source: LMDZ6/trunk/libf/phylmd/StratAer/aer_sedimnt.F90

Last change on this file was 3677, checked in by oboucher, 5 years ago

Changed the way to initialise nbtr_bin and other dimensions and indices
in the StratAer? module based on infotrac_phy rather than infotrac.

Also added a missing $OMP THREADPRIVATE(nqperes)

  • Property svn:keywords set to Id
File size: 5.0 KB
Line 
1!
2! $Id: aer_sedimnt.F90 3677 2020-05-06 15:18:32Z aclsce $
3!
4SUBROUTINE AER_SEDIMNT(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer)
5
6!**** *AER_SEDIMNT* -  ROUTINE FOR PARAMETRIZATION OF AEROSOL SEDIMENTATION
7
8!      Christoph Kleinschmitt
9!      based on the sedimentation scheme of
10!      Olivier Boucher & Jean-Jacques Morcrette
11!      (following the ice sedimentation scheme of Adrian Tompkins)
12
13!**   INTERFACE.
14!     ----------
15!          *AER_SEDIMNT* IS CALLED FROM *traccoag_mod*.
16
17!-----------------------------------------------------------------------
18
19  USE phys_local_var_mod, ONLY: mdw, budg_sed_part, DENSO4, f_r_wet, vsed_aer
20  USE dimphy, ONLY : klon,klev
21  USE infotrac_phy
22  USE aerophys
23  USE YOMCST
24
25IMPLICIT NONE
26
27!-----------------------------------------------------------------------
28
29  ! transfer variables when calling this routine
30  REAL,INTENT(IN)                             :: pdtphys ! Pas d'integration pour la physique (seconde)
31  REAL,DIMENSION(klon,klev),INTENT(IN)        :: t_seri  ! Temperature
32  REAL,DIMENSION(klon,klev),INTENT(IN)        :: pplay   ! pression pour le mileu de chaque couche (en Pa)
33  REAL,DIMENSION(klon,klev+1),INTENT(IN)      :: paprs   ! pression pour chaque inter-couche (en Pa)
34  REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT):: tr_seri ! Concentration Traceur [U/KgA]
35  REAL,DIMENSION(klon,klev)                   :: dens_aer! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass
36
37  ! local variables in sedimentation routine
38  INTEGER :: JL,JK,nb   
39  REAL,DIMENSION(klon,klev)                   :: zvis     ! dynamic viscosity of air [kg/(m*s)]
40  REAL,DIMENSION(klon,klev)                   :: zlair    ! mean free path of air [m]
41  REAL                                        :: ZRHO     ! air density [kg/m^3]
42  REAL                                        :: ZGDP     ! =g/dp=1/(rho*dz)
43  REAL                                        :: ZDTGDP   ! =dt/(rho*dz)
44  REAL,DIMENSION(klon,nbtr_bin)               :: ZSEDFLX  ! sedimentation flux of tracer [U/(m^2*s)]
45  REAL,DIMENSION(nbtr_bin)                    :: ZAERONW  ! tracer concentration at current time step [U/KgA]
46  REAL,DIMENSION(klon,nbtr_bin)               :: ZAERONWM1! tracer concentration at preceding time step [U/KgA]
47  REAL,DIMENSION(klon,klev,nbtr_bin)          :: ZVAER    ! sedimentation velocity [m/s]
48  REAL,DIMENSION(nbtr_bin)                    :: ZSOLAERS ! sedimentation flux arriving from above [U/(m^2*s)]
49  REAL,DIMENSION(nbtr_bin)                    :: ZSOLAERB ! sedimentation flux leaving gridbox [U/(m^2*s)]
50  REAL,DIMENSION(klon,klev)                   :: m_sulf
51
52! dynamic viscosity of air (Pruppacher and Klett, 1978) [kg/(m*s)]
53WHERE (t_seri.GE.273.15)
54  zvis=(1.718 + 0.0049*(t_seri-273.15))*1.E-5
55  ELSEWHERE
56  zvis=(1.718 + 0.0049*(t_seri-273.15)-1.2E-05*(t_seri-273.15)**2)*1.E-5
57END WHERE
58
59! mean free path of air (Prupp. Klett) [m]
60zlair(:,:) = 0.066 *(1.01325E+5/pplay(:,:))*(t_seri(:,:)/293.15)*1.E-06
61
62!--initialisations of variables carried out from one layer to the next layer
63!--actually not needed if (JK>1) test is on
64DO JL=1,klon
65  DO nb=1,nbtr_bin
66    ZSEDFLX(JL,nb)=0.0
67    ZAERONWM1(JL,nb)=0.0
68  ENDDO
69ENDDO
70
71!--from top to bottom (!)
72DO JK=klev,1,-1
73  DO JL=1,klon
74    DO nb=1,nbtr_bin
75  !--initialisations
76      ZSOLAERS(nb)=0.0
77      ZSOLAERB(nb)=0.0
78      ZGDP=RG/(paprs(JL,JK)-paprs(JL,JK+1))
79      ZDTGDP=pdtphys*ZGDP
80
81  ! source from above
82      IF (JK<klev) THEN
83        ZSEDFLX(JL,nb)=ZSEDFLX(JL,nb)*ZAERONWM1(JL,nb) 
84        ZSOLAERS(nb)=ZSOLAERS(nb)+ZSEDFLX(JL,nb)*ZDTGDP
85      ENDIF
86
87  ! sink to next layer
88      ZRHO=pplay(JL,JK)/(RD*t_seri(JL,JK))
89
90      ! stokes-velocity with cunnigham slip- flow correction
91      ZVAER(JL,JK,nb) = 2./9.*(DENSO4(JL,JK)*1000.-ZRHO)*RG/zvis(JL,JK)*(f_r_wet(JL,JK)*mdw(nb)/2.)**2.* &
92         (1.+ 2.*zlair(JL,JK)/(f_r_wet(JL,JK)*mdw(nb))*(1.257+0.4*EXP(-0.55*f_r_wet(JL,JK)*mdw(nb)/zlair(JL,JK))))
93
94      ZSEDFLX(JL,nb)=ZVAER(JL,JK,nb)*ZRHO
95      ZSOLAERB(nb)=ZSOLAERB(nb)+ZDTGDP*ZSEDFLX(JL,nb)
96
97  !---implicit solver
98      ZAERONW(nb)=(tr_seri(JL,JK,nb+nbtr_sulgas)+ZSOLAERS(nb))/(1.0+ZSOLAERB(nb))
99
100  !---new time-step AER variable needed for next layer
101      ZAERONWM1(JL,nb)=ZAERONW(nb)
102
103      tr_seri(JL,JK,nb+nbtr_sulgas)=ZAERONWM1(JL,nb)
104    ENDDO
105  ENDDO
106ENDDO
107
108!---sedimentation flux to the surface
109!---ZAERONWM1 now contains the surface concentration at the new timestep
110!---PFLUXAER in unit of xx m-2 s-1
111budg_sed_part(:)=0.0
112DO JL=1,klon
113  ZRHO=pplay(JL,1)/(RD*t_seri(JL,1))
114  DO nb=1,nbtr_bin
115    !compute budg_sed_part as sum over bins in kg(S)/m2/s
116    budg_sed_part(JL)=budg_sed_part(JL)+ZRHO*ZAERONWM1(JL,nb)*ZVAER(JL,1,nb)*(mSatom/mH2SO4mol) &
117                & *dens_aer_dry*4./3.*RPI*(mdw(nb)/2.)**3
118  ENDDO
119ENDDO
120
121vsed_aer(:,:)=0.0
122m_sulf(:,:)=0.0
123
124DO nb=1,nbtr_bin
125  !compute mass-weighted mean of sedimentation velocity
126  vsed_aer(:,:)=vsed_aer(:,:)+ZVAER(:,:,nb)*(mdw(nb)/2.)**3*MAX(1.e-30, tr_seri(:,:,nb+nbtr_sulgas))
127  m_sulf(:,:)=m_sulf(:,:)+(mdw(nb)/2.)**3*MAX(1.e-30, tr_seri(:,:,nb+nbtr_sulgas))
128ENDDO
129
130!divide by total aerosol mass in grid cell
131vsed_aer(:,:)=vsed_aer(:,:)/m_sulf(:,:)
132
133END SUBROUTINE AER_SEDIMNT
Note: See TracBrowser for help on using the repository browser.