1 | MODULE phyaqua_mod |
---|
2 | ! Routines complementaires pour la physique planetaire. |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE iniaqua(nlon, latfi, lonfi, iflag_phys) |
---|
8 | |
---|
9 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
10 | ! Creation d'un etat initial et de conditions aux limites |
---|
11 | ! (resp startphy.nc et limit.nc) pour des configurations idealisees |
---|
12 | ! du modele LMDZ dans sa version terrestre. |
---|
13 | ! iflag_phys est un parametre qui controle |
---|
14 | ! iflag_phys = N |
---|
15 | ! de 100 a 199 : aqua planetes avec SST forcees |
---|
16 | ! N-100 determine le type de SSTs |
---|
17 | ! de 200 a 299 : terra planetes avec Ts calcule |
---|
18 | |
---|
19 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
20 | |
---|
21 | USE comgeomphy, ONLY: rlatd, rlond |
---|
22 | USE dimphy, ONLY: klon |
---|
23 | USE surface_data, ONLY: type_ocean, ok_veget |
---|
24 | USE pbl_surface_mod, ONLY: pbl_surface_init |
---|
25 | USE fonte_neige_mod, ONLY: fonte_neige_init |
---|
26 | USE phys_state_var_mod |
---|
27 | USE control_mod, ONLY: dayref, nday, iphysiq |
---|
28 | USE indice_sol_mod |
---|
29 | |
---|
30 | USE ioipsl |
---|
31 | IMPLICIT NONE |
---|
32 | |
---|
33 | include "dimensions.h" |
---|
34 | ! #include "dimphy.h" |
---|
35 | ! #include "YOMCST.h" |
---|
36 | include "comconst.h" |
---|
37 | include "clesphys.h" |
---|
38 | include "dimsoil.h" |
---|
39 | include "temps.h" |
---|
40 | |
---|
41 | INTEGER, INTENT (IN) :: nlon, iflag_phys |
---|
42 | ! IM ajout latfi, lonfi |
---|
43 | REAL, INTENT (IN) :: lonfi(nlon), latfi(nlon) |
---|
44 | |
---|
45 | INTEGER type_profil, type_aqua |
---|
46 | |
---|
47 | ! Ajouts initialisation des surfaces |
---|
48 | REAL :: run_off_lic_0(nlon) |
---|
49 | REAL :: qsolsrf(nlon, nbsrf), snsrf(nlon, nbsrf) |
---|
50 | REAL :: frugs(nlon, nbsrf) |
---|
51 | REAL :: agesno(nlon, nbsrf) |
---|
52 | REAL :: tsoil(nlon, nsoilmx, nbsrf) |
---|
53 | REAL :: tslab(nlon), seaice(nlon) |
---|
54 | REAL evap(nlon, nbsrf), fder(nlon) |
---|
55 | |
---|
56 | |
---|
57 | |
---|
58 | ! Arguments : |
---|
59 | ! ----------- |
---|
60 | |
---|
61 | ! integer radpas |
---|
62 | INTEGER it, unit, i, k, itap |
---|
63 | |
---|
64 | REAL airefi, zcufi, zcvfi |
---|
65 | |
---|
66 | REAL rugos, albedo |
---|
67 | REAL tsurf |
---|
68 | REAL time, timestep, day, day0 |
---|
69 | REAL qsol_f, qsol(nlon) |
---|
70 | REAL rugsrel(nlon) |
---|
71 | ! real zmea(nlon),zstd(nlon),zsig(nlon) |
---|
72 | ! real zgam(nlon),zthe(nlon),zpic(nlon),zval(nlon) |
---|
73 | ! real rlon(nlon),rlat(nlon) |
---|
74 | LOGICAL alb_ocean |
---|
75 | ! integer demih_pas |
---|
76 | |
---|
77 | CHARACTER *80 ans, file_forctl, file_fordat, file_start |
---|
78 | CHARACTER *100 file, var |
---|
79 | CHARACTER *2 cnbl |
---|
80 | |
---|
81 | REAL phy_nat(nlon, 360) |
---|
82 | REAL phy_alb(nlon, 360) |
---|
83 | REAL phy_sst(nlon, 360) |
---|
84 | REAL phy_bil(nlon, 360) |
---|
85 | REAL phy_rug(nlon, 360) |
---|
86 | REAL phy_ice(nlon, 360) |
---|
87 | REAL phy_fter(nlon, 360) |
---|
88 | REAL phy_foce(nlon, 360) |
---|
89 | REAL phy_fsic(nlon, 360) |
---|
90 | REAL phy_flic(nlon, 360) |
---|
91 | |
---|
92 | INTEGER, SAVE :: read_climoz = 0 ! read ozone climatology |
---|
93 | |
---|
94 | ! intermediate variables to use getin (need to be "save" to be shared by |
---|
95 | ! all threads) |
---|
96 | INTEGER, SAVE :: nbapp_rad_omp |
---|
97 | REAL, SAVE :: co2_ppm_omp, solaire_omp |
---|
98 | LOGICAL, SAVE :: alb_ocean_omp |
---|
99 | REAL, SAVE :: rugos_omp |
---|
100 | ! ------------------------------------------------------------------------- |
---|
101 | ! declaration pour l'appel a phyredem |
---|
102 | ! ------------------------------------------------------------------------- |
---|
103 | |
---|
104 | ! real pctsrf(nlon,nbsrf),ftsol(nlon,nbsrf) |
---|
105 | REAL falbe(nlon, nbsrf), falblw(nlon, nbsrf) |
---|
106 | ! real pbl_tke(nlon,llm,nbsrf) |
---|
107 | ! real rain_fall(nlon),snow_fall(nlon) |
---|
108 | ! real solsw(nlon), sollw(nlon),radsol(nlon) |
---|
109 | ! real t_ancien(nlon,llm),q_ancien(nlon,llm),rnebcon(nlon,llm) |
---|
110 | ! real ratqs(nlon,llm) |
---|
111 | ! real clwcon(nlon,llm) |
---|
112 | |
---|
113 | INTEGER longcles |
---|
114 | PARAMETER (longcles=20) |
---|
115 | REAL clesphy0(longcles) |
---|
116 | |
---|
117 | |
---|
118 | ! ----------------------------------------------------------------------- |
---|
119 | ! dynamial tendencies : |
---|
120 | ! --------------------- |
---|
121 | |
---|
122 | INTEGER l, ierr, aslun |
---|
123 | |
---|
124 | REAL longitude, latitude |
---|
125 | REAL paire |
---|
126 | |
---|
127 | DATA latitude, longitude/48., 0./ |
---|
128 | |
---|
129 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
130 | ! INITIALISATIONS |
---|
131 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
132 | |
---|
133 | ! ----------------------------------------------------------------------- |
---|
134 | ! Initialisations des constantes |
---|
135 | ! ------------------------------- |
---|
136 | |
---|
137 | |
---|
138 | type_aqua = iflag_phys/100 |
---|
139 | type_profil = iflag_phys - type_aqua*100 |
---|
140 | PRINT *, 'iniaqua:type_aqua, type_profil', type_aqua, type_profil |
---|
141 | |
---|
142 | IF (klon/=nlon) THEN |
---|
143 | WRITE (*, *) 'iniaqua: klon=', klon, ' nlon=', nlon |
---|
144 | STOP 'probleme de dimensions dans iniaqua' |
---|
145 | END IF |
---|
146 | CALL phys_state_var_init(read_climoz) |
---|
147 | |
---|
148 | |
---|
149 | read_climoz = 0 |
---|
150 | day0 = 217. |
---|
151 | day = day0 |
---|
152 | it = 0 |
---|
153 | time = 0. |
---|
154 | |
---|
155 | ! IM ajout latfi, lonfi |
---|
156 | rlatd = latfi |
---|
157 | rlond = lonfi |
---|
158 | rlat = rlatd*180./pi |
---|
159 | rlon = rlond*180./pi |
---|
160 | |
---|
161 | ! ----------------------------------------------------------------------- |
---|
162 | ! initialisations de la physique |
---|
163 | ! ----------------------------------------------------------------------- |
---|
164 | |
---|
165 | day_ini = dayref |
---|
166 | day_end = day_ini + nday |
---|
167 | airefi = 1. |
---|
168 | zcufi = 1. |
---|
169 | zcvfi = 1. |
---|
170 | !$OMP MASTER |
---|
171 | nbapp_rad_omp = 24 |
---|
172 | CALL getin('nbapp_rad', nbapp_rad_omp) |
---|
173 | !$OMP END MASTER |
---|
174 | !$OMP BARRIER |
---|
175 | nbapp_rad = nbapp_rad_omp |
---|
176 | |
---|
177 | ! --------------------------------------------------------------------- |
---|
178 | ! Creation des conditions aux limites: |
---|
179 | ! ------------------------------------ |
---|
180 | ! Initialisations des constantes |
---|
181 | ! Ajouter les manquants dans planete.def... (albedo etc) |
---|
182 | !$OMP MASTER |
---|
183 | co2_ppm_omp = 348. |
---|
184 | CALL getin('co2_ppm', co2_ppm_omp) |
---|
185 | solaire_omp = 1365. |
---|
186 | CALL getin('solaire', solaire_omp) |
---|
187 | ! CALL getin('albedo',albedo) ! albedo is set below, depending on |
---|
188 | ! type_aqua |
---|
189 | alb_ocean_omp = .TRUE. |
---|
190 | CALL getin('alb_ocean', alb_ocean_omp) |
---|
191 | !$OMP END MASTER |
---|
192 | !$OMP BARRIER |
---|
193 | co2_ppm = co2_ppm_omp |
---|
194 | WRITE (*, *) 'iniaqua: co2_ppm=', co2_ppm |
---|
195 | solaire = solaire_omp |
---|
196 | WRITE (*, *) 'iniaqua: solaire=', solaire |
---|
197 | alb_ocean = alb_ocean_omp |
---|
198 | WRITE (*, *) 'iniaqua: alb_ocean=', alb_ocean |
---|
199 | |
---|
200 | radsol = 0. |
---|
201 | qsol_f = 10. |
---|
202 | |
---|
203 | ! Conditions aux limites: |
---|
204 | ! ----------------------- |
---|
205 | |
---|
206 | qsol(:) = qsol_f |
---|
207 | rugsrel = 0.0 ! (rugsrel = rugoro) |
---|
208 | rugoro = 0.0 |
---|
209 | u_ancien = 0.0 |
---|
210 | v_ancien = 0.0 |
---|
211 | agesno = 50.0 |
---|
212 | ! Relief plat |
---|
213 | zmea = 0. |
---|
214 | zstd = 0. |
---|
215 | zsig = 0. |
---|
216 | zgam = 0. |
---|
217 | zthe = 0. |
---|
218 | zpic = 0. |
---|
219 | zval = 0. |
---|
220 | |
---|
221 | ! Une seule surface |
---|
222 | pctsrf = 0. |
---|
223 | IF (type_aqua==1) THEN |
---|
224 | rugos = 1.E-4 |
---|
225 | albedo = 0.19 |
---|
226 | pctsrf(:, is_oce) = 1. |
---|
227 | ELSE IF (type_aqua==2) THEN |
---|
228 | rugos = 0.03 |
---|
229 | albedo = 0.1 |
---|
230 | pctsrf(:, is_ter) = 1. |
---|
231 | END IF |
---|
232 | |
---|
233 | !$OMP MASTER |
---|
234 | rugos_omp = rugos |
---|
235 | CALL getin('rugos', rugos_omp) |
---|
236 | !$OMP END MASTER |
---|
237 | !$OMP BARRIER |
---|
238 | rugos = rugos_omp |
---|
239 | WRITE (*, *) 'iniaqua: rugos=', rugos |
---|
240 | zmasq(:) = pctsrf(:, is_ter) |
---|
241 | |
---|
242 | ! pctsrf_pot(:,is_oce) = 1. - zmasq(:) |
---|
243 | ! pctsrf_pot(:,is_sic) = 1. - zmasq(:) |
---|
244 | |
---|
245 | ! Si alb_ocean on calcule un albedo oceanique moyen |
---|
246 | ! if (alb_ocean) then |
---|
247 | ! Voir pourquoi on avait ca. |
---|
248 | ! CALL ini_alb_oce(phy_alb) |
---|
249 | ! else |
---|
250 | phy_alb(:, :) = albedo ! albedo land only (old value condsurf_jyg=0.3) |
---|
251 | ! endif !alb_ocean |
---|
252 | |
---|
253 | DO i = 1, 360 |
---|
254 | ! IM Terraplanete phy_sst(:,i) = 260.+50.*cos(rlatd(:))**2 |
---|
255 | ! IM ajout calcul profil sst selon le cas considere (cf. FBr) |
---|
256 | |
---|
257 | phy_nat(:, i) = 1.0 ! 0=ocean libre, 1=land, 2=glacier, 3=banquise |
---|
258 | phy_bil(:, i) = 1.0 ! ne sert que pour les slab_ocean |
---|
259 | phy_rug(:, i) = rugos ! longueur rugosite utilisee sur land only |
---|
260 | phy_ice(:, i) = 0.0 ! fraction de glace (?) |
---|
261 | phy_fter(:, i) = pctsrf(:, is_ter) ! fraction de glace (?) |
---|
262 | phy_foce(:, i) = pctsrf(:, is_oce) ! fraction de glace (?) |
---|
263 | phy_fsic(:, i) = pctsrf(:, is_sic) ! fraction de glace (?) |
---|
264 | phy_flic(:, i) = pctsrf(:, is_lic) ! fraction de glace (?) |
---|
265 | END DO |
---|
266 | ! IM calcul profil sst |
---|
267 | CALL profil_sst(nlon, rlatd, type_profil, phy_sst) |
---|
268 | |
---|
269 | CALL writelim(klon, phy_nat, phy_alb, phy_sst, phy_bil, phy_rug, phy_ice, & |
---|
270 | phy_fter, phy_foce, phy_flic, phy_fsic) |
---|
271 | |
---|
272 | |
---|
273 | ! --------------------------------------------------------------------- |
---|
274 | ! Ecriture de l'etat initial: |
---|
275 | ! --------------------------- |
---|
276 | |
---|
277 | |
---|
278 | ! Ecriture etat initial physique |
---|
279 | |
---|
280 | timestep = dtvr*float(iphysiq) |
---|
281 | radpas = nint(daysec/timestep/float(nbapp_rad)) |
---|
282 | |
---|
283 | DO i = 1, longcles |
---|
284 | clesphy0(i) = 0. |
---|
285 | END DO |
---|
286 | clesphy0(1) = float(iflag_con) |
---|
287 | clesphy0(2) = float(nbapp_rad) |
---|
288 | ! IF( cycle_diurne ) clesphy0(3) = 1. |
---|
289 | clesphy0(3) = 1. ! cycle_diurne |
---|
290 | clesphy0(4) = 1. ! soil_model |
---|
291 | clesphy0(5) = 1. ! new_oliq |
---|
292 | clesphy0(6) = 0. ! ok_orodr |
---|
293 | clesphy0(7) = 0. ! ok_orolf |
---|
294 | clesphy0(8) = 0. ! ok_limitvrai |
---|
295 | |
---|
296 | |
---|
297 | ! ======================================================================= |
---|
298 | ! Profils initiaux |
---|
299 | ! ======================================================================= |
---|
300 | |
---|
301 | ! On initialise les temperatures de surfaces comme les sst |
---|
302 | DO i = 1, nlon |
---|
303 | ftsol(i, :) = phy_sst(i, 1) |
---|
304 | tsoil(i, :, :) = phy_sst(i, 1) |
---|
305 | tslab(i) = phy_sst(i, 1) |
---|
306 | END DO |
---|
307 | |
---|
308 | falbe(:, :) = albedo |
---|
309 | falblw(:, :) = albedo |
---|
310 | rain_fall(:) = 0. |
---|
311 | snow_fall(:) = 0. |
---|
312 | solsw(:) = 0. |
---|
313 | sollw(:) = 0. |
---|
314 | radsol(:) = 0. |
---|
315 | |
---|
316 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
317 | ! intialisation bidon mais pas grave |
---|
318 | t_ancien(:, :) = 0. |
---|
319 | q_ancien(:, :) = 0. |
---|
320 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
321 | rnebcon = 0. |
---|
322 | ratqs = 0. |
---|
323 | clwcon = 0. |
---|
324 | pbl_tke = 1.E-8 |
---|
325 | |
---|
326 | ! variables supplementaires pour appel a plb_surface_init |
---|
327 | fder(:) = 0. |
---|
328 | seaice(:) = 0. |
---|
329 | run_off_lic_0 = 0. |
---|
330 | evap = 0. |
---|
331 | |
---|
332 | |
---|
333 | ! Initialisations necessaires avant phyredem |
---|
334 | type_ocean = 'force' |
---|
335 | CALL fonte_neige_init(run_off_lic_0) |
---|
336 | qsolsrf(:, :) = qsol(1) ! humidite du sol des sous surface |
---|
337 | snsrf(:, :) = 0. ! couverture de neige des sous surface |
---|
338 | frugs(:, :) = rugos ! couverture de neige des sous surface |
---|
339 | |
---|
340 | |
---|
341 | CALL pbl_surface_init(qsol, fder, snsrf, qsolsrf, evap, frugs, agesno, & |
---|
342 | tsoil) |
---|
343 | |
---|
344 | PRINT *, 'iniaqua: before phyredem' |
---|
345 | |
---|
346 | falb1 = albedo |
---|
347 | falb2 = albedo |
---|
348 | zmax0 = 0. |
---|
349 | f0 = 0. |
---|
350 | sig1 = 0. |
---|
351 | w01 = 0. |
---|
352 | wake_deltat = 0. |
---|
353 | wake_deltaq = 0. |
---|
354 | wake_s = 0. |
---|
355 | wake_cstar = 0. |
---|
356 | wake_pe = 0. |
---|
357 | wake_fip = 0. |
---|
358 | fm_therm = 0. |
---|
359 | entr_therm = 0. |
---|
360 | detr_therm = 0. |
---|
361 | |
---|
362 | |
---|
363 | CALL phyredem('startphy.nc') |
---|
364 | |
---|
365 | PRINT *, 'iniaqua: after phyredem' |
---|
366 | CALL phys_state_var_end |
---|
367 | |
---|
368 | RETURN |
---|
369 | END SUBROUTINE iniaqua |
---|
370 | |
---|
371 | |
---|
372 | ! ==================================================================== |
---|
373 | ! ==================================================================== |
---|
374 | SUBROUTINE zenang_an(cycle_diurne, gmtime, rlat, rlon, rmu0, fract) |
---|
375 | USE dimphy |
---|
376 | IMPLICIT NONE |
---|
377 | ! ==================================================================== |
---|
378 | ! ============================================================= |
---|
379 | ! CALL zenang(cycle_diurne,gmtime,rlat,rlon,rmu0,fract) |
---|
380 | ! Auteur : A. Campoy et F. Hourdin |
---|
381 | ! Objet : calculer les valeurs moyennes du cos de l'angle zenithal |
---|
382 | ! et l'ensoleillement moyen entre gmtime1 et gmtime2 |
---|
383 | ! connaissant la declinaison, la latitude et la longitude. |
---|
384 | |
---|
385 | ! Dans cette version particuliere, on calcule le rayonnement |
---|
386 | ! moyen sur l'année à chaque latitude. |
---|
387 | ! angle zenithal calculé pour obtenir un |
---|
388 | ! Fit polynomial de l'ensoleillement moyen au sommet de l'atmosphere |
---|
389 | ! en moyenne annuelle. |
---|
390 | ! Spécifique de la terre. Utilisé pour les aqua planetes. |
---|
391 | |
---|
392 | ! Rque : Different de la routine angle en ce sens que zenang |
---|
393 | ! fournit des moyennes de pmu0 et non des valeurs |
---|
394 | ! instantanees, du coup frac prend toutes les valeurs |
---|
395 | ! entre 0 et 1. |
---|
396 | ! Date : premiere version le 13 decembre 1994 |
---|
397 | ! revu pour GCM le 30 septembre 1996 |
---|
398 | ! =============================================================== |
---|
399 | ! longi----INPUT : la longitude vraie de la terre dans son plan |
---|
400 | ! solaire a partir de l'equinoxe de printemps (degre) |
---|
401 | ! gmtime---INPUT : temps universel en fraction de jour |
---|
402 | ! pdtrad---INPUT : pas de temps du rayonnement (secondes) |
---|
403 | ! lat------INPUT : latitude en degres |
---|
404 | ! long-----INPUT : longitude en degres |
---|
405 | ! pmu0-----OUTPUT: angle zenithal moyen entre gmtime et gmtime+pdtrad |
---|
406 | ! frac-----OUTPUT: ensoleillement moyen entre gmtime et gmtime+pdtrad |
---|
407 | ! ================================================================ |
---|
408 | include "YOMCST.h" |
---|
409 | ! ================================================================ |
---|
410 | LOGICAL cycle_diurne |
---|
411 | REAL gmtime |
---|
412 | REAL rlat(klon), rlon(klon), rmu0(klon), fract(klon) |
---|
413 | ! ================================================================ |
---|
414 | INTEGER i |
---|
415 | REAL gmtime1, gmtime2 |
---|
416 | REAL pi_local |
---|
417 | |
---|
418 | |
---|
419 | REAL rmu0m(klon), rmu0a(klon) |
---|
420 | |
---|
421 | |
---|
422 | pi_local = 4.0*atan(1.0) |
---|
423 | |
---|
424 | ! ================================================================ |
---|
425 | ! Calcul de l'angle zenithal moyen sur la journee |
---|
426 | ! ================================================================ |
---|
427 | |
---|
428 | DO i = 1, klon |
---|
429 | fract(i) = 1. |
---|
430 | ! Calcule du flux moyen |
---|
431 | IF (abs(rlat(i))<=28.75) THEN |
---|
432 | rmu0m(i) = (210.1924+206.6059*cos(0.0174533*rlat(i))**2)/1365. |
---|
433 | ELSE IF (abs(rlat(i))<=43.75) THEN |
---|
434 | rmu0m(i) = (187.4562+236.1853*cos(0.0174533*rlat(i))**2)/1365. |
---|
435 | ELSE IF (abs(rlat(i))<=71.25) THEN |
---|
436 | rmu0m(i) = (162.4439+284.1192*cos(0.0174533*rlat(i))**2)/1365. |
---|
437 | ELSE |
---|
438 | rmu0m(i) = (172.8125+183.7673*cos(0.0174533*rlat(i))**2)/1365. |
---|
439 | END IF |
---|
440 | END DO |
---|
441 | |
---|
442 | ! ================================================================ |
---|
443 | ! Avec ou sans cycle diurne |
---|
444 | ! ================================================================ |
---|
445 | |
---|
446 | IF (cycle_diurne) THEN |
---|
447 | |
---|
448 | ! On redecompose flux au sommet suivant un cycle diurne idealise |
---|
449 | ! identique a toutes les latitudes. |
---|
450 | |
---|
451 | DO i = 1, klon |
---|
452 | rmu0a(i) = 2.*rmu0m(i)*sqrt(2.)*pi_local/(4.-pi_local) |
---|
453 | rmu0(i) = rmu0a(i)*abs(sin(pi_local*gmtime+pi_local*rlon(i)/360.)) - & |
---|
454 | rmu0a(i)/sqrt(2.) |
---|
455 | END DO |
---|
456 | |
---|
457 | DO i = 1, klon |
---|
458 | IF (rmu0(i)<=0.) THEN |
---|
459 | rmu0(i) = 0. |
---|
460 | fract(i) = 0. |
---|
461 | ELSE |
---|
462 | fract(i) = 1. |
---|
463 | END IF |
---|
464 | END DO |
---|
465 | |
---|
466 | ! Affichage de l'angel zenitale |
---|
467 | ! print*,'************************************' |
---|
468 | ! print*,'************************************' |
---|
469 | ! print*,'************************************' |
---|
470 | ! print*,'latitude=',rlat(i),'longitude=',rlon(i) |
---|
471 | ! print*,'rmu0m=',rmu0m(i) |
---|
472 | ! print*,'rmu0a=',rmu0a(i) |
---|
473 | ! print*,'rmu0=',rmu0(i) |
---|
474 | |
---|
475 | ELSE |
---|
476 | |
---|
477 | DO i = 1, klon |
---|
478 | fract(i) = 0.5 |
---|
479 | rmu0(i) = rmu0m(i)*2. |
---|
480 | END DO |
---|
481 | |
---|
482 | END IF |
---|
483 | |
---|
484 | RETURN |
---|
485 | END SUBROUTINE zenang_an |
---|
486 | |
---|
487 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
488 | |
---|
489 | SUBROUTINE writelim(klon, phy_nat, phy_alb, phy_sst, phy_bil, phy_rug, & |
---|
490 | phy_ice, phy_fter, phy_foce, phy_flic, phy_fsic) |
---|
491 | |
---|
492 | USE mod_phys_lmdz_para, ONLY: is_mpi_root, is_omp_root |
---|
493 | USE mod_grid_phy_lmdz, ONLY: klon_glo |
---|
494 | USE mod_phys_lmdz_transfert_para, ONLY: gather |
---|
495 | IMPLICIT NONE |
---|
496 | ! #include "dimensions.h" |
---|
497 | ! #include "dimphy.h" |
---|
498 | include "netcdf.inc" |
---|
499 | |
---|
500 | INTEGER, INTENT (IN) :: klon |
---|
501 | REAL, INTENT (IN) :: phy_nat(klon, 360) |
---|
502 | REAL, INTENT (IN) :: phy_alb(klon, 360) |
---|
503 | REAL, INTENT (IN) :: phy_sst(klon, 360) |
---|
504 | REAL, INTENT (IN) :: phy_bil(klon, 360) |
---|
505 | REAL, INTENT (IN) :: phy_rug(klon, 360) |
---|
506 | REAL, INTENT (IN) :: phy_ice(klon, 360) |
---|
507 | REAL, INTENT (IN) :: phy_fter(klon, 360) |
---|
508 | REAL, INTENT (IN) :: phy_foce(klon, 360) |
---|
509 | REAL, INTENT (IN) :: phy_flic(klon, 360) |
---|
510 | REAL, INTENT (IN) :: phy_fsic(klon, 360) |
---|
511 | |
---|
512 | REAL :: phy_glo(klon_glo, 360) ! temporary variable, to store phy_***(:) |
---|
513 | ! on the whole physics grid |
---|
514 | INTEGER :: k |
---|
515 | INTEGER ierr |
---|
516 | INTEGER dimfirst(3) |
---|
517 | INTEGER dimlast(3) |
---|
518 | |
---|
519 | INTEGER nid, ndim, ntim |
---|
520 | INTEGER dims(2), debut(2), epais(2) |
---|
521 | INTEGER id_tim |
---|
522 | INTEGER id_nat, id_sst, id_bils, id_rug, id_alb |
---|
523 | INTEGER id_fter, id_foce, id_fsic, id_flic |
---|
524 | |
---|
525 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
526 | |
---|
527 | PRINT *, 'writelim: Ecriture du fichier limit' |
---|
528 | |
---|
529 | ierr = nf_create('limit.nc', nf_clobber, nid) |
---|
530 | |
---|
531 | ierr = nf_put_att_text(nid, nf_global, 'title', 30, & |
---|
532 | 'Fichier conditions aux limites') |
---|
533 | ! ! ierr = NF_DEF_DIM (nid, "points_physiques", klon, ndim) |
---|
534 | ierr = nf_def_dim(nid, 'points_physiques', klon_glo, ndim) |
---|
535 | ierr = nf_def_dim(nid, 'time', nf_unlimited, ntim) |
---|
536 | |
---|
537 | dims(1) = ndim |
---|
538 | dims(2) = ntim |
---|
539 | |
---|
540 | #ifdef NC_DOUBLE |
---|
541 | ierr = nf_def_var(nid, 'TEMPS', nf_double, 1, ntim, id_tim) |
---|
542 | #else |
---|
543 | ierr = nf_def_var(nid, 'TEMPS', nf_float, 1, ntim, id_tim) |
---|
544 | #endif |
---|
545 | ierr = nf_put_att_text(nid, id_tim, 'title', 17, 'Jour dans l annee') |
---|
546 | |
---|
547 | #ifdef NC_DOUBLE |
---|
548 | ierr = nf_def_var(nid, 'NAT', nf_double, 2, dims, id_nat) |
---|
549 | #else |
---|
550 | ierr = nf_def_var(nid, 'NAT', nf_float, 2, dims, id_nat) |
---|
551 | #endif |
---|
552 | ierr = nf_put_att_text(nid, id_nat, 'title', 23, & |
---|
553 | 'Nature du sol (0,1,2,3)') |
---|
554 | |
---|
555 | #ifdef NC_DOUBLE |
---|
556 | ierr = nf_def_var(nid, 'SST', nf_double, 2, dims, id_sst) |
---|
557 | #else |
---|
558 | ierr = nf_def_var(nid, 'SST', nf_float, 2, dims, id_sst) |
---|
559 | #endif |
---|
560 | ierr = nf_put_att_text(nid, id_sst, 'title', 35, & |
---|
561 | 'Temperature superficielle de la mer') |
---|
562 | |
---|
563 | #ifdef NC_DOUBLE |
---|
564 | ierr = nf_def_var(nid, 'BILS', nf_double, 2, dims, id_bils) |
---|
565 | #else |
---|
566 | ierr = nf_def_var(nid, 'BILS', nf_float, 2, dims, id_bils) |
---|
567 | #endif |
---|
568 | ierr = nf_put_att_text(nid, id_bils, 'title', 32, & |
---|
569 | 'Reference flux de chaleur au sol') |
---|
570 | |
---|
571 | #ifdef NC_DOUBLE |
---|
572 | ierr = nf_def_var(nid, 'ALB', nf_double, 2, dims, id_alb) |
---|
573 | #else |
---|
574 | ierr = nf_def_var(nid, 'ALB', nf_float, 2, dims, id_alb) |
---|
575 | #endif |
---|
576 | ierr = nf_put_att_text(nid, id_alb, 'title', 19, 'Albedo a la surface') |
---|
577 | |
---|
578 | #ifdef NC_DOUBLE |
---|
579 | ierr = nf_def_var(nid, 'RUG', nf_double, 2, dims, id_rug) |
---|
580 | #else |
---|
581 | ierr = nf_def_var(nid, 'RUG', nf_float, 2, dims, id_rug) |
---|
582 | #endif |
---|
583 | ierr = nf_put_att_text(nid, id_rug, 'title', 8, 'Rugosite') |
---|
584 | |
---|
585 | #ifdef NC_DOUBLE |
---|
586 | ierr = nf_def_var(nid, 'FTER', nf_double, 2, dims, id_fter) |
---|
587 | #else |
---|
588 | ierr = nf_def_var(nid, 'FTER', nf_float, 2, dims, id_fter) |
---|
589 | #endif |
---|
590 | ierr = nf_put_att_text(nid, id_fter, 'title',10,'Frac. Land') |
---|
591 | #ifdef NC_DOUBLE |
---|
592 | ierr = nf_def_var(nid, 'FOCE', nf_double, 2, dims, id_foce) |
---|
593 | #else |
---|
594 | ierr = nf_def_var(nid, 'FOCE', nf_float, 2, dims, id_foce) |
---|
595 | #endif |
---|
596 | ierr = nf_put_att_text(nid, id_foce, 'title',11,'Frac. Ocean') |
---|
597 | #ifdef NC_DOUBLE |
---|
598 | ierr = nf_def_var(nid, 'FSIC', nf_double, 2, dims, id_fsic) |
---|
599 | #else |
---|
600 | ierr = nf_def_var(nid, 'FSIC', nf_float, 2, dims, id_fsic) |
---|
601 | #endif |
---|
602 | ierr = nf_put_att_text(nid, id_fsic, 'title',13,'Frac. Sea Ice') |
---|
603 | #ifdef NC_DOUBLE |
---|
604 | ierr = nf_def_var(nid, 'FLIC', nf_double, 2, dims, id_flic) |
---|
605 | #else |
---|
606 | ierr = nf_def_var(nid, 'FLIC', nf_float, 2, dims, id_flic) |
---|
607 | #endif |
---|
608 | ierr = nf_put_att_text(nid, id_flic, 'title',14,'Frac. Land Ice') |
---|
609 | |
---|
610 | ierr = nf_enddef(nid) |
---|
611 | IF (ierr/=nf_noerr) THEN |
---|
612 | WRITE (*, *) 'writelim error: failed to end define mode' |
---|
613 | WRITE (*, *) nf_strerror(ierr) |
---|
614 | END IF |
---|
615 | |
---|
616 | |
---|
617 | ! write the 'times' |
---|
618 | DO k = 1, 360 |
---|
619 | #ifdef NC_DOUBLE |
---|
620 | ierr = nf_put_var1_double(nid, id_tim, k, dble(k)) |
---|
621 | #else |
---|
622 | ierr = nf_put_var1_real(nid, id_tim, k, float(k)) |
---|
623 | #endif |
---|
624 | IF (ierr/=nf_noerr) THEN |
---|
625 | WRITE (*, *) 'writelim error with temps(k),k=', k |
---|
626 | WRITE (*, *) nf_strerror(ierr) |
---|
627 | END IF |
---|
628 | END DO |
---|
629 | |
---|
630 | END IF ! of if (is_mpi_root.and.is_omp_root) |
---|
631 | |
---|
632 | ! write the fields, after having collected them on master |
---|
633 | |
---|
634 | CALL gather(phy_nat, phy_glo) |
---|
635 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
636 | #ifdef NC_DOUBLE |
---|
637 | ierr = nf_put_var_double(nid, id_nat, phy_glo) |
---|
638 | #else |
---|
639 | ierr = nf_put_var_real(nid, id_nat, phy_glo) |
---|
640 | #endif |
---|
641 | IF (ierr/=nf_noerr) THEN |
---|
642 | WRITE (*, *) 'writelim error with phy_nat' |
---|
643 | WRITE (*, *) nf_strerror(ierr) |
---|
644 | END IF |
---|
645 | END IF |
---|
646 | |
---|
647 | CALL gather(phy_sst, phy_glo) |
---|
648 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
649 | #ifdef NC_DOUBLE |
---|
650 | ierr = nf_put_var_double(nid, id_sst, phy_glo) |
---|
651 | #else |
---|
652 | ierr = nf_put_var_real(nid, id_sst, phy_glo) |
---|
653 | #endif |
---|
654 | IF (ierr/=nf_noerr) THEN |
---|
655 | WRITE (*, *) 'writelim error with phy_sst' |
---|
656 | WRITE (*, *) nf_strerror(ierr) |
---|
657 | END IF |
---|
658 | END IF |
---|
659 | |
---|
660 | CALL gather(phy_bil, phy_glo) |
---|
661 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
662 | #ifdef NC_DOUBLE |
---|
663 | ierr = nf_put_var_double(nid, id_bils, phy_glo) |
---|
664 | #else |
---|
665 | ierr = nf_put_var_real(nid, id_bils, phy_glo) |
---|
666 | #endif |
---|
667 | IF (ierr/=nf_noerr) THEN |
---|
668 | WRITE (*, *) 'writelim error with phy_bil' |
---|
669 | WRITE (*, *) nf_strerror(ierr) |
---|
670 | END IF |
---|
671 | END IF |
---|
672 | |
---|
673 | CALL gather(phy_alb, phy_glo) |
---|
674 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
675 | #ifdef NC_DOUBLE |
---|
676 | ierr = nf_put_var_double(nid, id_alb, phy_glo) |
---|
677 | #else |
---|
678 | ierr = nf_put_var_real(nid, id_alb, phy_glo) |
---|
679 | #endif |
---|
680 | IF (ierr/=nf_noerr) THEN |
---|
681 | WRITE (*, *) 'writelim error with phy_alb' |
---|
682 | WRITE (*, *) nf_strerror(ierr) |
---|
683 | END IF |
---|
684 | END IF |
---|
685 | |
---|
686 | CALL gather(phy_rug, phy_glo) |
---|
687 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
688 | #ifdef NC_DOUBLE |
---|
689 | ierr = nf_put_var_double(nid, id_rug, phy_glo) |
---|
690 | #else |
---|
691 | ierr = nf_put_var_real(nid, id_rug, phy_glo) |
---|
692 | #endif |
---|
693 | IF (ierr/=nf_noerr) THEN |
---|
694 | WRITE (*, *) 'writelim error with phy_rug' |
---|
695 | WRITE (*, *) nf_strerror(ierr) |
---|
696 | END IF |
---|
697 | END IF |
---|
698 | |
---|
699 | CALL gather(phy_fter, phy_glo) |
---|
700 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
701 | #ifdef NC_DOUBLE |
---|
702 | ierr = nf_put_var_double(nid, id_fter, phy_glo) |
---|
703 | #else |
---|
704 | ierr = nf_put_var_real(nid, id_fter, phy_glo) |
---|
705 | #endif |
---|
706 | IF (ierr/=nf_noerr) THEN |
---|
707 | WRITE (*, *) 'writelim error with phy_fter' |
---|
708 | WRITE (*, *) nf_strerror(ierr) |
---|
709 | END IF |
---|
710 | END IF |
---|
711 | |
---|
712 | CALL gather(phy_foce, phy_glo) |
---|
713 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
714 | #ifdef NC_DOUBLE |
---|
715 | ierr = nf_put_var_double(nid, id_foce, phy_glo) |
---|
716 | #else |
---|
717 | ierr = nf_put_var_real(nid, id_foce, phy_glo) |
---|
718 | #endif |
---|
719 | IF (ierr/=nf_noerr) THEN |
---|
720 | WRITE (*, *) 'writelim error with phy_foce' |
---|
721 | WRITE (*, *) nf_strerror(ierr) |
---|
722 | END IF |
---|
723 | END IF |
---|
724 | |
---|
725 | CALL gather(phy_fsic, phy_glo) |
---|
726 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
727 | #ifdef NC_DOUBLE |
---|
728 | ierr = nf_put_var_double(nid, id_fsic, phy_glo) |
---|
729 | #else |
---|
730 | ierr = nf_put_var_real(nid, id_fsic, phy_glo) |
---|
731 | #endif |
---|
732 | IF (ierr/=nf_noerr) THEN |
---|
733 | WRITE (*, *) 'writelim error with phy_fsic' |
---|
734 | WRITE (*, *) nf_strerror(ierr) |
---|
735 | END IF |
---|
736 | END IF |
---|
737 | |
---|
738 | CALL gather(phy_flic, phy_glo) |
---|
739 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
740 | #ifdef NC_DOUBLE |
---|
741 | ierr = nf_put_var_double(nid, id_flic, phy_glo) |
---|
742 | #else |
---|
743 | ierr = nf_put_var_real(nid, id_flic, phy_glo) |
---|
744 | #endif |
---|
745 | IF (ierr/=nf_noerr) THEN |
---|
746 | WRITE (*, *) 'writelim error with phy_flic' |
---|
747 | WRITE (*, *) nf_strerror(ierr) |
---|
748 | END IF |
---|
749 | END IF |
---|
750 | |
---|
751 | ! close file: |
---|
752 | IF (is_mpi_root .AND. is_omp_root) THEN |
---|
753 | ierr = nf_close(nid) |
---|
754 | END IF |
---|
755 | |
---|
756 | END SUBROUTINE writelim |
---|
757 | |
---|
758 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
759 | |
---|
760 | SUBROUTINE profil_sst(nlon, rlatd, type_profil, phy_sst) |
---|
761 | USE dimphy |
---|
762 | IMPLICIT NONE |
---|
763 | |
---|
764 | INTEGER nlon, type_profil, i, k, j |
---|
765 | REAL :: rlatd(nlon), phy_sst(nlon, 360) |
---|
766 | INTEGER imn, imx, amn, amx, kmn, kmx |
---|
767 | INTEGER p, pplus, nlat_max |
---|
768 | PARAMETER (nlat_max=72) |
---|
769 | REAL x_anom_sst(nlat_max) |
---|
770 | |
---|
771 | IF (klon/=nlon) STOP 'probleme de dimensions dans iniaqua' |
---|
772 | WRITE (*, *) ' profil_sst: type_profil=', type_profil |
---|
773 | DO i = 1, 360 |
---|
774 | ! phy_sst(:,i) = 260.+50.*cos(rlatd(:))**2 |
---|
775 | |
---|
776 | ! Rajout fbrlmd |
---|
777 | |
---|
778 | IF (type_profil==1) THEN |
---|
779 | ! Méthode 1 "Control" faible plateau à l'Equateur |
---|
780 | DO j = 1, klon |
---|
781 | phy_sst(j, i) = 273. + 27.*(1-sin(1.5*rlatd(j))**2) |
---|
782 | ! PI/3=1.047197551 |
---|
783 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
784 | phy_sst(j, i) = 273. |
---|
785 | END IF |
---|
786 | END DO |
---|
787 | END IF |
---|
788 | IF (type_profil==2) THEN |
---|
789 | ! Méthode 2 "Flat" fort plateau à l'Equateur |
---|
790 | DO j = 1, klon |
---|
791 | phy_sst(j, i) = 273. + 27.*(1-sin(1.5*rlatd(j))**4) |
---|
792 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
793 | phy_sst(j, i) = 273. |
---|
794 | END IF |
---|
795 | END DO |
---|
796 | END IF |
---|
797 | |
---|
798 | |
---|
799 | IF (type_profil==3) THEN |
---|
800 | ! Méthode 3 "Qobs" plateau réel à l'Equateur |
---|
801 | DO j = 1, klon |
---|
802 | phy_sst(j, i) = 273. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5* & |
---|
803 | rlatd(j))**4) |
---|
804 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
805 | phy_sst(j, i) = 273. |
---|
806 | END IF |
---|
807 | END DO |
---|
808 | END IF |
---|
809 | |
---|
810 | IF (type_profil==4) THEN |
---|
811 | ! Méthode 4 : Méthode 3 + SST+2 "Qobs" plateau réel à l'Equateur |
---|
812 | DO j = 1, klon |
---|
813 | phy_sst(j, i) = 273. + 0.5*29.*(2-sin(1.5*rlatd(j))**2-sin(1.5* & |
---|
814 | rlatd(j))**4) |
---|
815 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
816 | phy_sst(j, i) = 273. |
---|
817 | END IF |
---|
818 | END DO |
---|
819 | END IF |
---|
820 | |
---|
821 | IF (type_profil==5) THEN |
---|
822 | ! Méthode 5 : Méthode 3 + +2K "Qobs" plateau réel à l'Equateur |
---|
823 | DO j = 1, klon |
---|
824 | phy_sst(j, i) = 273. + 2. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5 & |
---|
825 | *rlatd(j))**4) |
---|
826 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
827 | phy_sst(j, i) = 273. + 2. |
---|
828 | END IF |
---|
829 | |
---|
830 | END DO |
---|
831 | END IF |
---|
832 | |
---|
833 | IF (type_profil==6) THEN |
---|
834 | ! Méthode 6 "cst" valeur constante de SST |
---|
835 | DO j = 1, klon |
---|
836 | phy_sst(j, i) = 288. |
---|
837 | END DO |
---|
838 | END IF |
---|
839 | |
---|
840 | |
---|
841 | IF (type_profil==7) THEN |
---|
842 | ! Méthode 7 "cst" valeur constante de SST +2 |
---|
843 | DO j = 1, klon |
---|
844 | phy_sst(j, i) = 288. + 2. |
---|
845 | END DO |
---|
846 | END IF |
---|
847 | |
---|
848 | p = 0 |
---|
849 | IF (type_profil==8) THEN |
---|
850 | ! Méthode 8 profil anomalies SST du modèle couplé AR4 |
---|
851 | DO j = 1, klon |
---|
852 | IF (rlatd(j)==rlatd(j-1)) THEN |
---|
853 | phy_sst(j, i) = 273. + x_anom_sst(pplus) + & |
---|
854 | 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5*rlatd(j))**4) |
---|
855 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
856 | phy_sst(j, i) = 273. + x_anom_sst(pplus) |
---|
857 | END IF |
---|
858 | ELSE |
---|
859 | p = p + 1 |
---|
860 | pplus = 73 - p |
---|
861 | phy_sst(j, i) = 273. + x_anom_sst(pplus) + & |
---|
862 | 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5*rlatd(j))**4) |
---|
863 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
864 | phy_sst(j, i) = 273. + x_anom_sst(pplus) |
---|
865 | END IF |
---|
866 | WRITE (*, *) rlatd(j), x_anom_sst(pplus), phy_sst(j, i) |
---|
867 | END IF |
---|
868 | END DO |
---|
869 | END IF |
---|
870 | |
---|
871 | IF (type_profil==9) THEN |
---|
872 | ! Méthode 5 : Méthode 3 + -2K "Qobs" plateau réel à l'Equateur |
---|
873 | DO j = 1, klon |
---|
874 | phy_sst(j, i) = 273. - 2. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5 & |
---|
875 | *rlatd(j))**4) |
---|
876 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
877 | phy_sst(j, i) = 273. - 2. |
---|
878 | END IF |
---|
879 | END DO |
---|
880 | END IF |
---|
881 | |
---|
882 | |
---|
883 | IF (type_profil==10) THEN |
---|
884 | ! Méthode 10 : Méthode 3 + +4K "Qobs" plateau réel à l'Equateur |
---|
885 | DO j = 1, klon |
---|
886 | phy_sst(j, i) = 273. + 4. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5 & |
---|
887 | *rlatd(j))**4) |
---|
888 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
889 | phy_sst(j, i) = 273. + 4. |
---|
890 | END IF |
---|
891 | END DO |
---|
892 | END IF |
---|
893 | |
---|
894 | IF (type_profil==11) THEN |
---|
895 | ! Méthode 11 : Méthode 3 + 4CO2 "Qobs" plateau réel à l'Equateur |
---|
896 | DO j = 1, klon |
---|
897 | phy_sst(j, i) = 273. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5* & |
---|
898 | rlatd(j))**4) |
---|
899 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
900 | phy_sst(j, i) = 273. |
---|
901 | END IF |
---|
902 | END DO |
---|
903 | END IF |
---|
904 | |
---|
905 | IF (type_profil==12) THEN |
---|
906 | ! Méthode 12 : Méthode 10 + 4CO2 "Qobs" plateau réel à l'Equateur |
---|
907 | DO j = 1, klon |
---|
908 | phy_sst(j, i) = 273. + 4. + 0.5*27.*(2-sin(1.5*rlatd(j))**2-sin(1.5 & |
---|
909 | *rlatd(j))**4) |
---|
910 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
911 | phy_sst(j, i) = 273. + 4. |
---|
912 | END IF |
---|
913 | END DO |
---|
914 | END IF |
---|
915 | |
---|
916 | IF (type_profil==13) THEN |
---|
917 | ! Méthode 13 "Qmax" plateau réel à l'Equateur augmenté ! |
---|
918 | DO j = 1, klon |
---|
919 | phy_sst(j, i) = 273. + 0.5*29.*(2-sin(1.5*rlatd(j))**2-sin(1.5* & |
---|
920 | rlatd(j))**4) |
---|
921 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
922 | phy_sst(j, i) = 273. |
---|
923 | END IF |
---|
924 | END DO |
---|
925 | END IF |
---|
926 | |
---|
927 | IF (type_profil==14) THEN |
---|
928 | ! Méthode 13 "Qmax2K" plateau réel à l'Equateur augmenté +2K ! |
---|
929 | DO j = 1, klon |
---|
930 | phy_sst(j, i) = 273. + 2. + 0.5*29.*(2-sin(1.5*rlatd(j))**2-sin(1.5 & |
---|
931 | *rlatd(j))**4) |
---|
932 | IF ((rlatd(j)>1.0471975) .OR. (rlatd(j)<-1.0471975)) THEN |
---|
933 | phy_sst(j, i) = 273. |
---|
934 | END IF |
---|
935 | END DO |
---|
936 | END IF |
---|
937 | |
---|
938 | if (type_profil.EQ.20) then |
---|
939 | print*,'Profile SST 20' |
---|
940 | ! Méthode 13 "Qmax2K" plateau réel �| l'Equateur augmenté +2K |
---|
941 | |
---|
942 | do j=1,klon |
---|
943 | phy_sst(j,i)=248.+55.*(1-sin(rlatd(j))**2) |
---|
944 | enddo |
---|
945 | endif |
---|
946 | |
---|
947 | if (type_profil.EQ.21) then |
---|
948 | print*,'Profile SST 21' |
---|
949 | ! Méthode 13 "Qmax2K" plateau réel �| l'Equateur augmenté +2K |
---|
950 | do j=1,klon |
---|
951 | phy_sst(j,i)=252.+55.*(1-sin(rlatd(j))**2) |
---|
952 | enddo |
---|
953 | endif |
---|
954 | |
---|
955 | |
---|
956 | |
---|
957 | END DO |
---|
958 | |
---|
959 | ! IM beg : verif profil SST: phy_sst |
---|
960 | amn = min(phy_sst(1,1), 1000.) |
---|
961 | amx = max(phy_sst(1,1), -1000.) |
---|
962 | imn = 1 |
---|
963 | kmn = 1 |
---|
964 | imx = 1 |
---|
965 | kmx = 1 |
---|
966 | DO k = 1, 360 |
---|
967 | DO i = 2, nlon |
---|
968 | IF (phy_sst(i,k)<amn) THEN |
---|
969 | amn = phy_sst(i, k) |
---|
970 | imn = i |
---|
971 | kmn = k |
---|
972 | END IF |
---|
973 | IF (phy_sst(i,k)>amx) THEN |
---|
974 | amx = phy_sst(i, k) |
---|
975 | imx = i |
---|
976 | kmx = k |
---|
977 | END IF |
---|
978 | END DO |
---|
979 | END DO |
---|
980 | |
---|
981 | PRINT *, 'profil_sst: imn, kmn, phy_sst(imn,kmn) ', imn, kmn, amn |
---|
982 | PRINT *, 'profil_sst: imx, kmx, phy_sst(imx,kmx) ', imx, kmx, amx |
---|
983 | ! IM end : verif profil SST: phy_sst |
---|
984 | |
---|
985 | RETURN |
---|
986 | END SUBROUTINE profil_sst |
---|
987 | |
---|
988 | END MODULE phyaqua_mod |
---|