev - 1 |
---|
| 321 | DO ig = 1, ngrid |
---|
| 322 | zalim(ig) = zalim(ig) + zlev(ig, k)*max(0., (ztv(ig,k)-ztv(ig, & |
---|
| 323 | k+1))/(zlev(ig,k+1)-zlev(ig,k))) |
---|
| 324 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 325 | norme(ig) = norme(ig) + max(0., (ztv(ig,k)-ztv(ig,k+1))/(zlev(ig, & |
---|
| 326 | k+1)-zlev(ig,k))) |
---|
| 327 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 328 | END DO |
---|
| 329 | END DO |
---|
| 330 | DO ig = 1, ngrid |
---|
| 331 | IF (norme(ig)>1.E-10) THEN |
---|
| 332 | zalim(ig) = max(10.*zalim(ig)/norme(ig), zlev(ig,2)) |
---|
| 333 | ! zalim(ig)=min(zalim(ig),zlev(ig,lentr(ig))) |
---|
| 334 | END IF |
---|
| 335 | END DO |
---|
| 336 | ! détermination du lalim correspondant |
---|
| 337 | DO k = 1, klev - 1 |
---|
| 338 | DO ig = 1, ngrid |
---|
| 339 | IF ((zalim(ig)>zlev(ig,k)) .AND. (zalim(ig)<=zlev(ig,k+1))) THEN |
---|
| 340 | lalim(ig) = k |
---|
| 341 | END IF |
---|
| 342 | END DO |
---|
| 343 | END DO |
---|
[542] | 344 | |
---|
[1992] | 345 | ! definition de l'entrainement des couches |
---|
| 346 | DO l = 1, klev - 1 |
---|
| 347 | DO ig = 1, ngrid |
---|
| 348 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
| 349 | entr_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
| 350 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 351 | *sqrt(zlev(ig,l+1)) |
---|
| 352 | ! autre def |
---|
| 353 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 354 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
| 355 | END IF |
---|
| 356 | END DO |
---|
| 357 | END DO |
---|
| 358 | ! nouveau test |
---|
| 359 | ! if (therm) then |
---|
| 360 | DO l = 1, klev - 1 |
---|
| 361 | DO ig = 1, ngrid |
---|
| 362 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lalim(ig) .AND. & |
---|
| 363 | zalim(ig)>1.E-10) THEN |
---|
| 364 | ! if (l.le.lentr(ig)) then |
---|
| 365 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 366 | ! s /zalim(ig)))**(3./2.) |
---|
| 367 | ! write(10,*)zlev(ig,l),entr_star(ig,l) |
---|
| 368 | END IF |
---|
| 369 | END DO |
---|
| 370 | END DO |
---|
| 371 | ! endif |
---|
| 372 | ! pas de thermique si couche 1 stable |
---|
| 373 | DO ig = 1, ngrid |
---|
| 374 | IF (lmin(ig)>5) THEN |
---|
| 375 | DO l = 1, klev |
---|
| 376 | entr_star(ig, l) = 0. |
---|
| 377 | END DO |
---|
| 378 | END IF |
---|
| 379 | END DO |
---|
| 380 | ! calcul de l entrainement total |
---|
| 381 | DO ig = 1, ngrid |
---|
| 382 | entr_star_tot(ig) = 0. |
---|
| 383 | END DO |
---|
| 384 | DO ig = 1, ngrid |
---|
| 385 | DO k = 1, klev |
---|
| 386 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 387 | END DO |
---|
| 388 | END DO |
---|
| 389 | ! Calcul entrainement normalise |
---|
| 390 | DO ig = 1, ngrid |
---|
| 391 | IF (entr_star_tot(ig)>1.E-10) THEN |
---|
| 392 | ! do l=1,lentr(ig) |
---|
| 393 | DO l = 1, klev |
---|
| 394 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
| 395 | entr_star(ig, l) = entr_star(ig, l)/entr_star_tot(ig) |
---|
| 396 | END DO |
---|
| 397 | END IF |
---|
| 398 | END DO |
---|
[542] | 399 | |
---|
[1992] | 400 | ! print*,'fin calcul entr_star' |
---|
| 401 | DO k = 1, klev |
---|
| 402 | DO ig = 1, ngrid |
---|
| 403 | ztva(ig, k) = ztv(ig, k) |
---|
| 404 | END DO |
---|
| 405 | END DO |
---|
| 406 | ! RC |
---|
| 407 | ! print*,'7 OK convect8' |
---|
| 408 | DO k = 1, klev + 1 |
---|
| 409 | DO ig = 1, ngrid |
---|
| 410 | zw2(ig, k) = 0. |
---|
| 411 | fmc(ig, k) = 0. |
---|
| 412 | ! CR |
---|
| 413 | f_star(ig, k) = 0. |
---|
| 414 | ! RC |
---|
| 415 | larg_cons(ig, k) = 0. |
---|
| 416 | larg_detr(ig, k) = 0. |
---|
| 417 | wa_moy(ig, k) = 0. |
---|
| 418 | END DO |
---|
| 419 | END DO |
---|
[542] | 420 | |
---|
[1992] | 421 | ! print*,'8 OK convect8' |
---|
| 422 | DO ig = 1, ngrid |
---|
| 423 | linter(ig) = 1. |
---|
| 424 | lmaxa(ig) = 1 |
---|
| 425 | lmix(ig) = 1 |
---|
| 426 | wmaxa(ig) = 0. |
---|
| 427 | END DO |
---|
[542] | 428 | |
---|
[1992] | 429 | ! CR: |
---|
| 430 | DO l = 1, nlay - 2 |
---|
| 431 | DO ig = 1, ngrid |
---|
| 432 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 433 | zw2(ig,l)<1E-10) THEN |
---|
| 434 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 435 | ! test:calcul de dteta |
---|
| 436 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 437 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 438 | larg_detr(ig, l) = 0. |
---|
| 439 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 440 | l)>1.E-10)) THEN |
---|
| 441 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 442 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 443 | f_star(ig, l+1) |
---|
| 444 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 445 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 446 | END IF |
---|
| 447 | ! determination de zmax continu par interpolation lineaire |
---|
| 448 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 449 | ! test |
---|
| 450 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 451 | ! print*,'pb linter' |
---|
| 452 | END IF |
---|
| 453 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 454 | ig,l)) |
---|
| 455 | zw2(ig, l+1) = 0. |
---|
| 456 | lmaxa(ig) = l |
---|
| 457 | ELSE |
---|
| 458 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 459 | ! print*,'pb1 zw2<0' |
---|
| 460 | END IF |
---|
| 461 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 462 | END IF |
---|
| 463 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 464 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 465 | lmix(ig) = l + 1 |
---|
| 466 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 467 | END IF |
---|
| 468 | END DO |
---|
| 469 | END DO |
---|
| 470 | ! print*,'fin calcul zw2' |
---|
[542] | 471 | |
---|
[1992] | 472 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 473 | DO ig = 1, ngrid |
---|
| 474 | lmax(ig) = lentr(ig) |
---|
| 475 | ! lmax(ig)=lalim(ig) |
---|
| 476 | END DO |
---|
| 477 | DO ig = 1, ngrid |
---|
| 478 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 479 | ! do l=nlay,lalim(ig)+1,-1 |
---|
| 480 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 481 | lmax(ig) = l - 1 |
---|
| 482 | END IF |
---|
| 483 | END DO |
---|
| 484 | END DO |
---|
| 485 | ! pas de thermique si couche 1 stable |
---|
| 486 | DO ig = 1, ngrid |
---|
| 487 | IF (lmin(ig)>5) THEN |
---|
| 488 | lmax(ig) = 1 |
---|
| 489 | lmin(ig) = 1 |
---|
| 490 | lentr(ig) = 1 |
---|
| 491 | lalim(ig) = 1 |
---|
| 492 | END IF |
---|
| 493 | END DO |
---|
[542] | 494 | |
---|
[1992] | 495 | ! Determination de zw2 max |
---|
| 496 | DO ig = 1, ngrid |
---|
| 497 | wmax(ig) = 0. |
---|
| 498 | END DO |
---|
[542] | 499 | |
---|
[1992] | 500 | DO l = 1, nlay |
---|
| 501 | DO ig = 1, ngrid |
---|
| 502 | IF (l<=lmax(ig)) THEN |
---|
| 503 | IF (zw2(ig,l)<0.) THEN |
---|
| 504 | ! print*,'pb2 zw2<0' |
---|
| 505 | END IF |
---|
| 506 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 507 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 508 | ELSE |
---|
| 509 | zw2(ig, l) = 0. |
---|
| 510 | END IF |
---|
| 511 | END DO |
---|
| 512 | END DO |
---|
[542] | 513 | |
---|
[1992] | 514 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 515 | DO ig = 1, ngrid |
---|
| 516 | zmax(ig) = 0. |
---|
| 517 | zlevinter(ig) = zlev(ig, 1) |
---|
| 518 | END DO |
---|
| 519 | DO ig = 1, ngrid |
---|
| 520 | ! calcul de zlevinter |
---|
| 521 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 522 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 523 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 524 | END DO |
---|
| 525 | DO ig = 1, ngrid |
---|
| 526 | ! write(8,*)zmax(ig),lmax(ig),lentr(ig),lmin(ig) |
---|
| 527 | END DO |
---|
| 528 | ! on stope après les calculs de zmax et wmax |
---|
| 529 | RETURN |
---|
[542] | 530 | |
---|
[1992] | 531 | ! print*,'avant fermeture' |
---|
| 532 | ! Fermeture,determination de f |
---|
| 533 | ! Attention! entrainement normalisé ou pas? |
---|
| 534 | DO ig = 1, ngrid |
---|
| 535 | entr_star2(ig) = 0. |
---|
| 536 | END DO |
---|
| 537 | DO ig = 1, ngrid |
---|
| 538 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 539 | f(ig) = 0. |
---|
| 540 | ELSE |
---|
| 541 | DO k = lmin(ig), lentr(ig) |
---|
| 542 | ! do k=lmin(ig),lalim(ig) |
---|
| 543 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 544 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 545 | END DO |
---|
| 546 | ! Nouvelle fermeture |
---|
| 547 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig)) |
---|
| 548 | ! s *entr_star_tot(ig) |
---|
| 549 | ! test |
---|
| 550 | ! if (first) then |
---|
| 551 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
| 552 | ! endif |
---|
| 553 | END IF |
---|
| 554 | f0(ig) = f(ig) |
---|
| 555 | ! first=.true. |
---|
| 556 | END DO |
---|
| 557 | ! print*,'apres fermeture' |
---|
| 558 | ! on stoppe après la fermeture |
---|
| 559 | RETURN |
---|
| 560 | ! Calcul de l'entrainement |
---|
| 561 | DO k = 1, klev |
---|
| 562 | DO ig = 1, ngrid |
---|
| 563 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 564 | END DO |
---|
| 565 | END DO |
---|
| 566 | ! on stoppe après le calcul de entr |
---|
| 567 | ! RETURN |
---|
| 568 | ! CR:test pour entrainer moins que la masse |
---|
| 569 | ! do ig=1,ngrid |
---|
| 570 | ! do l=1,lentr(ig) |
---|
| 571 | ! if ((entr(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
| 572 | ! entr(ig,l+1)=entr(ig,l+1)+entr(ig,l) |
---|
| 573 | ! s -0.9*masse(ig,l)/ptimestep |
---|
| 574 | ! entr(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
| 575 | ! endif |
---|
| 576 | ! enddo |
---|
| 577 | ! enddo |
---|
| 578 | ! CR: fin test |
---|
| 579 | ! Calcul des flux |
---|
| 580 | DO ig = 1, ngrid |
---|
| 581 | DO l = 1, lmax(ig) - 1 |
---|
| 582 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 583 | END DO |
---|
| 584 | END DO |
---|
| 585 | |
---|
| 586 | ! RC |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | ! print*,'9 OK convect8' |
---|
| 590 | ! print*,'WA1 ',wa_moy |
---|
| 591 | |
---|
| 592 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 593 | |
---|
| 594 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 595 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 596 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 597 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 598 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 599 | |
---|
| 600 | DO l = 2, nlay |
---|
| 601 | DO ig = 1, ngrid |
---|
| 602 | IF (l<=lmaxa(ig)) THEN |
---|
| 603 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 604 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 605 | END IF |
---|
| 606 | END DO |
---|
| 607 | END DO |
---|
| 608 | |
---|
| 609 | DO l = 2, nlay |
---|
| 610 | DO ig = 1, ngrid |
---|
| 611 | IF (l<=lmaxa(ig)) THEN |
---|
| 612 | ! if (idetr.eq.0) then |
---|
| 613 | ! cette option est finalement en dur. |
---|
| 614 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 615 | ! print*,'pb l_mix*zlev<0' |
---|
| 616 | END IF |
---|
| 617 | ! CR: test: nouvelle def de lambda |
---|
| 618 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 619 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 620 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 621 | ELSE |
---|
| 622 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 623 | END IF |
---|
| 624 | ! RC |
---|
| 625 | ! else if (idetr.eq.1) then |
---|
| 626 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 627 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 628 | ! else if (idetr.eq.2) then |
---|
| 629 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 630 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 631 | ! else if (idetr.eq.4) then |
---|
| 632 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 633 | ! s *wa_moy(ig,l) |
---|
| 634 | ! endif |
---|
| 635 | END IF |
---|
| 636 | END DO |
---|
| 637 | END DO |
---|
| 638 | |
---|
| 639 | ! print*,'10 OK convect8' |
---|
| 640 | ! print*,'WA2 ',wa_moy |
---|
| 641 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 642 | ! compte de l'epluchage du thermique. |
---|
| 643 | |
---|
| 644 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 645 | DO ig = 1, ngrid |
---|
| 646 | IF (lmix(ig)>1.) THEN |
---|
| 647 | ! test |
---|
| 648 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 649 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 650 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 651 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 652 | |
---|
| 653 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 654 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 655 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 656 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 657 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 658 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 659 | ELSE |
---|
| 660 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 661 | ! print*,'pb zmix' |
---|
| 662 | END IF |
---|
| 663 | ELSE |
---|
| 664 | zmix(ig) = 0. |
---|
| 665 | END IF |
---|
| 666 | ! test |
---|
| 667 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 668 | zmix(ig) = 0.99*zmax(ig) |
---|
| 669 | ! print*,'pb zmix>zmax' |
---|
| 670 | END IF |
---|
| 671 | END DO |
---|
| 672 | |
---|
| 673 | ! calcul du nouveau lmix correspondant |
---|
| 674 | DO ig = 1, ngrid |
---|
| 675 | DO l = 1, klev |
---|
| 676 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 677 | lmix(ig) = l |
---|
| 678 | END IF |
---|
| 679 | END DO |
---|
| 680 | END DO |
---|
| 681 | |
---|
| 682 | DO l = 2, nlay |
---|
| 683 | DO ig = 1, ngrid |
---|
| 684 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 685 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 686 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 687 | ! test |
---|
| 688 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 689 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 690 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 691 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 692 | ELSE |
---|
| 693 | ! wa_moy(ig,l)=0. |
---|
| 694 | fraca(ig, l) = 0. |
---|
| 695 | fracc(ig, l) = 0. |
---|
| 696 | fracd(ig, l) = 1. |
---|
| 697 | END IF |
---|
| 698 | END DO |
---|
| 699 | END DO |
---|
| 700 | ! CR: calcul de fracazmix |
---|
| 701 | DO ig = 1, ngrid |
---|
| 702 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 703 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 704 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 705 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 706 | END DO |
---|
| 707 | |
---|
| 708 | DO l = 2, nlay |
---|
| 709 | DO ig = 1, ngrid |
---|
| 710 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 711 | IF (l>lmix(ig)) THEN |
---|
| 712 | ! test |
---|
| 713 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 714 | ! print*,'pb xxx' |
---|
| 715 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 716 | ELSE |
---|
| 717 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 718 | END IF |
---|
| 719 | IF (idetr==0) THEN |
---|
| 720 | fraca(ig, l) = fracazmix(ig) |
---|
| 721 | ELSE IF (idetr==1) THEN |
---|
| 722 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 723 | ELSE IF (idetr==2) THEN |
---|
| 724 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 725 | ELSE |
---|
| 726 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 727 | END IF |
---|
| 728 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 729 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 730 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 731 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 732 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 733 | END IF |
---|
| 734 | END IF |
---|
| 735 | END DO |
---|
| 736 | END DO |
---|
| 737 | |
---|
| 738 | ! print*,'fin calcul fraca' |
---|
| 739 | ! print*,'11 OK convect8' |
---|
| 740 | ! print*,'Ea3 ',wa_moy |
---|
| 741 | ! ------------------------------------------------------------------ |
---|
| 742 | ! Calcul de fracd, wd |
---|
| 743 | ! somme wa - wd = 0 |
---|
| 744 | ! ------------------------------------------------------------------ |
---|
| 745 | |
---|
| 746 | |
---|
| 747 | DO ig = 1, ngrid |
---|
| 748 | fm(ig, 1) = 0. |
---|
| 749 | fm(ig, nlay+1) = 0. |
---|
| 750 | END DO |
---|
| 751 | |
---|
| 752 | DO l = 2, nlay |
---|
| 753 | DO ig = 1, ngrid |
---|
| 754 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 755 | ! CR:test |
---|
| 756 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 757 | fm(ig, l) = fm(ig, l-1) |
---|
| 758 | ! write(1,*)'ajustement fm, l',l |
---|
| 759 | END IF |
---|
| 760 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 761 | ! RC |
---|
| 762 | END DO |
---|
| 763 | DO ig = 1, ngrid |
---|
| 764 | IF (fracd(ig,l)<0.1) THEN |
---|
| 765 | abort_message = 'fracd trop petit' |
---|
[2311] | 766 | CALL abort_physic(modname, abort_message, 1) |
---|
[1992] | 767 | |
---|
| 768 | ELSE |
---|
| 769 | ! vitesse descendante "diagnostique" |
---|
| 770 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 771 | END IF |
---|
| 772 | END DO |
---|
| 773 | END DO |
---|
| 774 | |
---|
| 775 | DO l = 1, nlay |
---|
| 776 | DO ig = 1, ngrid |
---|
| 777 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 778 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 779 | END DO |
---|
| 780 | END DO |
---|
| 781 | |
---|
| 782 | ! print*,'12 OK convect8' |
---|
| 783 | ! print*,'WA4 ',wa_moy |
---|
| 784 | ! c------------------------------------------------------------------ |
---|
| 785 | ! calcul du transport vertical |
---|
| 786 | ! ------------------------------------------------------------------ |
---|
| 787 | |
---|
| 788 | GO TO 4444 |
---|
| 789 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 790 | DO l = 2, nlay - 1 |
---|
| 791 | DO ig = 1, ngrid |
---|
| 792 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 793 | ig,l+1)) THEN |
---|
| 794 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 795 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 796 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 797 | END IF |
---|
| 798 | END DO |
---|
| 799 | END DO |
---|
| 800 | |
---|
| 801 | DO l = 1, nlay |
---|
| 802 | DO ig = 1, ngrid |
---|
| 803 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 804 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 805 | ! s ,entr(ig,l)*ptimestep |
---|
| 806 | ! s ,' M=',masse(ig,l) |
---|
| 807 | END IF |
---|
| 808 | END DO |
---|
| 809 | END DO |
---|
| 810 | |
---|
| 811 | DO l = 1, nlay |
---|
| 812 | DO ig = 1, ngrid |
---|
| 813 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 814 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 815 | ! s ,' FM=',fm(ig,l) |
---|
| 816 | END IF |
---|
| 817 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 818 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 819 | ! s ,' M=',masse(ig,l) |
---|
| 820 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 821 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 822 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 823 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 824 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 825 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 826 | END IF |
---|
| 827 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 828 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 829 | ! s ,' E=',entr(ig,l) |
---|
| 830 | END IF |
---|
| 831 | END DO |
---|
| 832 | END DO |
---|
| 833 | |
---|
| 834 | 4444 CONTINUE |
---|
| 835 | |
---|
| 836 | ! CR:redefinition du entr |
---|
| 837 | DO l = 1, nlay |
---|
| 838 | DO ig = 1, ngrid |
---|
| 839 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 840 | IF (detr(ig,l)<0.) THEN |
---|
| 841 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 842 | fm(ig, l+1) = fm(ig, l) + entr(ig, l) |
---|
| 843 | detr(ig, l) = 0. |
---|
| 844 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 845 | END IF |
---|
| 846 | END DO |
---|
| 847 | END DO |
---|
| 848 | ! RC |
---|
| 849 | IF (w2di==1) THEN |
---|
| 850 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 851 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 852 | ELSE |
---|
| 853 | fm0 = fm |
---|
| 854 | entr0 = entr |
---|
| 855 | END IF |
---|
| 856 | |
---|
| 857 | IF (1==1) THEN |
---|
| 858 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 859 | zha) |
---|
| 860 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 861 | zoa) |
---|
| 862 | ELSE |
---|
| 863 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 864 | zdhadj, zha) |
---|
| 865 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 866 | pdoadj, zoa) |
---|
| 867 | END IF |
---|
| 868 | |
---|
| 869 | IF (1==0) THEN |
---|
| 870 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 871 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 872 | ELSE |
---|
| 873 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 874 | zua) |
---|
| 875 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 876 | zva) |
---|
| 877 | END IF |
---|
| 878 | |
---|
| 879 | DO l = 1, nlay |
---|
| 880 | DO ig = 1, ngrid |
---|
| 881 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 882 | zf2 = zf/(1.-zf) |
---|
| 883 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 884 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 885 | END DO |
---|
| 886 | END DO |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | |
---|
| 890 | ! print*,'13 OK convect8' |
---|
| 891 | ! print*,'WA5 ',wa_moy |
---|
| 892 | DO l = 1, nlay |
---|
| 893 | DO ig = 1, ngrid |
---|
| 894 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 895 | END DO |
---|
| 896 | END DO |
---|
| 897 | |
---|
| 898 | |
---|
| 899 | ! do l=1,nlay |
---|
| 900 | ! do ig=1,ngrid |
---|
| 901 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 902 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 903 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 904 | ! endif |
---|
| 905 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 906 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 907 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 908 | ! endif |
---|
| 909 | ! enddo |
---|
| 910 | ! enddo |
---|
| 911 | |
---|
| 912 | ! print*,'14 OK convect8' |
---|
| 913 | ! ------------------------------------------------------------------ |
---|
| 914 | ! Calculs pour les sorties |
---|
| 915 | ! ------------------------------------------------------------------ |
---|
| 916 | |
---|
| 917 | IF (sorties) THEN |
---|
| 918 | DO l = 1, nlay |
---|
| 919 | DO ig = 1, ngrid |
---|
| 920 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 921 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 922 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 923 | (1.-fracd(ig,l)) |
---|
| 924 | END DO |
---|
| 925 | END DO |
---|
| 926 | |
---|
| 927 | ! deja fait |
---|
| 928 | ! do l=1,nlay |
---|
| 929 | ! do ig=1,ngrid |
---|
| 930 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
| 931 | ! if (detr(ig,l).lt.0.) then |
---|
| 932 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 933 | ! detr(ig,l)=0. |
---|
| 934 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 935 | ! endif |
---|
| 936 | ! enddo |
---|
| 937 | ! enddo |
---|
| 938 | |
---|
| 939 | ! print*,'15 OK convect8' |
---|
| 940 | |
---|
| 941 | isplit = isplit + 1 |
---|
| 942 | |
---|
| 943 | |
---|
| 944 | ! #define und |
---|
| 945 | GO TO 123 |
---|
[542] | 946 | #ifdef und |
---|
[1992] | 947 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
| 948 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
| 949 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
| 950 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
| 951 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
| 952 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
| 953 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
| 954 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
| 955 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
| 956 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
| 957 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
| 958 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
| 959 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
| 960 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
| 961 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
| 962 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
| 963 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
| 964 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
| 965 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
| 966 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
| 967 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
| 968 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
| 969 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
| 970 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
[542] | 971 | |
---|
[1992] | 972 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
| 973 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
| 974 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
[542] | 975 | |
---|
[1992] | 976 | ! recalcul des flux en diagnostique... |
---|
| 977 | ! print*,'PAS DE TEMPS ',ptimestep |
---|
| 978 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
| 979 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
[542] | 980 | #endif |
---|
[1992] | 981 | 123 CONTINUE |
---|
[542] | 982 | |
---|
[1992] | 983 | END IF |
---|
[542] | 984 | |
---|
[1992] | 985 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
[542] | 986 | |
---|
[1992] | 987 | ! print*,'19 OK convect8' |
---|
| 988 | RETURN |
---|
| 989 | END SUBROUTINE calcul_sec |
---|
[542] | 990 | |
---|
[1992] | 991 | SUBROUTINE fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, & |
---|
| 992 | f0, zpspsk, alim_star, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, & |
---|
| 993 | zmax, wmax) |
---|
[542] | 994 | |
---|
[1992] | 995 | USE dimphy |
---|
| 996 | IMPLICIT NONE |
---|
[542] | 997 | |
---|
[1992] | 998 | include "YOMCST.h" |
---|
[542] | 999 | |
---|
[1992] | 1000 | INTEGER ngrid, nlay |
---|
| 1001 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 1002 | REAL pphi(ngrid, nlay) |
---|
| 1003 | REAL zlev(klon, klev+1) |
---|
| 1004 | REAL alim_star(klon, klev) |
---|
| 1005 | REAL f0(klon) |
---|
| 1006 | INTEGER lentr(klon) |
---|
| 1007 | INTEGER lmin(klon) |
---|
| 1008 | REAL zmax(klon) |
---|
| 1009 | REAL wmax(klon) |
---|
| 1010 | REAL nu_min |
---|
| 1011 | REAL nu_max |
---|
| 1012 | REAL r_aspect |
---|
| 1013 | REAL rhobarz(klon, klev+1) |
---|
| 1014 | REAL zh(klon, klev) |
---|
| 1015 | REAL zo(klon, klev) |
---|
| 1016 | REAL zpspsk(klon, klev) |
---|
[542] | 1017 | |
---|
[1992] | 1018 | INTEGER ig, l |
---|
[542] | 1019 | |
---|
[1992] | 1020 | REAL f_star(klon, klev+1) |
---|
| 1021 | REAL detr_star(klon, klev) |
---|
| 1022 | REAL entr_star(klon, klev) |
---|
| 1023 | REAL zw2(klon, klev+1) |
---|
| 1024 | REAL linter(klon) |
---|
| 1025 | INTEGER lmix(klon) |
---|
| 1026 | INTEGER lmax(klon) |
---|
| 1027 | REAL zlevinter(klon) |
---|
| 1028 | REAL wa_moy(klon, klev+1) |
---|
| 1029 | REAL wmaxa(klon) |
---|
| 1030 | REAL ztv(klon, klev) |
---|
| 1031 | REAL ztva(klon, klev) |
---|
| 1032 | REAL nu(klon, klev) |
---|
| 1033 | ! real zmax0_sec(klon) |
---|
| 1034 | ! save zmax0_sec |
---|
| 1035 | REAL, SAVE, ALLOCATABLE :: zmax0_sec(:) |
---|
| 1036 | !$OMP THREADPRIVATE(zmax0_sec) |
---|
| 1037 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 1038 | !$OMP THREADPRIVATE(first) |
---|
[542] | 1039 | |
---|
[1992] | 1040 | IF (first) THEN |
---|
| 1041 | ALLOCATE (zmax0_sec(klon)) |
---|
| 1042 | first = .FALSE. |
---|
| 1043 | END IF |
---|
[940] | 1044 | |
---|
[1992] | 1045 | DO l = 1, nlay |
---|
| 1046 | DO ig = 1, ngrid |
---|
| 1047 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 1048 | ztv(ig, l) = ztv(ig, l)*(1.+retv*zo(ig,l)) |
---|
| 1049 | END DO |
---|
| 1050 | END DO |
---|
| 1051 | DO l = 1, nlay - 2 |
---|
| 1052 | DO ig = 1, ngrid |
---|
| 1053 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
| 1054 | zw2(ig,l)<1E-10) THEN |
---|
| 1055 | f_star(ig, l+1) = alim_star(ig, l) |
---|
| 1056 | ! test:calcul de dteta |
---|
| 1057 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 1058 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 1059 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
| 1060 | l))>1.E-10) THEN |
---|
| 1061 | ! estimation du detrainement a partir de la geometrie du pas |
---|
| 1062 | ! precedent |
---|
| 1063 | ! tests sur la definition du detr |
---|
| 1064 | nu(ig, l) = (nu_min+nu_max)/2.*(1.-(nu_max-nu_min)/(nu_max+nu_min)* & |
---|
| 1065 | tanh((((ztva(ig,l-1)-ztv(ig,l))/ztv(ig,l))/0.0005))) |
---|
[542] | 1066 | |
---|
[1992] | 1067 | detr_star(ig, l) = rhobarz(ig, l)*sqrt(zw2(ig,l))/ & |
---|
| 1068 | (r_aspect*zmax0_sec(ig))* & ! s |
---|
| 1069 | ! /(r_aspect*zmax0(ig))* |
---|
| 1070 | (sqrt(nu(ig,l)*zlev(ig,l+1)/sqrt(zw2(ig,l)))-sqrt(nu(ig,l)*zlev(ig, & |
---|
| 1071 | l)/sqrt(zw2(ig,l)))) |
---|
| 1072 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
| 1073 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
| 1074 | detr_star(ig, l) = f_star(ig, l) |
---|
| 1075 | END IF |
---|
| 1076 | entr_star(ig, l) = 0.9*detr_star(ig, l) |
---|
| 1077 | IF ((l<lentr(ig))) THEN |
---|
| 1078 | entr_star(ig, l) = 0. |
---|
| 1079 | ! detr_star(ig,l)=0. |
---|
| 1080 | END IF |
---|
| 1081 | ! print*,'ok detr_star' |
---|
| 1082 | ! prise en compte du detrainement dans le calcul du flux |
---|
| 1083 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
| 1084 | entr_star(ig, l) - detr_star(ig, l) |
---|
| 1085 | ! test sur le signe de f_star |
---|
| 1086 | IF ((f_star(ig,l+1)+detr_star(ig,l))>1.E-10) THEN |
---|
| 1087 | ! AM on melange Tl et qt du thermique |
---|
| 1088 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+(entr_star(ig, & |
---|
| 1089 | l)+alim_star(ig,l))*ztv(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1090 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/(f_star(ig, & |
---|
| 1091 | l+1)+detr_star(ig,l)))**2 + 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, & |
---|
| 1092 | l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1093 | END IF |
---|
| 1094 | END IF |
---|
[542] | 1095 | |
---|
[1992] | 1096 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 1097 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 1098 | ig,l)) |
---|
| 1099 | zw2(ig, l+1) = 0. |
---|
| 1100 | ! print*,'linter=',linter(ig) |
---|
| 1101 | ELSE |
---|
| 1102 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 1103 | END IF |
---|
| 1104 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 1105 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 1106 | lmix(ig) = l + 1 |
---|
| 1107 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 1108 | END IF |
---|
| 1109 | END DO |
---|
| 1110 | END DO |
---|
| 1111 | ! print*,'fin calcul zw2' |
---|
| 1112 | |
---|
| 1113 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 1114 | DO ig = 1, ngrid |
---|
| 1115 | lmax(ig) = lentr(ig) |
---|
| 1116 | END DO |
---|
| 1117 | DO ig = 1, ngrid |
---|
| 1118 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 1119 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 1120 | lmax(ig) = l - 1 |
---|
| 1121 | END IF |
---|
| 1122 | END DO |
---|
| 1123 | END DO |
---|
| 1124 | ! pas de thermique si couche 1 stable |
---|
| 1125 | DO ig = 1, ngrid |
---|
| 1126 | IF (lmin(ig)>1) THEN |
---|
| 1127 | lmax(ig) = 1 |
---|
| 1128 | lmin(ig) = 1 |
---|
| 1129 | lentr(ig) = 1 |
---|
| 1130 | END IF |
---|
| 1131 | END DO |
---|
| 1132 | |
---|
| 1133 | ! Determination de zw2 max |
---|
| 1134 | DO ig = 1, ngrid |
---|
| 1135 | wmax(ig) = 0. |
---|
| 1136 | END DO |
---|
| 1137 | |
---|
| 1138 | DO l = 1, nlay |
---|
| 1139 | DO ig = 1, ngrid |
---|
| 1140 | IF (l<=lmax(ig)) THEN |
---|
| 1141 | IF (zw2(ig,l)<0.) THEN |
---|
| 1142 | ! print*,'pb2 zw2<0' |
---|
| 1143 | END IF |
---|
| 1144 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 1145 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 1146 | ELSE |
---|
| 1147 | zw2(ig, l) = 0. |
---|
| 1148 | END IF |
---|
| 1149 | END DO |
---|
| 1150 | END DO |
---|
| 1151 | |
---|
| 1152 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 1153 | DO ig = 1, ngrid |
---|
| 1154 | zmax(ig) = 0. |
---|
| 1155 | zlevinter(ig) = zlev(ig, 1) |
---|
| 1156 | END DO |
---|
| 1157 | DO ig = 1, ngrid |
---|
| 1158 | ! calcul de zlevinter |
---|
| 1159 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 1160 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 1161 | ! pour le cas ou on prend tjs lmin=1 |
---|
| 1162 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 1163 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
| 1164 | zmax0_sec(ig) = zmax(ig) |
---|
| 1165 | END DO |
---|
| 1166 | |
---|
| 1167 | RETURN |
---|
| 1168 | END SUBROUTINE fermeture_seche |
---|