1 | ! |
---|
2 | ! $Id: aer_sedimnt.F90 3605 2019-11-21 15:43:45Z lguez $ |
---|
3 | ! |
---|
4 | SUBROUTINE AER_SEDIMNT(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) |
---|
5 | |
---|
6 | !**** *AER_SEDIMNT* - ROUTINE FOR PARAMETRIZATION OF AEROSOL SEDIMENTATION |
---|
7 | |
---|
8 | ! Christoph Kleinschmitt |
---|
9 | ! based on the sedimentation scheme of |
---|
10 | ! Olivier Boucher & Jean-Jacques Morcrette |
---|
11 | ! (following the ice sedimentation scheme of Adrian Tompkins) |
---|
12 | |
---|
13 | !** INTERFACE. |
---|
14 | ! ---------- |
---|
15 | ! *AER_SEDIMNT* IS CALLED FROM *traccoag_mod*. |
---|
16 | |
---|
17 | !----------------------------------------------------------------------- |
---|
18 | |
---|
19 | USE phys_local_var_mod, ONLY: mdw, budg_sed_part, DENSO4, f_r_wet, vsed_aer |
---|
20 | USE dimphy, ONLY : klon,klev |
---|
21 | USE infotrac |
---|
22 | USE aerophys |
---|
23 | USE YOMCST |
---|
24 | |
---|
25 | IMPLICIT NONE |
---|
26 | |
---|
27 | !----------------------------------------------------------------------- |
---|
28 | |
---|
29 | ! transfer variables when calling this routine |
---|
30 | REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) |
---|
31 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
32 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
33 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) |
---|
34 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT):: tr_seri ! Concentration Traceur [U/KgA] |
---|
35 | REAL,DIMENSION(klon,klev) :: dens_aer! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass |
---|
36 | |
---|
37 | ! local variables in sedimentation routine |
---|
38 | INTEGER :: JL,JK,nb |
---|
39 | REAL,DIMENSION(klon,klev) :: zvis ! dynamic viscosity of air [kg/(m*s)] |
---|
40 | REAL,DIMENSION(klon,klev) :: zlair ! mean free path of air [m] |
---|
41 | REAL :: ZRHO ! air density [kg/m^3] |
---|
42 | REAL :: ZGDP ! =g/dp=1/(rho*dz) |
---|
43 | REAL :: ZDTGDP ! =dt/(rho*dz) |
---|
44 | REAL,DIMENSION(klon,nbtr_bin) :: ZSEDFLX ! sedimentation flux of tracer [U/(m^2*s)] |
---|
45 | REAL,DIMENSION(nbtr_bin) :: ZAERONW ! tracer concentration at current time step [U/KgA] |
---|
46 | REAL,DIMENSION(klon,nbtr_bin) :: ZAERONWM1! tracer concentration at preceding time step [U/KgA] |
---|
47 | REAL,DIMENSION(klon,klev,nbtr_bin) :: ZVAER ! sedimentation velocity [m/s] |
---|
48 | REAL,DIMENSION(nbtr_bin) :: ZSOLAERS ! sedimentation flux arriving from above [U/(m^2*s)] |
---|
49 | REAL,DIMENSION(nbtr_bin) :: ZSOLAERB ! sedimentation flux leaving gridbox [U/(m^2*s)] |
---|
50 | REAL,DIMENSION(klon,klev) :: m_sulf |
---|
51 | |
---|
52 | ! dynamic viscosity of air (Pruppacher and Klett, 1978) [kg/(m*s)] |
---|
53 | WHERE (t_seri.GE.273.15) |
---|
54 | zvis=(1.718 + 0.0049*(t_seri-273.15))*1.E-5 |
---|
55 | ELSEWHERE |
---|
56 | zvis=(1.718 + 0.0049*(t_seri-273.15)-1.2E-05*(t_seri-273.15)**2)*1.E-5 |
---|
57 | END WHERE |
---|
58 | |
---|
59 | ! mean free path of air (Prupp. Klett) [m] |
---|
60 | zlair(:,:) = 0.066 *(1.01325E+5/pplay(:,:))*(t_seri(:,:)/293.15)*1.E-06 |
---|
61 | |
---|
62 | !--initialisations of variables carried out from one layer to the next layer |
---|
63 | !--actually not needed if (JK>1) test is on |
---|
64 | DO JL=1,klon |
---|
65 | DO nb=1,nbtr_bin |
---|
66 | ZSEDFLX(JL,nb)=0.0 |
---|
67 | ZAERONWM1(JL,nb)=0.0 |
---|
68 | ENDDO |
---|
69 | ENDDO |
---|
70 | |
---|
71 | !--from top to bottom (!) |
---|
72 | DO JK=klev,1,-1 |
---|
73 | DO JL=1,klon |
---|
74 | DO nb=1,nbtr_bin |
---|
75 | !--initialisations |
---|
76 | ZSOLAERS(nb)=0.0 |
---|
77 | ZSOLAERB(nb)=0.0 |
---|
78 | ZGDP=RG/(paprs(JL,JK)-paprs(JL,JK+1)) |
---|
79 | ZDTGDP=pdtphys*ZGDP |
---|
80 | |
---|
81 | ! source from above |
---|
82 | IF (JK<klev) THEN |
---|
83 | ZSEDFLX(JL,nb)=ZSEDFLX(JL,nb)*ZAERONWM1(JL,nb) |
---|
84 | ZSOLAERS(nb)=ZSOLAERS(nb)+ZSEDFLX(JL,nb)*ZDTGDP |
---|
85 | ENDIF |
---|
86 | |
---|
87 | ! sink to next layer |
---|
88 | ZRHO=pplay(JL,JK)/(RD*t_seri(JL,JK)) |
---|
89 | |
---|
90 | ! stokes-velocity with cunnigham slip- flow correction |
---|
91 | ZVAER(JL,JK,nb) = 2./9.*(DENSO4(JL,JK)*1000.-ZRHO)*RG/zvis(JL,JK)*(f_r_wet(JL,JK)*mdw(nb)/2.)**2.* & |
---|
92 | (1.+ 2.*zlair(JL,JK)/(f_r_wet(JL,JK)*mdw(nb))*(1.257+0.4*EXP(-0.55*f_r_wet(JL,JK)*mdw(nb)/zlair(JL,JK)))) |
---|
93 | |
---|
94 | ZSEDFLX(JL,nb)=ZVAER(JL,JK,nb)*ZRHO |
---|
95 | ZSOLAERB(nb)=ZSOLAERB(nb)+ZDTGDP*ZSEDFLX(JL,nb) |
---|
96 | |
---|
97 | !---implicit solver |
---|
98 | ZAERONW(nb)=(tr_seri(JL,JK,nb+nbtr_sulgas)+ZSOLAERS(nb))/(1.0+ZSOLAERB(nb)) |
---|
99 | |
---|
100 | !---new time-step AER variable needed for next layer |
---|
101 | ZAERONWM1(JL,nb)=ZAERONW(nb) |
---|
102 | |
---|
103 | tr_seri(JL,JK,nb+nbtr_sulgas)=ZAERONWM1(JL,nb) |
---|
104 | ENDDO |
---|
105 | ENDDO |
---|
106 | ENDDO |
---|
107 | |
---|
108 | !---sedimentation flux to the surface |
---|
109 | !---ZAERONWM1 now contains the surface concentration at the new timestep |
---|
110 | !---PFLUXAER in unit of xx m-2 s-1 |
---|
111 | budg_sed_part(:)=0.0 |
---|
112 | DO JL=1,klon |
---|
113 | ZRHO=pplay(JL,1)/(RD*t_seri(JL,1)) |
---|
114 | DO nb=1,nbtr_bin |
---|
115 | !compute budg_sed_part as sum over bins in kg(S)/m2/s |
---|
116 | budg_sed_part(JL)=budg_sed_part(JL)+ZRHO*ZAERONWM1(JL,nb)*ZVAER(JL,1,nb)*(mSatom/mH2SO4mol) & |
---|
117 | & *dens_aer_dry*4./3.*RPI*(mdw(nb)/2.)**3 |
---|
118 | ENDDO |
---|
119 | ENDDO |
---|
120 | |
---|
121 | vsed_aer(:,:)=0.0 |
---|
122 | m_sulf(:,:)=0.0 |
---|
123 | |
---|
124 | DO nb=1,nbtr_bin |
---|
125 | !compute mass-weighted mean of sedimentation velocity |
---|
126 | vsed_aer(:,:)=vsed_aer(:,:)+ZVAER(:,:,nb)*(mdw(nb)/2.)**3*MAX(1.e-30, tr_seri(:,:,nb+nbtr_sulgas)) |
---|
127 | m_sulf(:,:)=m_sulf(:,:)+(mdw(nb)/2.)**3*MAX(1.e-30, tr_seri(:,:,nb+nbtr_sulgas)) |
---|
128 | ENDDO |
---|
129 | |
---|
130 | !divide by total aerosol mass in grid cell |
---|
131 | vsed_aer(:,:)=vsed_aer(:,:)/m_sulf(:,:) |
---|
132 | |
---|
133 | END SUBROUTINE AER_SEDIMNT |
---|