[1992] | 1 | |
---|
[1403] | 2 | ! $Id: wake.F90 3605 2019-11-21 15:43:45Z lguez $ |
---|
[879] | 3 | |
---|
[2761] | 4 | SUBROUTINE wake(znatsurf, p, ph, pi, dtime, & |
---|
[2308] | 5 | te0, qe0, omgb, & |
---|
[3208] | 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, wgen, & |
---|
| 7 | sigd_con, Cin, & |
---|
| 8 | deltatw, deltaqw, sigmaw, awdens, wdens, & ! state variables |
---|
[2635] | 9 | dth, hw, wape, fip, gfl, & |
---|
| 10 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
| 11 | dtke, dqke, omg, dp_deltomg, spread, cstar, & |
---|
| 12 | d_deltat_gw, & |
---|
[3208] | 13 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_awdens2, d_wdens2) ! tendencies |
---|
[1146] | 14 | |
---|
[974] | 15 | |
---|
[1992] | 16 | ! ************************************************************** |
---|
| 17 | ! * |
---|
| 18 | ! WAKE * |
---|
| 19 | ! retour a un Pupper fixe * |
---|
| 20 | ! * |
---|
| 21 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 22 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 23 | ! ************************************************************** |
---|
[974] | 24 | |
---|
[2474] | 25 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[1992] | 26 | USE dimphy |
---|
[2078] | 27 | use mod_phys_lmdz_para |
---|
[2311] | 28 | USE print_control_mod, ONLY: prt_level |
---|
[1992] | 29 | IMPLICIT NONE |
---|
| 30 | ! ============================================================================ |
---|
[974] | 31 | |
---|
| 32 | |
---|
[1992] | 33 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 34 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 35 | ! le declenchement de nouvelles colonnes convectives. |
---|
[974] | 36 | |
---|
[2635] | 37 | ! State variables : |
---|
| 38 | ! deltatw : temperature difference between wake and off-wake regions |
---|
| 39 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
| 40 | ! sigmaw : fractional area covered by wakes. |
---|
| 41 | ! wdens : number of wakes per unit area |
---|
[974] | 42 | |
---|
[1992] | 43 | ! Variable de sortie : |
---|
[974] | 44 | |
---|
[1992] | 45 | ! wape : WAke Potential Energy |
---|
| 46 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 47 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 48 | ! dtls : large scale temperature tendency due to wake |
---|
| 49 | ! dqls : large scale humidity tendency due to wake |
---|
[3208] | 50 | ! hw : wake top hight (given by hw*deltatw(1)/2=wape) |
---|
[1992] | 51 | ! dp_omgb : vertical gradient of large scale omega |
---|
[3208] | 52 | ! awdens : densite de poches actives |
---|
[1992] | 53 | ! wdens : densite de poches |
---|
| 54 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 55 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 56 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 57 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 58 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
[2635] | 59 | ! spread : spreading term in d_t_wake and d_q_wake |
---|
[1992] | 60 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 61 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 62 | ! sigmaw : updated wake fractional area. |
---|
| 63 | ! d_deltat_gw : delta T tendency due to GW |
---|
[974] | 64 | |
---|
[1992] | 65 | ! Variables d'entree : |
---|
[974] | 66 | |
---|
[1992] | 67 | ! aire : aire de la maille |
---|
| 68 | ! te0 : temperature dans l'environnement (K) |
---|
| 69 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 70 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 71 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 72 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 73 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 74 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
[3208] | 75 | ! wgen : number of wakes generated per unit area and per sec (/m^2/s) |
---|
[1992] | 76 | ! amdwn: flux de masse total des descentes, par unite de |
---|
[3208] | 77 | ! surface de la maille (kg/m2/s) |
---|
[1992] | 78 | ! amup : flux de masse total des ascendances, par unite de |
---|
[3208] | 79 | ! surface de la maille (kg/m2/s) |
---|
| 80 | ! sigd_con: |
---|
| 81 | ! Cin : convective inhibition |
---|
[1992] | 82 | ! p : pressions aux milieux des couches (Pa) |
---|
| 83 | ! ph : pressions aux interfaces (Pa) |
---|
| 84 | ! pi : (p/p_0)**kapa (adim) |
---|
| 85 | ! dtime: increment temporel (s) |
---|
[974] | 86 | |
---|
[1992] | 87 | ! Variables internes : |
---|
[974] | 88 | |
---|
[1992] | 89 | ! rhow : masse volumique de la poche froide |
---|
| 90 | ! rho : environment density at P levels |
---|
| 91 | ! rhoh : environment density at Ph levels |
---|
| 92 | ! te : environment temperature | may change within |
---|
| 93 | ! qe : environment humidity | sub-time-stepping |
---|
| 94 | ! the : environment potential temperature |
---|
| 95 | ! thu : potential temperature in undisturbed area |
---|
| 96 | ! tu : temperature in undisturbed area |
---|
| 97 | ! qu : humidity in undisturbed area |
---|
| 98 | ! dp_omgb: vertical gradient og LS omega |
---|
| 99 | ! omgbw : wake average vertical omega |
---|
| 100 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 101 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 102 | ! dth : potential temperature diff. wake-undist. |
---|
| 103 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 104 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 105 | ! q1 : first humidity for vertical advection |
---|
| 106 | ! q2 : second humidity for vertical advection |
---|
| 107 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 108 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 109 | ! deltatw0 : deltatw initial |
---|
| 110 | ! deltaqw0 : deltaqw initial |
---|
[3208] | 111 | ! hw0 : wake top hight (defined as the altitude at which deltatw=0) |
---|
[1992] | 112 | ! amflux : horizontal mass flux through wake boundary |
---|
| 113 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 114 | ! unit length (2D), at the beginning of each time step |
---|
| 115 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 116 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 117 | ! LL : distance entre 2 poches |
---|
[974] | 118 | |
---|
[1992] | 119 | ! ------------------------------------------------------------------------- |
---|
| 120 | ! Déclaration de variables |
---|
| 121 | ! ------------------------------------------------------------------------- |
---|
[1146] | 122 | |
---|
[1992] | 123 | include "YOMCST.h" |
---|
| 124 | include "cvthermo.h" |
---|
[974] | 125 | |
---|
[1992] | 126 | ! Arguments en entree |
---|
| 127 | ! -------------------- |
---|
[974] | 128 | |
---|
[2761] | 129 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
[2308] | 130 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
[2671] | 131 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
| 132 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
[2308] | 133 | REAL, INTENT(IN) :: dtime |
---|
| 134 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
| 135 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
| 136 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
| 137 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
[3208] | 138 | REAL, DIMENSION (klon), INTENT(IN) :: wgen |
---|
[2308] | 139 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
[3208] | 140 | REAL, DIMENSION (klon), INTENT(IN) :: Cin |
---|
[974] | 141 | |
---|
[2308] | 142 | ! |
---|
| 143 | ! Input/Output |
---|
[2635] | 144 | ! State variables |
---|
[2308] | 145 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
| 146 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
[3208] | 147 | REAL, DIMENSION (klon), INTENT(INOUT) :: awdens |
---|
[2635] | 148 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
[2308] | 149 | |
---|
[1992] | 150 | ! Sorties |
---|
| 151 | ! -------- |
---|
[974] | 152 | |
---|
[2308] | 153 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
| 154 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
| 155 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
| 156 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
[3208] | 157 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread ! unused (jyg) |
---|
[2671] | 158 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
[2308] | 159 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
| 160 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
| 161 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
| 162 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
[2635] | 163 | ! Tendencies of state variables |
---|
| 164 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
[3208] | 165 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_awdens2, d_wdens2 |
---|
[974] | 166 | |
---|
[1992] | 167 | ! Variables internes |
---|
| 168 | ! ------------------- |
---|
[974] | 169 | |
---|
[1992] | 170 | ! Variables à fixer |
---|
[2671] | 171 | INTEGER, SAVE :: igout |
---|
| 172 | !$OMP THREADPRIVATE(igout) |
---|
[2635] | 173 | LOGICAL, SAVE :: first = .TRUE. |
---|
[2078] | 174 | !$OMP THREADPRIVATE(first) |
---|
[2761] | 175 | !jyg< |
---|
| 176 | !! REAL, SAVE :: stark, wdens_ref, coefgw, alpk |
---|
| 177 | REAL, SAVE, DIMENSION(2) :: wdens_ref |
---|
| 178 | REAL, SAVE :: stark, coefgw, alpk |
---|
| 179 | !>jyg |
---|
[2635] | 180 | REAL, SAVE :: crep_upper, crep_sol |
---|
[2078] | 181 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
[2467] | 182 | |
---|
[3208] | 183 | REAL, SAVE :: tau_cv |
---|
| 184 | !$OMP THREADPRIVATE(tau_cv) |
---|
| 185 | REAL, SAVE :: rzero, aa0 ! minimal wake radius and area |
---|
| 186 | !$OMP THREADPRIVATE(rzero, aa0) |
---|
| 187 | |
---|
[2757] | 188 | LOGICAL, SAVE :: flag_wk_check_trgl |
---|
| 189 | !$OMP THREADPRIVATE(flag_wk_check_trgl) |
---|
[2922] | 190 | INTEGER, SAVE :: iflag_wk_check_trgl |
---|
| 191 | !$OMP THREADPRIVATE(iflag_wk_check_trgl) |
---|
[3208] | 192 | INTEGER, SAVE :: iflag_wk_pop_dyn |
---|
| 193 | !$OMP THREADPRIVATE(iflag_wk_pop_dyn) |
---|
[2757] | 194 | |
---|
[2635] | 195 | REAL :: delta_t_min |
---|
| 196 | INTEGER :: nsub |
---|
| 197 | REAL :: dtimesub |
---|
[3605] | 198 | REAL, SAVE :: wdensmin |
---|
| 199 | !$OMP THREADPRIVATE(wdensmin) |
---|
[3208] | 200 | REAL, SAVE :: sigmad, hwmin, wapecut, cstart |
---|
| 201 | !$OMP THREADPRIVATE(sigmad, hwmin, wapecut, cstart) |
---|
[3605] | 202 | REAL, SAVE :: sigmaw_max |
---|
| 203 | !$OMP THREADPRIVATE(sigmaw_max) |
---|
| 204 | REAL, SAVE :: dens_rate |
---|
| 205 | !$OMP THREADPRIVATE(dens_rate) |
---|
[2635] | 206 | REAL :: wdens0 |
---|
[1992] | 207 | ! IM 080208 |
---|
[2635] | 208 | LOGICAL, DIMENSION (klon) :: gwake |
---|
[974] | 209 | |
---|
[1992] | 210 | ! Variables de sauvegarde |
---|
[2635] | 211 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 212 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 213 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
[2671] | 214 | !! REAL, DIMENSION (klon) :: sigmaw1 |
---|
[974] | 215 | |
---|
[3208] | 216 | ! Variables liees a la dynamique de population |
---|
| 217 | REAL, DIMENSION(klon) :: act |
---|
| 218 | REAL, DIMENSION(klon) :: rad_wk, tau_wk_inv |
---|
| 219 | REAL, DIMENSION(klon) :: f_shear |
---|
| 220 | REAL, DIMENSION(klon) :: drdt |
---|
| 221 | REAL, DIMENSION(klon) :: d_sig_gen, d_sig_death, d_sig_col |
---|
| 222 | REAL, DIMENSION(klon) :: wape1_act, wape2_act |
---|
| 223 | LOGICAL, DIMENSION (klon) :: kill_wake |
---|
| 224 | INTEGER, SAVE :: iflag_wk_act |
---|
| 225 | !$OMP THREADPRIVATE(iflag_wk_act) |
---|
| 226 | REAL :: drdt_pos |
---|
| 227 | REAL :: tau_wk_inv_min |
---|
| 228 | |
---|
[1992] | 229 | ! Variables pour les GW |
---|
[2635] | 230 | REAL, DIMENSION (klon) :: ll |
---|
| 231 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 232 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 233 | REAL, DIMENSION (klon, klev) :: tgw |
---|
[1403] | 234 | |
---|
[3208] | 235 | ! Variables liees au calcul de hw |
---|
[2635] | 236 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 237 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 238 | REAL, DIMENSION (klon) :: dthmin |
---|
| 239 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 240 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
[1403] | 241 | |
---|
[3208] | 242 | ! Variables liees au test de la forme triangulaire du profil de Delta_theta |
---|
[2757] | 243 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
| 244 | REAL, DIMENSION (klon) :: dz_half |
---|
| 245 | |
---|
[1992] | 246 | ! Sub-timestep tendencies and related variables |
---|
[2635] | 247 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
| 248 | REAL, DIMENSION (klon, klev) :: d_te, d_qe |
---|
[3208] | 249 | REAL, DIMENSION (klon) :: d_awdens, d_wdens |
---|
[2635] | 250 | REAL, DIMENSION (klon) :: d_sigmaw, alpha |
---|
| 251 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
| 252 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
| 253 | REAL, SAVE :: epsilon |
---|
| 254 | !$OMP THREADPRIVATE(epsilon) |
---|
[1992] | 255 | DATA epsilon/1.E-15/ |
---|
[974] | 256 | |
---|
[1992] | 257 | ! Autres variables internes |
---|
[2635] | 258 | INTEGER ::isubstep, k, i |
---|
[974] | 259 | |
---|
[3208] | 260 | REAL :: wdens_targ |
---|
[2635] | 261 | REAL :: sigmaw_targ |
---|
[974] | 262 | |
---|
[2635] | 263 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 264 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 265 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 266 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 267 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 268 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
[974] | 269 | |
---|
[2635] | 270 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 271 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 272 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 273 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 274 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 275 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
[974] | 276 | |
---|
[2635] | 277 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
[974] | 278 | |
---|
[2671] | 279 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
[2635] | 280 | REAL, DIMENSION (klon) :: pupper |
---|
| 281 | REAL, DIMENSION (klon) :: omgtop |
---|
| 282 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 283 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 284 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
[974] | 285 | |
---|
[2635] | 286 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 287 | REAL :: rrd1, rrd2 |
---|
| 288 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 289 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 290 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 291 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
[974] | 292 | |
---|
[2635] | 293 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 294 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
| 295 | |
---|
| 296 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 297 | |
---|
| 298 | REAL, DIMENSION (klon, klev) :: ppi |
---|
[974] | 299 | |
---|
[2635] | 300 | ! cc nrlmd |
---|
[2671] | 301 | REAL, DIMENSION (klon) :: death_rate |
---|
| 302 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
[2635] | 303 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 304 | REAL, DIMENSION (klon, klev) :: detr |
---|
[974] | 305 | |
---|
[3208] | 306 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
---|
| 307 | REAL, DIMENSION(klon) :: awdens_in, wdens_in ! pour les prints |
---|
[974] | 308 | |
---|
[1992] | 309 | ! ------------------------------------------------------------------------- |
---|
| 310 | ! Initialisations |
---|
| 311 | ! ------------------------------------------------------------------------- |
---|
[974] | 312 | |
---|
[1992] | 313 | ! print*, 'wake initialisations' |
---|
[974] | 314 | |
---|
[1992] | 315 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 316 | ! ------------------------------------------------------------------------- |
---|
[974] | 317 | |
---|
[3208] | 318 | !! DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 319 | DATA wapecut, sigmad, hwmin/1., .02, 10./ |
---|
[3252] | 320 | !! DATA wdensmin/1.e-12/ |
---|
| 321 | DATA wdensmin/1.e-14/ |
---|
[1992] | 322 | ! cc nrlmd |
---|
| 323 | DATA sigmaw_max/0.4/ |
---|
| 324 | DATA dens_rate/0.1/ |
---|
[3208] | 325 | DATA rzero /5000./ |
---|
[1992] | 326 | ! cc |
---|
| 327 | ! Longueur de maille (en m) |
---|
| 328 | ! ------------------------------------------------------------------------- |
---|
[974] | 329 | |
---|
[1992] | 330 | ! ALON = 3.e5 |
---|
[3208] | 331 | ! alon = 1.E6 |
---|
[974] | 332 | |
---|
[3208] | 333 | ! Provisionnal; to be suppressed when f_shear is parameterized |
---|
| 334 | f_shear(:) = 1. ! 0. for strong shear, 1. for weak shear |
---|
[974] | 335 | |
---|
[3208] | 336 | |
---|
[1992] | 337 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[974] | 338 | |
---|
[1992] | 339 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 340 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
[3208] | 341 | ! wdens : Densité surfacique de poche froide |
---|
[1992] | 342 | ! ------------------------------------------------------------------------- |
---|
[974] | 343 | |
---|
[1992] | 344 | ! cc nrlmd coefgw=10 |
---|
| 345 | ! coefgw=1 |
---|
| 346 | ! wdens0 = 1.0/(alon**2) |
---|
| 347 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 348 | ! cc nrlmd stark = 0.50 |
---|
| 349 | ! CRtest |
---|
| 350 | ! cc nrlmd alpk=0.1 |
---|
| 351 | ! alpk = 1.0 |
---|
| 352 | ! alpk = 0.5 |
---|
| 353 | ! alpk = 0.05 |
---|
[1146] | 354 | |
---|
[2078] | 355 | if (first) then |
---|
[2671] | 356 | |
---|
| 357 | igout = klon/2+1/klon |
---|
| 358 | |
---|
[1992] | 359 | crep_upper = 0.9 |
---|
| 360 | crep_sol = 1.0 |
---|
[974] | 361 | |
---|
[3208] | 362 | aa0 = 3.14*rzero*rzero |
---|
| 363 | |
---|
| 364 | tau_cv = 4000. |
---|
| 365 | |
---|
[1992] | 366 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
[2474] | 367 | stark=0.33 |
---|
| 368 | CALL getin_p('stark',stark) |
---|
[3208] | 369 | cstart = stark*sqrt(2.*wapecut) |
---|
| 370 | |
---|
[2474] | 371 | alpk=0.25 |
---|
| 372 | CALL getin_p('alpk',alpk) |
---|
[2761] | 373 | !jyg< |
---|
| 374 | !! wdens_ref=8.E-12 |
---|
| 375 | !! CALL getin_p('wdens_ref',wdens_ref) |
---|
| 376 | wdens_ref(1)=8.E-12 |
---|
| 377 | wdens_ref(2)=8.E-12 |
---|
| 378 | CALL getin_p('wdens_ref_o',wdens_ref(1)) !wake number per unit area ; ocean |
---|
| 379 | CALL getin_p('wdens_ref_l',wdens_ref(2)) !wake number per unit area ; land |
---|
| 380 | !>jyg |
---|
[3208] | 381 | iflag_wk_pop_dyn = 0 |
---|
| 382 | CALL getin_p('iflag_wk_pop_dyn',iflag_wk_pop_dyn) ! switch between wdens prescribed |
---|
| 383 | ! and wdens prognostic |
---|
| 384 | iflag_wk_act = 0 |
---|
| 385 | CALL getin_p('iflag_wk_act',iflag_wk_act) ! 0: act(:)=0. |
---|
| 386 | ! 1: act(:)=1. |
---|
| 387 | ! 2: act(:)=f(Wape) |
---|
[2474] | 388 | coefgw=4. |
---|
| 389 | CALL getin_p('coefgw',coefgw) |
---|
| 390 | |
---|
| 391 | WRITE(*,*) 'stark=', stark |
---|
| 392 | WRITE(*,*) 'alpk=', alpk |
---|
[2761] | 393 | !jyg< |
---|
| 394 | !! WRITE(*,*) 'wdens_ref=', wdens_ref |
---|
| 395 | WRITE(*,*) 'wdens_ref_o=', wdens_ref(1) |
---|
| 396 | WRITE(*,*) 'wdens_ref_l=', wdens_ref(2) |
---|
| 397 | !>jyg |
---|
[3208] | 398 | WRITE(*,*) 'iflag_wk_pop_dyn=',iflag_wk_pop_dyn |
---|
| 399 | WRITE(*,*) 'iflag_wk_act',iflag_wk_act |
---|
[2474] | 400 | WRITE(*,*) 'coefgw=', coefgw |
---|
| 401 | |
---|
[2757] | 402 | flag_wk_check_trgl=.false. |
---|
| 403 | CALL getin_p('flag_wk_check_trgl ', flag_wk_check_trgl) |
---|
| 404 | WRITE(*,*) 'flag_wk_check_trgl=', flag_wk_check_trgl |
---|
[2922] | 405 | WRITE(*,*) 'flag_wk_check_trgl OBSOLETE. Utilisr iflag_wk_check_trgl plutot' |
---|
| 406 | iflag_wk_check_trgl=0 ; IF (flag_wk_check_trgl) iflag_wk_check_trgl=1 |
---|
| 407 | CALL getin_p('iflag_wk_check_trgl ', iflag_wk_check_trgl) |
---|
| 408 | WRITE(*,*) 'iflag_wk_check_trgl=', iflag_wk_check_trgl |
---|
[2757] | 409 | |
---|
[2078] | 410 | first=.false. |
---|
| 411 | endif |
---|
| 412 | |
---|
[3208] | 413 | IF (iflag_wk_pop_dyn == 0) THEN |
---|
[1992] | 414 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 415 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 416 | ! (voir au tout debut de la boucle sur les substeps) |
---|
[3208] | 417 | !jyg< |
---|
| 418 | !! wdens(:) = wdens_ref |
---|
| 419 | DO i = 1,klon |
---|
| 420 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
| 421 | ENDDO |
---|
| 422 | !>jyg |
---|
| 423 | ENDIF ! (iflag_wk_pop_dyn == 0) |
---|
[974] | 424 | |
---|
[1992] | 425 | ! print*,'stark',stark |
---|
| 426 | ! print*,'alpk',alpk |
---|
| 427 | ! print*,'wdens',wdens |
---|
| 428 | ! print*,'coefgw',coefgw |
---|
| 429 | ! cc |
---|
| 430 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 431 | ! ------------------------------------------------------------------------- |
---|
[974] | 432 | |
---|
[1992] | 433 | delta_t_min = 0.2 |
---|
[974] | 434 | |
---|
[2671] | 435 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
| 436 | ! ------------------------------------------------------------------------ |
---|
[974] | 437 | |
---|
[2671] | 438 | !jyg< |
---|
| 439 | !! DO k = 1, klev |
---|
| 440 | !! DO i = 1, klon |
---|
| 441 | !! ppi(i, k) = pi(i, k) |
---|
| 442 | !! deltatw0(i, k) = deltatw(i, k) |
---|
| 443 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
| 444 | !! te(i, k) = te0(i, k) |
---|
| 445 | !! qe(i, k) = qe0(i, k) |
---|
| 446 | !! dtls(i, k) = 0. |
---|
| 447 | !! dqls(i, k) = 0. |
---|
| 448 | !! d_deltat_gw(i, k) = 0. |
---|
| 449 | !! d_te(i, k) = 0. |
---|
| 450 | !! d_qe(i, k) = 0. |
---|
| 451 | !! d_deltatw(i, k) = 0. |
---|
| 452 | !! d_deltaqw(i, k) = 0. |
---|
| 453 | !! ! IM 060508 beg |
---|
| 454 | !! d_deltatw2(i, k) = 0. |
---|
| 455 | !! d_deltaqw2(i, k) = 0. |
---|
| 456 | !! ! IM 060508 end |
---|
| 457 | !! END DO |
---|
| 458 | !! END DO |
---|
| 459 | ppi(:,:) = pi(:,:) |
---|
| 460 | deltatw0(:,:) = deltatw(:,:) |
---|
| 461 | deltaqw0(:,:) = deltaqw(:,:) |
---|
| 462 | te(:,:) = te0(:,:) |
---|
| 463 | qe(:,:) = qe0(:,:) |
---|
| 464 | dtls(:,:) = 0. |
---|
| 465 | dqls(:,:) = 0. |
---|
| 466 | d_deltat_gw(:,:) = 0. |
---|
| 467 | d_te(:,:) = 0. |
---|
| 468 | d_qe(:,:) = 0. |
---|
| 469 | d_deltatw(:,:) = 0. |
---|
| 470 | d_deltaqw(:,:) = 0. |
---|
| 471 | d_deltatw2(:,:) = 0. |
---|
| 472 | d_deltaqw2(:,:) = 0. |
---|
[3208] | 473 | |
---|
| 474 | IF (iflag_wk_act == 0) THEN |
---|
| 475 | act(:) = 0. |
---|
| 476 | ELSEIF (iflag_wk_act == 1) THEN |
---|
| 477 | act(:) = 1. |
---|
| 478 | ENDIF |
---|
| 479 | |
---|
[2671] | 480 | !! DO i = 1, klon |
---|
| 481 | !! sigmaw_in(i) = sigmaw(i) |
---|
| 482 | !! END DO |
---|
| 483 | sigmaw_in(:) = sigmaw(:) |
---|
| 484 | !>jyg |
---|
| 485 | |
---|
[1992] | 486 | ! sigmaw1=sigmaw |
---|
| 487 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 488 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 489 | ! ENDIF |
---|
[3208] | 490 | IF (iflag_wk_pop_dyn >=1) THEN |
---|
| 491 | DO i = 1, klon |
---|
| 492 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 493 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 494 | wdens(i) = wdens_targ |
---|
| 495 | END DO |
---|
| 496 | ELSE |
---|
| 497 | DO i = 1, klon |
---|
| 498 | d_awdens2(i) = 0. |
---|
| 499 | d_wdens2(i) = 0. |
---|
| 500 | END DO |
---|
| 501 | ENDIF ! (iflag_wk_pop_dyn >=1) |
---|
| 502 | ! |
---|
[1992] | 503 | DO i = 1, klon |
---|
| 504 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
[2635] | 505 | !jyg< |
---|
| 506 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 507 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 508 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
| 509 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
| 510 | sigmaw(i) = sigmaw_targ |
---|
| 511 | !>jyg |
---|
[1992] | 512 | END DO |
---|
[3208] | 513 | |
---|
[2671] | 514 | ! |
---|
[3208] | 515 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 516 | awdens_in(:) = awdens(:) |
---|
| 517 | wdens_in(:) = wdens(:) |
---|
| 518 | !! wdens(:) = wdens(:) + wgen(:)*dtime |
---|
| 519 | !! d_wdens2(:) = wgen(:)*dtime |
---|
| 520 | !! ELSE |
---|
| 521 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 522 | |
---|
| 523 | wape(:) = 0. |
---|
| 524 | wape2(:) = 0. |
---|
| 525 | d_sigmaw(:) = 0. |
---|
| 526 | ktopw(:) = 0 |
---|
| 527 | ! |
---|
[2671] | 528 | !<jyg |
---|
| 529 | dth(:,:) = 0. |
---|
| 530 | tu(:,:) = 0. |
---|
| 531 | qu(:,:) = 0. |
---|
| 532 | dtke(:,:) = 0. |
---|
| 533 | dqke(:,:) = 0. |
---|
| 534 | spread(:,:) = 0. |
---|
| 535 | omgbdth(:,:) = 0. |
---|
| 536 | omg(:,:) = 0. |
---|
| 537 | dp_omgb(:,:) = 0. |
---|
| 538 | dp_deltomg(:,:) = 0. |
---|
| 539 | hw(:) = 0. |
---|
| 540 | wape(:) = 0. |
---|
| 541 | fip(:) = 0. |
---|
| 542 | gfl(:) = 0. |
---|
| 543 | cstar(:) = 0. |
---|
| 544 | ktopw(:) = 0 |
---|
| 545 | ! |
---|
| 546 | ! Vertical advection local variables |
---|
| 547 | omgbw(:,:) = 0. |
---|
| 548 | omgtop(:) = 0 |
---|
| 549 | dp_omgbw(:,:) = 0. |
---|
| 550 | omgbdq(:,:) = 0. |
---|
| 551 | !>jyg |
---|
| 552 | ! |
---|
| 553 | IF (prt_level>=10) THEN |
---|
| 554 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
| 555 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
| 556 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
| 557 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
| 558 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
| 559 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
| 560 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
| 561 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
| 562 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
| 563 | ENDIF |
---|
[974] | 564 | |
---|
[1992] | 565 | ! 2. - Prognostic part |
---|
| 566 | ! -------------------- |
---|
[974] | 567 | |
---|
| 568 | |
---|
[1992] | 569 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 570 | ! --------------------------------------------------------- |
---|
[974] | 571 | |
---|
[1992] | 572 | DO i = 1, klon |
---|
| 573 | z(i) = 0. |
---|
| 574 | ktop(i) = 0 |
---|
| 575 | kupper(i) = 0 |
---|
| 576 | sum_thu(i) = 0. |
---|
| 577 | sum_tu(i) = 0. |
---|
| 578 | sum_qu(i) = 0. |
---|
| 579 | sum_thvu(i) = 0. |
---|
| 580 | sum_dth(i) = 0. |
---|
| 581 | sum_dq(i) = 0. |
---|
| 582 | sum_rho(i) = 0. |
---|
| 583 | sum_dtdwn(i) = 0. |
---|
| 584 | sum_dqdwn(i) = 0. |
---|
[974] | 585 | |
---|
[1992] | 586 | av_thu(i) = 0. |
---|
| 587 | av_tu(i) = 0. |
---|
| 588 | av_qu(i) = 0. |
---|
| 589 | av_thvu(i) = 0. |
---|
| 590 | av_dth(i) = 0. |
---|
| 591 | av_dq(i) = 0. |
---|
| 592 | av_rho(i) = 0. |
---|
| 593 | av_dtdwn(i) = 0. |
---|
| 594 | av_dqdwn(i) = 0. |
---|
| 595 | END DO |
---|
[974] | 596 | |
---|
[1992] | 597 | ! Distance between wakes |
---|
| 598 | DO i = 1, klon |
---|
| 599 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 600 | END DO |
---|
| 601 | ! Potential temperatures and humidity |
---|
| 602 | ! ---------------------------------------------------------- |
---|
| 603 | DO k = 1, klev |
---|
| 604 | DO i = 1, klon |
---|
| 605 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 606 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 607 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 608 | IF (k==1) THEN |
---|
| 609 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 610 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 611 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 612 | zhh(i, k) = 0 |
---|
| 613 | ELSE |
---|
| 614 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 615 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 616 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 617 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 618 | END IF |
---|
| 619 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 620 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 621 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 622 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 623 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 624 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 625 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 626 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 627 | END DO |
---|
| 628 | END DO |
---|
[1403] | 629 | |
---|
[1992] | 630 | DO k = 1, klev - 1 |
---|
| 631 | DO i = 1, klon |
---|
| 632 | IF (k==1) THEN |
---|
| 633 | n2(i, k) = 0 |
---|
| 634 | ELSE |
---|
[2635] | 635 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
| 636 | (p(i,k+1)-p(i,k-1))) |
---|
[1992] | 637 | END IF |
---|
| 638 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
[1403] | 639 | |
---|
[1992] | 640 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 641 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 642 | END DO |
---|
| 643 | END DO |
---|
[974] | 644 | |
---|
[1992] | 645 | DO i = 1, klon |
---|
| 646 | n2(i, klev) = 0 |
---|
| 647 | zh(i, klev) = 0 |
---|
| 648 | cgw(i, klev) = 0 |
---|
| 649 | tgw(i, klev) = 0 |
---|
| 650 | END DO |
---|
[974] | 651 | |
---|
[1992] | 652 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 653 | ! ----------------------------------------------------------------- |
---|
[974] | 654 | |
---|
[1992] | 655 | DO k = 1, klev |
---|
| 656 | DO i = 1, klon |
---|
| 657 | epaisseur1(i, k) = 0. |
---|
| 658 | epaisseur2(i, k) = 0. |
---|
| 659 | END DO |
---|
| 660 | END DO |
---|
[974] | 661 | |
---|
[1992] | 662 | DO i = 1, klon |
---|
| 663 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 664 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 665 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 666 | END DO |
---|
[974] | 667 | |
---|
[1992] | 668 | DO k = 2, klev |
---|
| 669 | DO i = 1, klon |
---|
| 670 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 671 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 672 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 673 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 674 | END DO |
---|
| 675 | END DO |
---|
[974] | 676 | |
---|
| 677 | |
---|
[1992] | 678 | ! Choose an integration bound well above wake top |
---|
| 679 | ! ----------------------------------------------------------------- |
---|
[974] | 680 | |
---|
[1992] | 681 | ! Pupper = 50000. ! melting level |
---|
| 682 | ! Pupper = 60000. |
---|
| 683 | ! Pupper = 80000. ! essais pour case_e |
---|
| 684 | DO i = 1, klon |
---|
| 685 | pupper(i) = 0.6*ph(i, 1) |
---|
| 686 | pupper(i) = max(pupper(i), 45000.) |
---|
| 687 | ! cc Pupper(i) = 60000. |
---|
| 688 | END DO |
---|
[1146] | 689 | |
---|
[1403] | 690 | |
---|
[1992] | 691 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 692 | ! -------------------------------------------------------- |
---|
[1403] | 693 | |
---|
[1992] | 694 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 695 | |
---|
| 696 | DO i = 1, klon |
---|
| 697 | ptop_provis(i) = ph(i, 1) |
---|
| 698 | END DO |
---|
| 699 | DO k = 2, klev |
---|
| 700 | DO i = 1, klon |
---|
| 701 | |
---|
| 702 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 703 | |
---|
| 704 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 705 | ptop_provis(i)==ph(i,1)) THEN |
---|
[2635] | 706 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
| 707 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 708 | END IF |
---|
| 709 | END DO |
---|
| 710 | END DO |
---|
| 711 | |
---|
| 712 | ! -2/ dth integral |
---|
| 713 | |
---|
| 714 | DO i = 1, klon |
---|
| 715 | sum_dth(i) = 0. |
---|
| 716 | dthmin(i) = -delta_t_min |
---|
| 717 | z(i) = 0. |
---|
| 718 | END DO |
---|
| 719 | |
---|
| 720 | DO k = 1, klev |
---|
| 721 | DO i = 1, klon |
---|
| 722 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 723 | IF (dz(i)>0) THEN |
---|
| 724 | z(i) = z(i) + dz(i) |
---|
| 725 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 726 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 727 | END IF |
---|
| 728 | END DO |
---|
| 729 | END DO |
---|
| 730 | |
---|
| 731 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 732 | |
---|
| 733 | DO i = 1, klon |
---|
| 734 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 735 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 736 | END DO |
---|
| 737 | |
---|
| 738 | ! -4/ now, get Ptop |
---|
| 739 | |
---|
| 740 | DO i = 1, klon |
---|
| 741 | z(i) = 0. |
---|
| 742 | ptop(i) = ph(i, 1) |
---|
| 743 | END DO |
---|
| 744 | |
---|
| 745 | DO k = 1, klev |
---|
| 746 | DO i = 1, klon |
---|
| 747 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 748 | IF (dz(i)>0) THEN |
---|
| 749 | z(i) = z(i) + dz(i) |
---|
| 750 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 751 | END IF |
---|
| 752 | END DO |
---|
| 753 | END DO |
---|
| 754 | |
---|
[2671] | 755 | IF (prt_level>=10) THEN |
---|
| 756 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
| 757 | ENDIF |
---|
[1992] | 758 | |
---|
[2671] | 759 | |
---|
[1992] | 760 | ! -5/ Determination de ktop et kupper |
---|
| 761 | |
---|
| 762 | DO k = klev, 1, -1 |
---|
| 763 | DO i = 1, klon |
---|
| 764 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 765 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 766 | END DO |
---|
| 767 | END DO |
---|
| 768 | |
---|
| 769 | ! On evite kupper = 1 et kupper = klev |
---|
| 770 | DO i = 1, klon |
---|
| 771 | kupper(i) = max(kupper(i), 2) |
---|
| 772 | kupper(i) = min(kupper(i), klev-1) |
---|
| 773 | END DO |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | ! -6/ Correct ktop and ptop |
---|
| 777 | |
---|
| 778 | DO i = 1, klon |
---|
| 779 | ptop_new(i) = ptop(i) |
---|
| 780 | END DO |
---|
| 781 | DO k = klev, 2, -1 |
---|
| 782 | DO i = 1, klon |
---|
| 783 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 784 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 785 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 786 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 787 | END IF |
---|
| 788 | END DO |
---|
| 789 | END DO |
---|
| 790 | |
---|
| 791 | DO i = 1, klon |
---|
| 792 | ptop(i) = ptop_new(i) |
---|
| 793 | END DO |
---|
| 794 | |
---|
| 795 | DO k = klev, 1, -1 |
---|
| 796 | DO i = 1, klon |
---|
| 797 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 798 | END DO |
---|
| 799 | END DO |
---|
| 800 | |
---|
[2671] | 801 | IF (prt_level>=10) THEN |
---|
| 802 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
| 803 | ENDIF |
---|
| 804 | |
---|
[1992] | 805 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 806 | |
---|
| 807 | DO k = 1, klev |
---|
| 808 | DO i = 1, klon |
---|
| 809 | IF (k>=kupper(i)) THEN |
---|
| 810 | deltatw(i, k) = 0. |
---|
| 811 | deltaqw(i, k) = 0. |
---|
[2635] | 812 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 813 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 814 | END IF |
---|
| 815 | END DO |
---|
| 816 | END DO |
---|
| 817 | |
---|
| 818 | |
---|
| 819 | ! Vertical gradient of LS omega |
---|
| 820 | |
---|
| 821 | DO k = 1, klev |
---|
| 822 | DO i = 1, klon |
---|
| 823 | IF (k<=kupper(i)) THEN |
---|
| 824 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 825 | END IF |
---|
| 826 | END DO |
---|
| 827 | END DO |
---|
| 828 | |
---|
| 829 | ! Integrals (and wake top level number) |
---|
| 830 | ! -------------------------------------- |
---|
| 831 | |
---|
| 832 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 833 | |
---|
| 834 | DO i = 1, klon |
---|
| 835 | z(i) = 1. |
---|
| 836 | dz(i) = 1. |
---|
[2495] | 837 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[1992] | 838 | sum_dth(i) = 0. |
---|
| 839 | END DO |
---|
| 840 | |
---|
| 841 | DO k = 1, klev |
---|
| 842 | DO i = 1, klon |
---|
| 843 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 844 | IF (dz(i)>0) THEN |
---|
| 845 | z(i) = z(i) + dz(i) |
---|
| 846 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 847 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 848 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2495] | 849 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 850 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 851 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 852 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 853 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 854 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 855 | END IF |
---|
| 856 | END DO |
---|
| 857 | END DO |
---|
| 858 | |
---|
| 859 | DO i = 1, klon |
---|
| 860 | hw0(i) = z(i) |
---|
| 861 | END DO |
---|
| 862 | |
---|
| 863 | |
---|
| 864 | ! 2.1 - WAPE and mean forcing computation |
---|
| 865 | ! --------------------------------------- |
---|
| 866 | |
---|
| 867 | ! --------------------------------------- |
---|
| 868 | |
---|
| 869 | ! Means |
---|
| 870 | |
---|
| 871 | DO i = 1, klon |
---|
| 872 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 873 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 874 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 875 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 876 | ! av_thve = sum_thve/hw0 |
---|
| 877 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 878 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 879 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 880 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 881 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 882 | |
---|
[2635] | 883 | wape(i) = -rg*hw0(i)*(av_dth(i)+ & |
---|
| 884 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 885 | |
---|
[1992] | 886 | END DO |
---|
| 887 | |
---|
| 888 | ! 2.2 Prognostic variable update |
---|
| 889 | ! ------------------------------ |
---|
| 890 | |
---|
| 891 | ! Filter out bad wakes |
---|
| 892 | |
---|
| 893 | DO k = 1, klev |
---|
| 894 | DO i = 1, klon |
---|
| 895 | IF (wape(i)<0.) THEN |
---|
| 896 | deltatw(i, k) = 0. |
---|
| 897 | deltaqw(i, k) = 0. |
---|
| 898 | dth(i, k) = 0. |
---|
[2635] | 899 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 900 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 901 | END IF |
---|
| 902 | END DO |
---|
| 903 | END DO |
---|
| 904 | |
---|
| 905 | DO i = 1, klon |
---|
| 906 | IF (wape(i)<0.) THEN |
---|
| 907 | wape(i) = 0. |
---|
| 908 | cstar(i) = 0. |
---|
| 909 | hw(i) = hwmin |
---|
[2635] | 910 | !jyg< |
---|
| 911 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 912 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 913 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 914 | sigmaw(i) = sigmaw_targ |
---|
| 915 | !>jyg |
---|
[1992] | 916 | fip(i) = 0. |
---|
| 917 | gwake(i) = .FALSE. |
---|
| 918 | ELSE |
---|
[3208] | 919 | hw(i) = hw0(i) |
---|
[1992] | 920 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 921 | gwake(i) = .TRUE. |
---|
| 922 | END IF |
---|
| 923 | END DO |
---|
| 924 | |
---|
| 925 | |
---|
| 926 | ! Check qx and qw positivity |
---|
| 927 | ! -------------------------- |
---|
| 928 | DO i = 1, klon |
---|
[2635] | 929 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
| 930 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
[1992] | 931 | END DO |
---|
| 932 | DO k = 2, klev |
---|
| 933 | DO i = 1, klon |
---|
[2635] | 934 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
| 935 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
[1992] | 936 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 937 | q0_min(i) = q1_min(i) |
---|
| 938 | END IF |
---|
| 939 | END DO |
---|
| 940 | END DO |
---|
| 941 | |
---|
| 942 | DO i = 1, klon |
---|
| 943 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 944 | alpha(i) = 1. |
---|
| 945 | END DO |
---|
| 946 | |
---|
[2671] | 947 | IF (prt_level>=10) THEN |
---|
[2757] | 948 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
| 949 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
[2671] | 950 | ENDIF |
---|
| 951 | |
---|
| 952 | |
---|
[1992] | 953 | ! C ----------------------------------------------------------------- |
---|
| 954 | ! Sub-time-stepping |
---|
| 955 | ! ----------------- |
---|
| 956 | |
---|
| 957 | nsub = 10 |
---|
| 958 | dtimesub = dtime/nsub |
---|
| 959 | |
---|
| 960 | ! ------------------------------------------------------------ |
---|
| 961 | DO isubstep = 1, nsub |
---|
| 962 | ! ------------------------------------------------------------ |
---|
| 963 | |
---|
| 964 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 965 | ! loop |
---|
| 966 | DO i = 1, klon |
---|
| 967 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 968 | END DO |
---|
[2671] | 969 | IF (prt_level>=10) THEN |
---|
[2757] | 970 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
| 971 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
[2671] | 972 | ENDIF |
---|
[1992] | 973 | |
---|
| 974 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 975 | ! négatif de ktop à kupper -------- |
---|
| 976 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 977 | ! aurait un entrainement nul --- |
---|
[3208] | 978 | !jyg< |
---|
| 979 | ! Dans la configuration avec wdens prognostique, il s'agit d'un cas ou |
---|
| 980 | ! les poches sont insuffisantes pour accueillir tout le flux de masse |
---|
| 981 | ! des descentes unsaturees. Nous faisons alors l'hypothese que la |
---|
| 982 | ! convection profonde cree directement de nouvelles poches, sans passer |
---|
| 983 | ! par les thermiques. La nouvelle valeur de wdens est alors imposée. |
---|
| 984 | |
---|
[1992] | 985 | DO i = 1, klon |
---|
| 986 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 987 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 988 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 989 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
[2635] | 990 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 991 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
| 992 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
[3252] | 993 | IF (prt_level >= 10) THEN |
---|
| 994 | print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i)', & |
---|
| 995 | omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i), ph(i,1)-pupper(i) |
---|
| 996 | ENDIF |
---|
[1992] | 997 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
[3208] | 998 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 999 | d_wdens2(i) = d_wdens2(i) + wdens0 - wdens(i) |
---|
| 1000 | ENDIF |
---|
[1992] | 1001 | wdens(i) = wdens0 |
---|
| 1002 | END IF |
---|
| 1003 | END IF |
---|
| 1004 | END DO |
---|
| 1005 | |
---|
| 1006 | DO i = 1, klon |
---|
| 1007 | IF (wk_adv(i)) THEN |
---|
[1403] | 1008 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
[3208] | 1009 | rad_wk(i) = sqrt(sigmaw(i)/(3.14*wdens(i))) |
---|
[2635] | 1010 | !jyg< |
---|
| 1011 | !! sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 1012 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
| 1013 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1014 | sigmaw(i) = sigmaw_targ |
---|
| 1015 | !>jyg |
---|
[1992] | 1016 | END IF |
---|
| 1017 | END DO |
---|
[2635] | 1018 | |
---|
[3208] | 1019 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
[3605] | 1020 | ! The variable "death_rate" is significant only when iflag_wk_pop_dyn = 0. |
---|
| 1021 | ! Here, it has to be set to zero. |
---|
| 1022 | death_rate(:) = 0. |
---|
[3208] | 1023 | |
---|
| 1024 | IF (iflag_wk_act ==2) THEN |
---|
| 1025 | DO i = 1, klon |
---|
| 1026 | IF (wk_adv(i)) THEN |
---|
| 1027 | wape1_act(i) = abs(cin(i)) |
---|
| 1028 | wape2_act(i) = 2.*wape1_act(i) + 1. |
---|
| 1029 | act(i) = min(1., max(0., (wape(i)-wape1_act(i)) / (wape2_act(i)-wape1_act(i)) )) |
---|
| 1030 | ENDIF ! (wk_adv(i)) |
---|
| 1031 | ENDDO |
---|
| 1032 | ENDIF ! (iflag_wk_act ==2) |
---|
| 1033 | |
---|
| 1034 | |
---|
| 1035 | DO i = 1, klon |
---|
| 1036 | IF (wk_adv(i)) THEN |
---|
| 1037 | !! tau_wk(i) = max(rad_wk(i)/(3.*cstar(i))*((cstar(i)/cstart)**1.5 - 1), 100.) |
---|
| 1038 | tau_wk_inv(i) = max( (3.*cstar(i))/(rad_wk(i)*((cstar(i)/cstart)**1.5 - 1)), 0.) |
---|
| 1039 | tau_wk_inv_min = min(tau_wk_inv(i), 1./dtimesub) |
---|
| 1040 | drdt(i) = (cstar(i) - wgen(i)*(sigmaw(i)/wdens(i)-aa0)/gfl(i)) / & |
---|
[3252] | 1041 | (1 + 2*f_shear(i)*(2.*sigmaw(i)-aa0*wdens(i)) - 2.*sigmaw(i)) |
---|
| 1042 | !! (1 - 2*sigmaw(i)*(1.-f_shear(i))) |
---|
[3208] | 1043 | drdt_pos=max(drdt(i),0.) |
---|
| 1044 | |
---|
| 1045 | !! d_wdens(i) = ( wgen(i)*(1.+2.*(sigmaw(i)-sigmad)) & |
---|
| 1046 | !! - wdens(i)*tau_wk_inv_min & |
---|
| 1047 | !! - 2.*gfl(i)*wdens(i)*Cstar(i) )*dtimesub |
---|
| 1048 | d_awdens(i) = ( wgen(i) - (1./tau_cv)*(awdens(i) - act(i)*wdens(i)) )*dtimesub |
---|
| 1049 | d_wdens(i) = ( wgen(i) - (wdens(i)-awdens(i))*tau_wk_inv_min - & |
---|
| 1050 | 2.*wdens(i)*gfl(i)*drdt_pos )*dtimesub |
---|
| 1051 | d_wdens(i) = max(d_wdens(i), wdensmin-wdens(i)) |
---|
| 1052 | |
---|
| 1053 | !! d_sigmaw(i) = ( (1.-2*f_shear(i)*sigmaw(i))*(gfl(i)*Cstar(i)+wgen(i)*sigmad/wdens(i)) & |
---|
| 1054 | !! + 2.*f_shear(i)*wgen(i)*sigmaw(i)**2/wdens(i) & |
---|
| 1055 | !! - sigmaw(i)*tau_wk_inv_min )*dtimesub |
---|
| 1056 | d_sig_gen(i) = wgen(i)*aa0 |
---|
| 1057 | d_sig_death(i) = - sigmaw(i)*(1.-awdens(i)/wdens(i))*tau_wk_inv_min |
---|
| 1058 | !! d_sig_col(i) = - 2*f_shear(i)*sigmaw(i)*gfl(i)*drdt_pos |
---|
| 1059 | d_sig_col(i) = - 2*f_shear(i)*(2.*sigmaw(i)-wdens(i)*aa0)*gfl(i)*drdt_pos |
---|
| 1060 | d_sigmaw(i) = ( d_sig_gen(i) + d_sig_death(i) + d_sig_col(i) + gfl(i)*cstar(i) )*dtimesub |
---|
| 1061 | d_sigmaw(i) = max(d_sigmaw(i), sigmad-sigmaw(i)) |
---|
| 1062 | ENDIF |
---|
| 1063 | ENDDO |
---|
| 1064 | |
---|
| 1065 | IF (prt_level >= 10) THEN |
---|
| 1066 | print *,'wake, cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) ', & |
---|
| 1067 | cstar(1), cstar(1)/cstart, rad_wk(1), tau_wk_inv(1), drdt(1) |
---|
| 1068 | print *,'wake, wdens(1), awdens(1), act(1), d_awdens(1) ', & |
---|
| 1069 | wdens(1), awdens(1), act(1), d_awdens(1) |
---|
| 1070 | print *,'wake, wgen, -(wdens-awdens)*tau_wk_inv, -2.*wdens*gfl*drdt_pos, d_wdens ', & |
---|
| 1071 | wgen(1), -(wdens(1)-awdens(1))*tau_wk_inv(1), -2.*wdens(1)*gfl(1)*drdt_pos, d_wdens(1) |
---|
| 1072 | print *,'wake, d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) ', & |
---|
| 1073 | d_sig_gen(1), d_sig_death(1), d_sig_col(1), d_sigmaw(1) |
---|
| 1074 | ENDIF |
---|
| 1075 | |
---|
| 1076 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1077 | |
---|
| 1078 | ! cc nrlmd |
---|
| 1079 | |
---|
| 1080 | DO i = 1, klon |
---|
| 1081 | IF (wk_adv(i)) THEN |
---|
| 1082 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 1083 | ! test sur sigmaw_max=0.4 |
---|
| 1084 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 1085 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 1086 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 1087 | ELSE |
---|
| 1088 | death_rate(i) = 0. |
---|
| 1089 | END IF |
---|
| 1090 | |
---|
| 1091 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 1092 | dtimesub |
---|
| 1093 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 1094 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 1095 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 1096 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 1097 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
| 1098 | |
---|
| 1099 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 1100 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 1101 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 1102 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 1103 | ! sigmaw =max(sigmaw,sigmad) |
---|
[1992] | 1104 | END IF |
---|
[3208] | 1105 | END DO |
---|
[2635] | 1106 | |
---|
[3208] | 1107 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
[1403] | 1108 | |
---|
[1992] | 1109 | |
---|
| 1110 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 1111 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
[2671] | 1112 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
[1992] | 1113 | ! IM 060208 au niveau k=1..? |
---|
[2671] | 1114 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
[1992] | 1115 | DO k = 1, klev |
---|
| 1116 | DO i = 1, klon |
---|
| 1117 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1118 | dp_deltomg(i, k) = 0. |
---|
| 1119 | END IF |
---|
| 1120 | END DO |
---|
| 1121 | END DO |
---|
[2671] | 1122 | DO k = 1, klev |
---|
[1992] | 1123 | DO i = 1, klon |
---|
| 1124 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1125 | omg(i, k) = 0. |
---|
| 1126 | END IF |
---|
| 1127 | END DO |
---|
| 1128 | END DO |
---|
| 1129 | |
---|
| 1130 | DO i = 1, klon |
---|
| 1131 | IF (wk_adv(i)) THEN |
---|
| 1132 | z(i) = 0. |
---|
| 1133 | omg(i, 1) = 0. |
---|
| 1134 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 1135 | END IF |
---|
| 1136 | END DO |
---|
| 1137 | |
---|
| 1138 | DO k = 2, klev |
---|
| 1139 | DO i = 1, klon |
---|
| 1140 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
[974] | 1141 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
[1992] | 1142 | z(i) = z(i) + dz(i) |
---|
| 1143 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1144 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 1145 | END IF |
---|
| 1146 | END DO |
---|
| 1147 | END DO |
---|
| 1148 | |
---|
| 1149 | DO i = 1, klon |
---|
| 1150 | IF (wk_adv(i)) THEN |
---|
| 1151 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 1152 | ztop(i) = z(i) + dztop(i) |
---|
| 1153 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 1154 | END IF |
---|
| 1155 | END DO |
---|
| 1156 | |
---|
[2671] | 1157 | IF (prt_level>=10) THEN |
---|
| 1158 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
[2757] | 1159 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
| 1160 | omgtop(igout), ptop(igout), ktop(igout) |
---|
[2671] | 1161 | ENDIF |
---|
| 1162 | |
---|
[1992] | 1163 | ! ----------------- |
---|
| 1164 | ! From m/s to Pa/s |
---|
| 1165 | ! ----------------- |
---|
| 1166 | |
---|
| 1167 | DO i = 1, klon |
---|
| 1168 | IF (wk_adv(i)) THEN |
---|
| 1169 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 1170 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 1171 | END IF |
---|
| 1172 | END DO |
---|
| 1173 | |
---|
| 1174 | DO k = 1, klev |
---|
| 1175 | DO i = 1, klon |
---|
| 1176 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1177 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 1178 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1179 | END IF |
---|
| 1180 | END DO |
---|
| 1181 | END DO |
---|
| 1182 | |
---|
| 1183 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 1184 | |
---|
| 1185 | DO i = 1, klon |
---|
| 1186 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 1187 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1188 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1189 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 1190 | (ptop(i)-pupper(i)) |
---|
| 1191 | END IF |
---|
| 1192 | END DO |
---|
| 1193 | |
---|
| 1194 | ! c DO i=1,klon |
---|
| 1195 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 1196 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 1197 | ! c print*,'Pente entre ktop et kupper' |
---|
| 1198 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 1199 | ! c ENDDO |
---|
| 1200 | ! c |
---|
| 1201 | DO k = 1, klev |
---|
| 1202 | DO i = 1, klon |
---|
| 1203 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 1204 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 1205 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 1206 | END IF |
---|
| 1207 | END DO |
---|
| 1208 | END DO |
---|
[2671] | 1209 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
[1992] | 1210 | ! cc nrlmd |
---|
| 1211 | ! c DO i=1,klon |
---|
| 1212 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 1213 | ! c END DO |
---|
| 1214 | ! cc |
---|
| 1215 | |
---|
| 1216 | |
---|
| 1217 | ! -- Compute wake average vertical velocity omgbw |
---|
| 1218 | |
---|
| 1219 | |
---|
[2671] | 1220 | DO k = 1, klev |
---|
[1992] | 1221 | DO i = 1, klon |
---|
[1146] | 1222 | IF (wk_adv(i)) THEN |
---|
[1992] | 1223 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 1224 | END IF |
---|
| 1225 | END DO |
---|
| 1226 | END DO |
---|
| 1227 | ! -- and its vertical gradient dp_omgbw |
---|
| 1228 | |
---|
[2671] | 1229 | DO k = 1, klev-1 |
---|
[1992] | 1230 | DO i = 1, klon |
---|
[1146] | 1231 | IF (wk_adv(i)) THEN |
---|
[1992] | 1232 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 1233 | END IF |
---|
| 1234 | END DO |
---|
| 1235 | END DO |
---|
[2671] | 1236 | DO i = 1, klon |
---|
| 1237 | IF (wk_adv(i)) THEN |
---|
| 1238 | dp_omgbw(i, klev) = 0. |
---|
| 1239 | END IF |
---|
| 1240 | END DO |
---|
[974] | 1241 | |
---|
[1992] | 1242 | ! -- Upstream coefficients for omgb velocity |
---|
| 1243 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 1244 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 1245 | DO k = 1, klev |
---|
| 1246 | DO i = 1, klon |
---|
| 1247 | IF (wk_adv(i)) THEN |
---|
| 1248 | alpha_up(i, k) = 0. |
---|
| 1249 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 1250 | END IF |
---|
| 1251 | END DO |
---|
| 1252 | END DO |
---|
[974] | 1253 | |
---|
[1992] | 1254 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[974] | 1255 | |
---|
[1992] | 1256 | DO i = 1, klon |
---|
| 1257 | IF (wk_adv(i)) THEN |
---|
| 1258 | rre1(i) = 1. - sigmaw(i) |
---|
| 1259 | rre2(i) = sigmaw(i) |
---|
| 1260 | END IF |
---|
| 1261 | END DO |
---|
| 1262 | rrd1 = -1. |
---|
| 1263 | rrd2 = 1. |
---|
[974] | 1264 | |
---|
[1992] | 1265 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
[974] | 1266 | |
---|
[1992] | 1267 | DO k = 1, klev |
---|
| 1268 | DO i = 1, klon |
---|
| 1269 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1270 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1271 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 1272 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 1273 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 1274 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 1275 | END IF |
---|
| 1276 | END DO |
---|
| 1277 | END DO |
---|
[974] | 1278 | |
---|
[1992] | 1279 | DO i = 1, klon |
---|
| 1280 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1281 | d_th1(i, 1) = 0. |
---|
| 1282 | d_th2(i, 1) = 0. |
---|
| 1283 | d_dth(i, 1) = 0. |
---|
| 1284 | d_q1(i, 1) = 0. |
---|
| 1285 | d_q2(i, 1) = 0. |
---|
| 1286 | d_dq(i, 1) = 0. |
---|
| 1287 | END IF |
---|
| 1288 | END DO |
---|
[974] | 1289 | |
---|
[1992] | 1290 | DO k = 2, klev |
---|
| 1291 | DO i = 1, klon |
---|
| 1292 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1293 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 1294 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 1295 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 1296 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 1297 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 1298 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 1299 | END IF |
---|
| 1300 | END DO |
---|
| 1301 | END DO |
---|
[1146] | 1302 | |
---|
[1992] | 1303 | DO i = 1, klon |
---|
| 1304 | IF (wk_adv(i)) THEN |
---|
| 1305 | omgbdth(i, 1) = 0. |
---|
| 1306 | omgbdq(i, 1) = 0. |
---|
| 1307 | END IF |
---|
| 1308 | END DO |
---|
[1277] | 1309 | |
---|
[1992] | 1310 | DO k = 2, klev |
---|
| 1311 | DO i = 1, klon |
---|
| 1312 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 1313 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 1314 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 1315 | END IF |
---|
| 1316 | END DO |
---|
| 1317 | END DO |
---|
[1403] | 1318 | |
---|
[2671] | 1319 | IF (prt_level>=10) THEN |
---|
| 1320 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,klev) |
---|
| 1321 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,klev) |
---|
| 1322 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,klev) |
---|
| 1323 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,klev) |
---|
| 1324 | ENDIF |
---|
| 1325 | |
---|
[1992] | 1326 | ! ----------------------------------------------------------------- |
---|
[2671] | 1327 | DO k = 1, klev-1 |
---|
[1992] | 1328 | DO i = 1, klon |
---|
| 1329 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1330 | ! ----------------------------------------------------------------- |
---|
[974] | 1331 | |
---|
[1992] | 1332 | ! Compute redistribution (advective) term |
---|
[1403] | 1333 | |
---|
[1992] | 1334 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
[2635] | 1335 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
| 1336 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
| 1337 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
| 1338 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
[2671] | 1339 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
---|
[1403] | 1340 | |
---|
[1992] | 1341 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
[2635] | 1342 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1343 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
| 1344 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
| 1345 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
[2671] | 1346 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
[974] | 1347 | |
---|
[1992] | 1348 | ! and increment large scale tendencies |
---|
[974] | 1349 | |
---|
| 1350 | |
---|
| 1351 | |
---|
| 1352 | |
---|
[1992] | 1353 | ! C |
---|
| 1354 | ! ----------------------------------------------------------------- |
---|
[2635] | 1355 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
| 1356 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
| 1357 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1358 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1359 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
[974] | 1360 | |
---|
[2635] | 1361 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1362 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
| 1363 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1364 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1365 | (ph(i,k)-ph(i,k+1)) ) |
---|
[1992] | 1366 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
[2635] | 1367 | d_te(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
[1403] | 1368 | |
---|
[2635] | 1369 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
[1403] | 1370 | |
---|
[1992] | 1371 | END IF |
---|
| 1372 | ! cc |
---|
| 1373 | END DO |
---|
| 1374 | END DO |
---|
| 1375 | ! ------------------------------------------------------------------ |
---|
[974] | 1376 | |
---|
[2671] | 1377 | IF (prt_level>=10) THEN |
---|
| 1378 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
| 1379 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
| 1380 | ENDIF |
---|
| 1381 | |
---|
[1992] | 1382 | ! Increment state variables |
---|
[3208] | 1383 | !jyg< |
---|
| 1384 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1385 | DO k = 1, klev |
---|
| 1386 | DO i = 1, klon |
---|
| 1387 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1388 | detr(i,k) = - d_sig_death(i) - d_sig_col(i) |
---|
| 1389 | entr(i,k) = d_sig_gen(i) |
---|
| 1390 | ENDIF |
---|
| 1391 | ENDDO |
---|
| 1392 | ENDDO |
---|
| 1393 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 1394 | DO k = 1, klev |
---|
| 1395 | DO i = 1, klon |
---|
| 1396 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1397 | detr(i, k) = 0. |
---|
| 1398 | |
---|
| 1399 | entr(i, k) = 0. |
---|
| 1400 | ENDIF |
---|
| 1401 | ENDDO |
---|
| 1402 | ENDDO |
---|
| 1403 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
[974] | 1404 | |
---|
[3208] | 1405 | |
---|
| 1406 | |
---|
[1992] | 1407 | DO k = 1, klev |
---|
| 1408 | DO i = 1, klon |
---|
| 1409 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1410 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1411 | ! cc |
---|
[974] | 1412 | |
---|
[1146] | 1413 | |
---|
[974] | 1414 | |
---|
[1992] | 1415 | ! Coefficient de répartition |
---|
[974] | 1416 | |
---|
[1992] | 1417 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1418 | (ph(i,kupper(i))-ph(i,1)) |
---|
[2635] | 1419 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
| 1420 | (p(i,1)-ph(i,kupper(i))) |
---|
[974] | 1421 | |
---|
| 1422 | |
---|
[1992] | 1423 | ! Reintroduce compensating subsidence term. |
---|
[1146] | 1424 | |
---|
[1992] | 1425 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1426 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1427 | ! . /(1-sigmaw) |
---|
| 1428 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1429 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1430 | ! . /(1-sigmaw) |
---|
[974] | 1431 | |
---|
[1992] | 1432 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1433 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1434 | ! . /(1-sigmaw) |
---|
| 1435 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1436 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1437 | ! . /(1-sigmaw) |
---|
[974] | 1438 | |
---|
[1992] | 1439 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1440 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1441 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
[974] | 1442 | |
---|
[2155] | 1443 | ! |
---|
[1146] | 1444 | |
---|
[1992] | 1445 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1446 | ! cc Définitions de entr, detr |
---|
[3208] | 1447 | !jyg< |
---|
| 1448 | !! detr(i, k) = 0. |
---|
| 1449 | !! |
---|
| 1450 | !! entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1451 | !! sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1452 | !! |
---|
| 1453 | entr(i, k) = entr(i,k) + gfl(i)*cstar(i) + & |
---|
| 1454 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1455 | !>jyg |
---|
| 1456 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
[1146] | 1457 | |
---|
[1992] | 1458 | ! cc spread(i,k) = |
---|
| 1459 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1460 | ! cc $ sigmaw(i) |
---|
[1146] | 1461 | |
---|
| 1462 | |
---|
[1992] | 1463 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1464 | ! Jingmei |
---|
[1146] | 1465 | |
---|
[1992] | 1466 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1467 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1468 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1469 | dtimesub |
---|
| 1470 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1471 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
[1403] | 1472 | |
---|
[1992] | 1473 | ! Sans GW |
---|
[1403] | 1474 | |
---|
[1992] | 1475 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
[974] | 1476 | |
---|
[1992] | 1477 | ! GW formule 1 |
---|
| 1478 | |
---|
| 1479 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1480 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1481 | |
---|
| 1482 | ! GW formule 2 |
---|
| 1483 | |
---|
| 1484 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
[2635] | 1485 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
| 1486 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1487 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
| 1488 | tgw(i,k)*deltatw(i,k) ) |
---|
[1992] | 1489 | ELSE |
---|
[2635] | 1490 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
| 1491 | (ff(i)+dtke(i,k) - & |
---|
| 1492 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1493 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
| 1494 | tgw(i,k)*deltatw(i,k) ) |
---|
[1992] | 1495 | END IF |
---|
| 1496 | |
---|
| 1497 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1498 | |
---|
| 1499 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1500 | |
---|
[2635] | 1501 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
| 1502 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
| 1503 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
[1992] | 1504 | ! cc |
---|
| 1505 | |
---|
| 1506 | ! cc nrlmd |
---|
| 1507 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1508 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1509 | ! cc |
---|
| 1510 | END IF |
---|
| 1511 | END DO |
---|
| 1512 | END DO |
---|
| 1513 | |
---|
| 1514 | |
---|
| 1515 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1516 | |
---|
| 1517 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1518 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1519 | |
---|
| 1520 | ! cc nrlmd |
---|
| 1521 | ! c print*,'alpha' |
---|
| 1522 | ! c do i=1,klon |
---|
| 1523 | ! c print*,alpha(i) |
---|
| 1524 | ! c end do |
---|
| 1525 | ! cc |
---|
| 1526 | DO k = 1, klev |
---|
| 1527 | DO i = 1, klon |
---|
| 1528 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1529 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1530 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1531 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1532 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1533 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1534 | END IF |
---|
| 1535 | END DO |
---|
| 1536 | END DO |
---|
| 1537 | DO i = 1, klon |
---|
| 1538 | IF (wk_adv(i)) THEN |
---|
| 1539 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1540 | END IF |
---|
| 1541 | END DO |
---|
| 1542 | |
---|
| 1543 | ! Update large scale variables and wake variables |
---|
| 1544 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1545 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1546 | DO k = 1, klev |
---|
| 1547 | DO i = 1, klon |
---|
| 1548 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1549 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1550 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1551 | ! cc nrlmd |
---|
| 1552 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1553 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1554 | ! cc |
---|
| 1555 | END IF |
---|
| 1556 | END DO |
---|
| 1557 | END DO |
---|
| 1558 | DO k = 1, klev |
---|
| 1559 | DO i = 1, klon |
---|
| 1560 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1561 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1562 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1563 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1564 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1565 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1566 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1567 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1568 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1569 | END IF |
---|
| 1570 | END DO |
---|
| 1571 | END DO |
---|
[3208] | 1572 | ! |
---|
[1992] | 1573 | DO i = 1, klon |
---|
| 1574 | IF (wk_adv(i)) THEN |
---|
| 1575 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
[2635] | 1576 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
[1992] | 1577 | END IF |
---|
| 1578 | END DO |
---|
[3208] | 1579 | !jyg< |
---|
| 1580 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 1581 | DO i = 1, klon |
---|
| 1582 | IF (wk_adv(i)) THEN |
---|
| 1583 | awdens(i) = awdens(i) + d_awdens(i) |
---|
| 1584 | wdens(i) = wdens(i) + d_wdens(i) |
---|
| 1585 | d_awdens2(i) = d_awdens2(i) + d_awdens(i) |
---|
| 1586 | d_wdens2(i) = d_wdens2(i) + d_wdens(i) |
---|
| 1587 | END IF |
---|
| 1588 | END DO |
---|
| 1589 | DO i = 1, klon |
---|
| 1590 | IF (wk_adv(i)) THEN |
---|
| 1591 | wdens_targ = max(wdens(i),wdensmin) |
---|
| 1592 | d_wdens2(i) = d_wdens2(i) + wdens_targ - wdens(i) |
---|
| 1593 | wdens(i) = wdens_targ |
---|
| 1594 | ! |
---|
| 1595 | wdens_targ = min( max(awdens(i),0.), wdens(i) ) |
---|
| 1596 | d_awdens2(i) = d_awdens2(i) + wdens_targ - awdens(i) |
---|
| 1597 | awdens(i) = wdens_targ |
---|
| 1598 | END IF |
---|
| 1599 | END DO |
---|
| 1600 | DO i = 1, klon |
---|
| 1601 | IF (wk_adv(i)) THEN |
---|
| 1602 | sigmaw_targ = max(sigmaw(i),sigmad) |
---|
| 1603 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1604 | sigmaw(i) = sigmaw_targ |
---|
| 1605 | END IF |
---|
| 1606 | END DO |
---|
| 1607 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 1608 | !>jyg |
---|
[1992] | 1609 | |
---|
| 1610 | |
---|
| 1611 | ! Determine Ptop from buoyancy integral |
---|
| 1612 | ! --------------------------------------- |
---|
| 1613 | |
---|
| 1614 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1615 | |
---|
| 1616 | DO i = 1, klon |
---|
| 1617 | IF (wk_adv(i)) THEN |
---|
| 1618 | ptop_provis(i) = ph(i, 1) |
---|
| 1619 | END IF |
---|
| 1620 | END DO |
---|
| 1621 | |
---|
| 1622 | DO k = 2, klev |
---|
| 1623 | DO i = 1, klon |
---|
| 1624 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1625 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
[2635] | 1626 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1627 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 1628 | END IF |
---|
| 1629 | END DO |
---|
| 1630 | END DO |
---|
| 1631 | |
---|
| 1632 | ! - 2/ dth integral |
---|
| 1633 | |
---|
| 1634 | DO i = 1, klon |
---|
| 1635 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1636 | sum_dth(i) = 0. |
---|
| 1637 | dthmin(i) = -delta_t_min |
---|
[974] | 1638 | z(i) = 0. |
---|
[1992] | 1639 | END IF |
---|
| 1640 | END DO |
---|
| 1641 | |
---|
| 1642 | DO k = 1, klev |
---|
| 1643 | DO i = 1, klon |
---|
| 1644 | IF (wk_adv(i)) THEN |
---|
| 1645 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1646 | IF (dz(i)>0) THEN |
---|
| 1647 | z(i) = z(i) + dz(i) |
---|
| 1648 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1649 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1650 | END IF |
---|
| 1651 | END IF |
---|
| 1652 | END DO |
---|
| 1653 | END DO |
---|
| 1654 | |
---|
| 1655 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1656 | |
---|
| 1657 | DO i = 1, klon |
---|
| 1658 | IF (wk_adv(i)) THEN |
---|
| 1659 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1660 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1661 | END IF |
---|
| 1662 | END DO |
---|
| 1663 | |
---|
| 1664 | ! - 4/ now, get Ptop |
---|
| 1665 | |
---|
| 1666 | DO i = 1, klon |
---|
| 1667 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1668 | ktop(i) = 0 |
---|
| 1669 | z(i) = 0. |
---|
| 1670 | END IF |
---|
| 1671 | END DO |
---|
| 1672 | |
---|
| 1673 | DO k = 1, klev |
---|
| 1674 | DO i = 1, klon |
---|
| 1675 | IF (wk_adv(i)) THEN |
---|
| 1676 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1677 | IF (dz(i)>0) THEN |
---|
| 1678 | z(i) = z(i) + dz(i) |
---|
| 1679 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1680 | ktop(i) = k |
---|
| 1681 | END IF |
---|
| 1682 | END IF |
---|
| 1683 | END DO |
---|
| 1684 | END DO |
---|
| 1685 | |
---|
| 1686 | ! 4.5/Correct ktop and ptop |
---|
| 1687 | |
---|
| 1688 | DO i = 1, klon |
---|
| 1689 | IF (wk_adv(i)) THEN |
---|
| 1690 | ptop_new(i) = ptop(i) |
---|
| 1691 | END IF |
---|
| 1692 | END DO |
---|
| 1693 | |
---|
| 1694 | DO k = klev, 2, -1 |
---|
| 1695 | DO i = 1, klon |
---|
| 1696 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1697 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1698 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
[2635] | 1699 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1700 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 1701 | END IF |
---|
| 1702 | END DO |
---|
| 1703 | END DO |
---|
| 1704 | |
---|
| 1705 | |
---|
| 1706 | DO i = 1, klon |
---|
| 1707 | IF (wk_adv(i)) THEN |
---|
| 1708 | ptop(i) = ptop_new(i) |
---|
| 1709 | END IF |
---|
| 1710 | END DO |
---|
| 1711 | |
---|
| 1712 | DO k = klev, 1, -1 |
---|
| 1713 | DO i = 1, klon |
---|
| 1714 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1715 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1716 | END IF |
---|
| 1717 | END DO |
---|
| 1718 | END DO |
---|
| 1719 | |
---|
| 1720 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1721 | |
---|
| 1722 | DO k = 1, klev |
---|
| 1723 | DO i = 1, klon |
---|
| 1724 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 1725 | deltatw(i, k) = 0. |
---|
| 1726 | deltaqw(i, k) = 0. |
---|
[2635] | 1727 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1728 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1729 | END IF |
---|
| 1730 | END DO |
---|
| 1731 | END DO |
---|
| 1732 | |
---|
| 1733 | |
---|
| 1734 | ! -------------Cstar computation--------------------------------- |
---|
| 1735 | DO i = 1, klon |
---|
| 1736 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1737 | sum_thu(i) = 0. |
---|
| 1738 | sum_tu(i) = 0. |
---|
| 1739 | sum_qu(i) = 0. |
---|
| 1740 | sum_thvu(i) = 0. |
---|
| 1741 | sum_dth(i) = 0. |
---|
| 1742 | sum_dq(i) = 0. |
---|
| 1743 | sum_rho(i) = 0. |
---|
| 1744 | sum_dtdwn(i) = 0. |
---|
| 1745 | sum_dqdwn(i) = 0. |
---|
| 1746 | |
---|
| 1747 | av_thu(i) = 0. |
---|
[1992] | 1748 | av_tu(i) = 0. |
---|
| 1749 | av_qu(i) = 0. |
---|
[974] | 1750 | av_thvu(i) = 0. |
---|
| 1751 | av_dth(i) = 0. |
---|
| 1752 | av_dq(i) = 0. |
---|
[1992] | 1753 | av_rho(i) = 0. |
---|
| 1754 | av_dtdwn(i) = 0. |
---|
[974] | 1755 | av_dqdwn(i) = 0. |
---|
[1992] | 1756 | END IF |
---|
| 1757 | END DO |
---|
[974] | 1758 | |
---|
[1992] | 1759 | ! Integrals (and wake top level number) |
---|
| 1760 | ! -------------------------------------- |
---|
[974] | 1761 | |
---|
[1992] | 1762 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[974] | 1763 | |
---|
[1992] | 1764 | DO i = 1, klon |
---|
| 1765 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1766 | z(i) = 1. |
---|
| 1767 | dz(i) = 1. |
---|
[2495] | 1768 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[974] | 1769 | sum_dth(i) = 0. |
---|
[1992] | 1770 | END IF |
---|
| 1771 | END DO |
---|
[974] | 1772 | |
---|
[1992] | 1773 | DO k = 1, klev |
---|
| 1774 | DO i = 1, klon |
---|
| 1775 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1776 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1777 | IF (dz(i)>0) THEN |
---|
| 1778 | z(i) = z(i) + dz(i) |
---|
| 1779 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1780 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1781 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2495] | 1782 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 1783 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1784 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1785 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1786 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1787 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1788 | END IF |
---|
| 1789 | END IF |
---|
| 1790 | END DO |
---|
| 1791 | END DO |
---|
| 1792 | |
---|
| 1793 | DO i = 1, klon |
---|
| 1794 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1795 | hw0(i) = z(i) |
---|
[1992] | 1796 | END IF |
---|
| 1797 | END DO |
---|
[974] | 1798 | |
---|
| 1799 | |
---|
[1992] | 1800 | ! - WAPE and mean forcing computation |
---|
| 1801 | ! --------------------------------------- |
---|
| 1802 | |
---|
| 1803 | ! --------------------------------------- |
---|
| 1804 | |
---|
| 1805 | ! Means |
---|
| 1806 | |
---|
| 1807 | DO i = 1, klon |
---|
| 1808 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1809 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1810 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1811 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1812 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1813 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1814 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1815 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1816 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1817 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1818 | |
---|
[2635] | 1819 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 1820 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
[1992] | 1821 | END IF |
---|
| 1822 | END DO |
---|
[974] | 1823 | |
---|
[1992] | 1824 | ! Filter out bad wakes |
---|
[974] | 1825 | |
---|
[1992] | 1826 | DO k = 1, klev |
---|
| 1827 | DO i = 1, klon |
---|
| 1828 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1829 | IF (wape(i)<0.) THEN |
---|
| 1830 | deltatw(i, k) = 0. |
---|
| 1831 | deltaqw(i, k) = 0. |
---|
| 1832 | dth(i, k) = 0. |
---|
[2635] | 1833 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1834 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1835 | END IF |
---|
| 1836 | END IF |
---|
| 1837 | END DO |
---|
| 1838 | END DO |
---|
[974] | 1839 | |
---|
[1992] | 1840 | DO i = 1, klon |
---|
| 1841 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1842 | IF (wape(i)<0.) THEN |
---|
| 1843 | wape(i) = 0. |
---|
| 1844 | cstar(i) = 0. |
---|
| 1845 | hw(i) = hwmin |
---|
[2635] | 1846 | !jyg< |
---|
| 1847 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 1848 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 1849 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1850 | sigmaw(i) = sigmaw_targ |
---|
| 1851 | !>jyg |
---|
[1992] | 1852 | fip(i) = 0. |
---|
| 1853 | gwake(i) = .FALSE. |
---|
| 1854 | ELSE |
---|
| 1855 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1856 | gwake(i) = .TRUE. |
---|
| 1857 | END IF |
---|
| 1858 | END IF |
---|
| 1859 | END DO |
---|
| 1860 | |
---|
| 1861 | END DO ! end sub-timestep loop |
---|
| 1862 | |
---|
[2671] | 1863 | IF (prt_level>=10) THEN |
---|
[2757] | 1864 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
| 1865 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
[2671] | 1866 | ENDIF |
---|
[1992] | 1867 | |
---|
| 1868 | |
---|
| 1869 | ! ---------------------------------------------------------- |
---|
| 1870 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1871 | ! filter out bad wakes. |
---|
| 1872 | ! ---------------------------------------------------------- |
---|
| 1873 | |
---|
| 1874 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 1875 | ! --------------------------------------------------------- |
---|
| 1876 | |
---|
| 1877 | DO i = 1, klon |
---|
| 1878 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 1879 | IF (ok_qx_qw(i)) THEN |
---|
| 1880 | ! cc |
---|
| 1881 | z(i) = 0. |
---|
| 1882 | sum_thu(i) = 0. |
---|
| 1883 | sum_tu(i) = 0. |
---|
| 1884 | sum_qu(i) = 0. |
---|
| 1885 | sum_thvu(i) = 0. |
---|
| 1886 | sum_dth(i) = 0. |
---|
[2757] | 1887 | sum_half_dth(i) = 0. |
---|
[1992] | 1888 | sum_dq(i) = 0. |
---|
| 1889 | sum_rho(i) = 0. |
---|
| 1890 | sum_dtdwn(i) = 0. |
---|
| 1891 | sum_dqdwn(i) = 0. |
---|
| 1892 | |
---|
| 1893 | av_thu(i) = 0. |
---|
| 1894 | av_tu(i) = 0. |
---|
| 1895 | av_qu(i) = 0. |
---|
| 1896 | av_thvu(i) = 0. |
---|
| 1897 | av_dth(i) = 0. |
---|
| 1898 | av_dq(i) = 0. |
---|
| 1899 | av_rho(i) = 0. |
---|
| 1900 | av_dtdwn(i) = 0. |
---|
| 1901 | av_dqdwn(i) = 0. |
---|
[2757] | 1902 | |
---|
| 1903 | dthmin(i) = -delta_t_min |
---|
[1992] | 1904 | END IF |
---|
| 1905 | END DO |
---|
| 1906 | ! Potential temperatures and humidity |
---|
| 1907 | ! ---------------------------------------------------------- |
---|
| 1908 | |
---|
| 1909 | DO k = 1, klev |
---|
| 1910 | DO i = 1, klon |
---|
| 1911 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1912 | IF (ok_qx_qw(i)) THEN |
---|
| 1913 | ! cc |
---|
| 1914 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 1915 | IF (k==1) THEN |
---|
| 1916 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 1917 | zhh(i, k) = 0 |
---|
| 1918 | ELSE |
---|
| 1919 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1920 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 1921 | END IF |
---|
| 1922 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1923 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 1924 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 1925 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 1926 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1927 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1928 | END IF |
---|
| 1929 | END DO |
---|
| 1930 | END DO |
---|
| 1931 | |
---|
| 1932 | ! Integrals (and wake top level number) |
---|
| 1933 | ! ----------------------------------------------------------- |
---|
| 1934 | |
---|
| 1935 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1936 | |
---|
| 1937 | DO i = 1, klon |
---|
| 1938 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1939 | IF (ok_qx_qw(i)) THEN |
---|
| 1940 | ! cc |
---|
| 1941 | z(i) = 1. |
---|
| 1942 | dz(i) = 1. |
---|
[2757] | 1943 | dz_half(i) = 1. |
---|
[2495] | 1944 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[1992] | 1945 | sum_dth(i) = 0. |
---|
| 1946 | END IF |
---|
| 1947 | END DO |
---|
| 1948 | |
---|
| 1949 | DO k = 1, klev |
---|
| 1950 | DO i = 1, klon |
---|
| 1951 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1952 | IF (ok_qx_qw(i)) THEN |
---|
| 1953 | ! cc |
---|
| 1954 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
[2757] | 1955 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*rg) |
---|
[1992] | 1956 | IF (dz(i)>0) THEN |
---|
| 1957 | z(i) = z(i) + dz(i) |
---|
| 1958 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1959 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1960 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2495] | 1961 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 1962 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1963 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1964 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1965 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1966 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
[2757] | 1967 | ! |
---|
| 1968 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
[1992] | 1969 | END IF |
---|
[2757] | 1970 | IF (dz_half(i)>0) THEN |
---|
| 1971 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
| 1972 | END IF |
---|
[1992] | 1973 | END IF |
---|
| 1974 | END DO |
---|
| 1975 | END DO |
---|
| 1976 | |
---|
| 1977 | DO i = 1, klon |
---|
| 1978 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1979 | IF (ok_qx_qw(i)) THEN |
---|
| 1980 | ! cc |
---|
| 1981 | hw0(i) = z(i) |
---|
| 1982 | END IF |
---|
| 1983 | END DO |
---|
| 1984 | |
---|
| 1985 | ! - WAPE and mean forcing computation |
---|
| 1986 | ! ------------------------------------------------------------- |
---|
| 1987 | |
---|
| 1988 | ! Means |
---|
| 1989 | |
---|
| 1990 | DO i = 1, klon |
---|
| 1991 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1992 | IF (ok_qx_qw(i)) THEN |
---|
| 1993 | ! cc |
---|
| 1994 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1995 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1996 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1997 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1998 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1999 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 2000 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 2001 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 2002 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 2003 | |
---|
[2635] | 2004 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 2005 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
[1992] | 2006 | END IF |
---|
| 2007 | END DO |
---|
| 2008 | |
---|
[2635] | 2009 | |
---|
| 2010 | |
---|
[1992] | 2011 | ! Prognostic variable update |
---|
| 2012 | ! ------------------------------------------------------------ |
---|
| 2013 | |
---|
| 2014 | ! Filter out bad wakes |
---|
| 2015 | |
---|
[2922] | 2016 | IF (iflag_wk_check_trgl>=1) THEN |
---|
[2757] | 2017 | ! Check triangular shape of dth profile |
---|
| 2018 | DO i = 1, klon |
---|
| 2019 | IF (ok_qx_qw(i)) THEN |
---|
| 2020 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
| 2021 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
| 2022 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
| 2023 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
| 2024 | !! sum_half_dth(i), sum_dth(i) |
---|
| 2025 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
---|
| 2026 | wape2(i) = -1. |
---|
| 2027 | !! print *,'wake, rej 1' |
---|
[2922] | 2028 | ELSE IF (iflag_wk_check_trgl==1.AND.abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
[2757] | 2029 | wape2(i) = -1. |
---|
| 2030 | !! print *,'wake, rej 2' |
---|
| 2031 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
| 2032 | wape2(i) = -1. |
---|
| 2033 | !! print *,'wake, rej 3' |
---|
| 2034 | END IF |
---|
| 2035 | END IF |
---|
| 2036 | END DO |
---|
| 2037 | END IF |
---|
| 2038 | |
---|
| 2039 | |
---|
[1992] | 2040 | DO k = 1, klev |
---|
| 2041 | DO i = 1, klon |
---|
| 2042 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 2043 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 2044 | ! cc |
---|
| 2045 | deltatw(i, k) = 0. |
---|
| 2046 | deltaqw(i, k) = 0. |
---|
| 2047 | dth(i, k) = 0. |
---|
[2635] | 2048 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2049 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 2050 | END IF |
---|
| 2051 | END DO |
---|
| 2052 | END DO |
---|
| 2053 | |
---|
| 2054 | |
---|
| 2055 | DO i = 1, klon |
---|
| 2056 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2057 | IF (ok_qx_qw(i)) THEN |
---|
| 2058 | ! cc |
---|
| 2059 | IF (wape2(i)<0.) THEN |
---|
[974] | 2060 | wape2(i) = 0. |
---|
[1992] | 2061 | cstar2(i) = 0. |
---|
[974] | 2062 | hw(i) = hwmin |
---|
[2635] | 2063 | !jyg< |
---|
| 2064 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 2065 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 2066 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2067 | sigmaw(i) = sigmaw_targ |
---|
| 2068 | !>jyg |
---|
[974] | 2069 | fip(i) = 0. |
---|
| 2070 | gwake(i) = .FALSE. |
---|
| 2071 | ELSE |
---|
[1992] | 2072 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 2073 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
[974] | 2074 | gwake(i) = .TRUE. |
---|
[1992] | 2075 | END IF |
---|
| 2076 | END IF |
---|
| 2077 | END DO |
---|
[974] | 2078 | |
---|
[1992] | 2079 | DO i = 1, klon |
---|
| 2080 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2081 | IF (ok_qx_qw(i)) THEN |
---|
| 2082 | ! cc |
---|
| 2083 | ktopw(i) = ktop(i) |
---|
| 2084 | END IF |
---|
| 2085 | END DO |
---|
[974] | 2086 | |
---|
[1992] | 2087 | DO i = 1, klon |
---|
| 2088 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 2089 | IF (ok_qx_qw(i)) THEN |
---|
| 2090 | ! cc |
---|
| 2091 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
[1403] | 2092 | |
---|
[1992] | 2093 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2094 | ! cc heff = 600. |
---|
| 2095 | ! Utilisation de la hauteur hw |
---|
| 2096 | ! c heff = 0.7*hw |
---|
| 2097 | heff(i) = hw(i) |
---|
[1403] | 2098 | |
---|
[1992] | 2099 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 2100 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 2101 | fip(i) = alpk*fip(i) |
---|
| 2102 | ! jyg2 |
---|
| 2103 | ELSE |
---|
| 2104 | fip(i) = 0. |
---|
| 2105 | END IF |
---|
| 2106 | END IF |
---|
| 2107 | END DO |
---|
[1146] | 2108 | |
---|
[1992] | 2109 | ! Limitation de sigmaw |
---|
| 2110 | |
---|
| 2111 | ! cc nrlmd |
---|
| 2112 | ! DO i=1,klon |
---|
| 2113 | ! IF (OK_qx_qw(i)) THEN |
---|
| 2114 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 2115 | ! ENDIF |
---|
| 2116 | ! ENDDO |
---|
| 2117 | ! cc |
---|
[3208] | 2118 | |
---|
| 2119 | !jyg< |
---|
| 2120 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2121 | DO i = 1, klon |
---|
| 2122 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2123 | .NOT. ok_qx_qw(i) .OR. (wdens(i) < 2.*wdensmin) |
---|
| 2124 | ENDDO |
---|
| 2125 | ELSE ! (iflag_wk_pop_dyn >= 1) |
---|
| 2126 | DO i = 1, klon |
---|
| 2127 | kill_wake(i) = ((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2128 | .NOT. ok_qx_qw(i) |
---|
| 2129 | ENDDO |
---|
| 2130 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2131 | !>jyg |
---|
| 2132 | |
---|
[1992] | 2133 | DO k = 1, klev |
---|
| 2134 | DO i = 1, klon |
---|
[3208] | 2135 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2136 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2137 | IF (kill_wake(i)) THEN |
---|
[1992] | 2138 | ! cc |
---|
| 2139 | dtls(i, k) = 0. |
---|
| 2140 | dqls(i, k) = 0. |
---|
| 2141 | deltatw(i, k) = 0. |
---|
| 2142 | deltaqw(i, k) = 0. |
---|
[2635] | 2143 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 2144 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[3208] | 2145 | END IF ! (kill_wake(i)) |
---|
[1992] | 2146 | END DO |
---|
| 2147 | END DO |
---|
| 2148 | |
---|
| 2149 | DO i = 1, klon |
---|
[3208] | 2150 | !!jyg IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=wapecut)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 2151 | !!jyg .NOT. ok_qx_qw(i)) THEN |
---|
| 2152 | IF (kill_wake(i)) THEN |
---|
[2635] | 2153 | ktopw(i) = 0 |
---|
[1992] | 2154 | wape(i) = 0. |
---|
| 2155 | cstar(i) = 0. |
---|
[3208] | 2156 | !!jyg Outside subroutine "Wake" hw, wdens and sigmaw are zero when there are no wakes |
---|
[2308] | 2157 | !! hw(i) = hwmin !jyg |
---|
| 2158 | !! sigmaw(i) = sigmad !jyg |
---|
| 2159 | hw(i) = 0. !jyg |
---|
[1992] | 2160 | fip(i) = 0. |
---|
[3208] | 2161 | !! sigmaw(i) = 0. !jyg |
---|
| 2162 | sigmaw_targ = 0. |
---|
| 2163 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 2164 | sigmaw(i) = sigmaw_targ |
---|
| 2165 | IF (iflag_wk_pop_dyn >= 1) THEN |
---|
| 2166 | !! awdens(i) = 0. |
---|
| 2167 | !! wdens(i) = 0. |
---|
| 2168 | wdens_targ = 0. |
---|
| 2169 | d_wdens2(i) = wdens_targ - wdens(i) |
---|
| 2170 | wdens(i) = wdens_targ |
---|
| 2171 | wdens_targ = 0. |
---|
| 2172 | d_awdens2(i) = wdens_targ - awdens(i) |
---|
| 2173 | awdens(i) = wdens_targ |
---|
| 2174 | ENDIF ! (iflag_wk_pop_dyn >= 1) |
---|
| 2175 | ELSE ! (kill_wake(i)) |
---|
[1992] | 2176 | wape(i) = wape2(i) |
---|
| 2177 | cstar(i) = cstar2(i) |
---|
[3208] | 2178 | END IF ! (kill_wake(i)) |
---|
[1992] | 2179 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 2180 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 2181 | END DO |
---|
| 2182 | |
---|
[2671] | 2183 | IF (prt_level>=10) THEN |
---|
| 2184 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
| 2185 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
| 2186 | ENDIF |
---|
| 2187 | |
---|
| 2188 | |
---|
[2635] | 2189 | ! ----------------------------------------------------------------- |
---|
| 2190 | ! Get back to tendencies per second |
---|
[1992] | 2191 | |
---|
[2635] | 2192 | DO k = 1, klev |
---|
| 2193 | DO i = 1, klon |
---|
| 2194 | |
---|
| 2195 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
[2759] | 2196 | !jyg< |
---|
| 2197 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 2198 | IF (ok_qx_qw(i)) THEN |
---|
| 2199 | !>jyg |
---|
[2635] | 2200 | ! cc |
---|
| 2201 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 2202 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 2203 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 2204 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 2205 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 2206 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 2207 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 2208 | END IF |
---|
| 2209 | END DO |
---|
| 2210 | END DO |
---|
| 2211 | !jyg< |
---|
| 2212 | DO i = 1, klon |
---|
| 2213 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
[3208] | 2214 | d_awdens2(i) = d_awdens2(i)/dtime |
---|
[2635] | 2215 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
| 2216 | ENDDO |
---|
| 2217 | !>jyg |
---|
| 2218 | |
---|
| 2219 | |
---|
| 2220 | |
---|
[1992] | 2221 | RETURN |
---|
| 2222 | END SUBROUTINE wake |
---|
| 2223 | |
---|
| 2224 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 2225 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 2226 | ! ------------------------------------------------------ |
---|
| 2227 | ! Dtermination du coefficient alpha tel que les tendances |
---|
| 2228 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 2229 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 2230 | ! ------------------------------------------------------ |
---|
[2197] | 2231 | IMPLICIT NONE |
---|
[1992] | 2232 | |
---|
| 2233 | ! Input |
---|
| 2234 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 2235 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 2236 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 2237 | LOGICAL wk_adv(nlon) |
---|
| 2238 | INTEGER nl, nlon |
---|
| 2239 | ! Output |
---|
| 2240 | REAL alpha(nlon) |
---|
| 2241 | ! Internal variables |
---|
| 2242 | REAL zeta(nlon, nl) |
---|
| 2243 | REAL alpha1(nlon) |
---|
| 2244 | REAL x, a, b, c, discrim |
---|
| 2245 | REAL epsilon |
---|
| 2246 | ! DATA epsilon/1.e-15/ |
---|
[2197] | 2247 | INTEGER i,k |
---|
[1992] | 2248 | |
---|
| 2249 | DO k = 1, nl |
---|
| 2250 | DO i = 1, nlon |
---|
| 2251 | IF (wk_adv(i)) THEN |
---|
| 2252 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 2253 | zeta(i, k) = 0. |
---|
[1146] | 2254 | ELSE |
---|
[1992] | 2255 | zeta(i, k) = 1. |
---|
[1146] | 2256 | END IF |
---|
[1992] | 2257 | END IF |
---|
| 2258 | END DO |
---|
| 2259 | DO i = 1, nlon |
---|
| 2260 | IF (wk_adv(i)) THEN |
---|
| 2261 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
[2635] | 2262 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
| 2263 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
[1992] | 2264 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 2265 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 2266 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 2267 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 2268 | discrim = b*b - 4.*a*c |
---|
| 2269 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 2270 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 2271 | alpha1(i) = 1. |
---|
[1146] | 2272 | ELSE |
---|
[1992] | 2273 | IF (x>=0.) THEN |
---|
| 2274 | alpha1(i) = 1. |
---|
| 2275 | ELSE |
---|
| 2276 | IF (a>0.) THEN |
---|
[2635] | 2277 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2278 | (-b+sqrt(discrim))/(2.*a) ) |
---|
[1992] | 2279 | ELSE IF (a==0.) THEN |
---|
| 2280 | alpha1(i) = 0.9*(-c/b) |
---|
| 2281 | ELSE |
---|
| 2282 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
[2635] | 2283 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2284 | (-b+sqrt(discrim))/(2.*a)) |
---|
[1992] | 2285 | END IF |
---|
| 2286 | END IF |
---|
| 2287 | END IF |
---|
| 2288 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 2289 | END IF |
---|
| 2290 | END DO |
---|
| 2291 | END DO |
---|
[1146] | 2292 | |
---|
[1992] | 2293 | RETURN |
---|
| 2294 | END SUBROUTINE wake_vec_modulation |
---|
[974] | 2295 | |
---|
[879] | 2296 | |
---|
[2635] | 2297 | |
---|
| 2298 | |
---|