[1279] | 1 | ! $Id: nuage.F90 2109 2014-08-22 10:22:58Z fairhead $ |
---|
[524] | 2 | |
---|
[1992] | 3 | SUBROUTINE nuage(paprs, pplay, t, pqlwp, pclc, pcltau, pclemi, pch, pcl, pcm, & |
---|
| 4 | pct, pctlwp, ok_aie, mass_solu_aero, mass_solu_aero_pi, bl95_b0, bl95_b1, & |
---|
| 5 | cldtaupi, re, fl) |
---|
| 6 | USE dimphy |
---|
[2109] | 7 | USE icefrac_lsc_mod ! computes ice fraction (JBM 3/14) |
---|
[1992] | 8 | IMPLICIT NONE |
---|
| 9 | ! ====================================================================== |
---|
| 10 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 11 | ! Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 12 | ! ====================================================================== |
---|
| 13 | ! Arguments: |
---|
| 14 | ! t-------input-R-temperature |
---|
| 15 | ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 16 | ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 17 | ! ok_aie--input-L-apply aerosol indirect effect or not |
---|
| 18 | ! mass_solu_aero-----input-R-total mass concentration for all soluble |
---|
| 19 | ! aerosols[ug/m^3] |
---|
| 20 | ! mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
| 21 | ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 22 | ! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
[524] | 23 | |
---|
[1992] | 24 | ! cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 25 | ! needed for the diagnostics of the aerosol indirect |
---|
| 26 | ! radiative forcing (see radlwsw) |
---|
| 27 | ! re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 28 | ! fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 29 | ! the averaging of the output. fl is the fraction of liquid |
---|
| 30 | ! water clouds within a grid cell |
---|
| 31 | |
---|
| 32 | ! pcltau--output-R-epaisseur optique des nuages |
---|
| 33 | ! pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 34 | ! ====================================================================== |
---|
| 35 | |
---|
| 36 | include "YOMCST.h" |
---|
[2006] | 37 | include "nuage.h" ! JBM 3/14 |
---|
[1992] | 38 | |
---|
| 39 | ! ym#include "dimensions.h" |
---|
| 40 | ! ym#include "dimphy.h" |
---|
| 41 | REAL paprs(klon, klev+1), pplay(klon, klev) |
---|
| 42 | REAL t(klon, klev) |
---|
| 43 | |
---|
| 44 | REAL pclc(klon, klev) |
---|
| 45 | REAL pqlwp(klon, klev) |
---|
| 46 | REAL pcltau(klon, klev), pclemi(klon, klev) |
---|
| 47 | |
---|
| 48 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 49 | |
---|
| 50 | LOGICAL lo |
---|
| 51 | |
---|
| 52 | REAL cetahb, cetamb |
---|
| 53 | PARAMETER (cetahb=0.45, cetamb=0.80) |
---|
| 54 | |
---|
| 55 | INTEGER i, k |
---|
[2077] | 56 | REAL zflwp, zradef, zfice(klon), zmsac |
---|
[1992] | 57 | |
---|
[2006] | 58 | REAL radius, rad_chaud |
---|
| 59 | ! JBM (3/14) parameters already defined in nuage.h: |
---|
| 60 | ! REAL rad_froid, rad_chau1, rad_chau2 |
---|
| 61 | ! PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
[1992] | 62 | ! cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 63 | ! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 64 | REAL coef, coef_froi, coef_chau |
---|
| 65 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
[2006] | 66 | REAL seuil_neb |
---|
| 67 | PARAMETER (seuil_neb=0.001) |
---|
| 68 | ! JBM (3/14) nexpo is replaced by exposant_glace |
---|
| 69 | ! REAL nexpo ! exponentiel pour glace/eau |
---|
| 70 | ! PARAMETER (nexpo=6.) |
---|
| 71 | REAL, PARAMETER :: t_glace_min_old = 258. |
---|
| 72 | INTEGER, PARAMETER :: exposant_glace_old = 6 |
---|
[1992] | 73 | |
---|
[2006] | 74 | |
---|
[1992] | 75 | ! jq for the aerosol indirect effect |
---|
| 76 | ! jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 77 | ! jq |
---|
| 78 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 79 | |
---|
| 80 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] |
---|
| 81 | REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value |
---|
| 82 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 83 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 84 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 85 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 86 | |
---|
| 87 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds |
---|
| 88 | ! within the grid cell) |
---|
| 89 | |
---|
| 90 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 91 | |
---|
| 92 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 93 | ! jq-end |
---|
| 94 | |
---|
| 95 | ! cc PARAMETER (nexpo=1) |
---|
| 96 | |
---|
| 97 | ! Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 98 | |
---|
| 99 | DO k = 1, klev |
---|
[2077] | 100 | IF (iflag_t_glace.EQ.0) THEN |
---|
| 101 | DO i = 1, klon |
---|
| 102 | zfice(i) = 1.0 - (t(i,k)-t_glace_min_old)/(273.13-t_glace_min_old) |
---|
| 103 | zfice(i) = min(max(zfice(i),0.0), 1.0) |
---|
| 104 | zfice(i) = zfice(i)**exposant_glace_old |
---|
| 105 | ENDDO |
---|
| 106 | ELSE ! of IF (iflag_t_glace.EQ.0) |
---|
[2109] | 107 | ! JBM: icefrac_lsc is now a function contained in icefrac_lsc_mod |
---|
[2077] | 108 | ! zfice(i) = icefrac_lsc(t(i,k), t_glace_min, & |
---|
| 109 | ! t_glace_max, exposant_glace) |
---|
[2109] | 110 | CALL icefrac_lsc(klon,t(:,k),pplay(:,k)/paprs(:,1),zfice(:)) |
---|
[2077] | 111 | ENDIF |
---|
| 112 | |
---|
[1992] | 113 | DO i = 1, klon |
---|
| 114 | rad_chaud = rad_chau1 |
---|
| 115 | IF (k<=3) rad_chaud = rad_chau2 |
---|
| 116 | |
---|
| 117 | pclc(i, k) = max(pclc(i,k), seuil_neb) |
---|
| 118 | zflwp = 1000.*pqlwp(i, k)/rg/pclc(i, k)*(paprs(i,k)-paprs(i,k+1)) |
---|
| 119 | |
---|
| 120 | IF (ok_aie) THEN |
---|
| 121 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 122 | ! |
---|
| 123 | cdnc(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero(i,k), & |
---|
| 124 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
| 125 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 126 | ! to be within [20, 1000 cm^3] |
---|
| 127 | ! |
---|
| 128 | cdnc(i, k) = min(1000.E6, max(20.E6,cdnc(i,k))) |
---|
| 129 | cdnc_pi(i, k) = 10.**(bl95_b0+bl95_b1*log(max(mass_solu_aero_pi(i,k), & |
---|
| 130 | 1.E-4))/log(10.))*1.E6 !-m-3 |
---|
| 131 | cdnc_pi(i, k) = min(1000.E6, max(20.E6,cdnc_pi(i,k))) |
---|
| 132 | ! |
---|
| 133 | ! |
---|
| 134 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
| 135 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
| 136 | ! factor 1000 is the water density |
---|
| 137 | ! _chaud means that this is the CDR for liquid water clouds |
---|
| 138 | ! |
---|
| 139 | rad_chaud = 1.1*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi*1000. & |
---|
| 140 | *cdnc(i,k)))**(1./3.) |
---|
| 141 | ! |
---|
| 142 | ! Convert to um. CDR shall be at least 3 um. |
---|
| 143 | ! |
---|
| 144 | rad_chaud = max(rad_chaud*1.E6, 3.) |
---|
| 145 | |
---|
| 146 | ! For output diagnostics |
---|
| 147 | ! |
---|
| 148 | ! Cloud droplet effective radius [um] |
---|
| 149 | ! |
---|
| 150 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 151 | ! clouds in the grid cell) to avoid problems in the |
---|
| 152 | ! averaging of the output. |
---|
| 153 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 154 | ! effective radius as re/fl |
---|
| 155 | ! |
---|
[2077] | 156 | fl(i, k) = pclc(i, k)*(1.-zfice(i)) |
---|
[1992] | 157 | re(i, k) = rad_chaud*fl(i, k) |
---|
| 158 | |
---|
| 159 | ! Pre-industrial cloud opt thickness |
---|
| 160 | ! |
---|
| 161 | ! "radius" is calculated as rad_chaud above (plus the |
---|
| 162 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
| 163 | ! cdnc. |
---|
| 164 | radius = max(1.1E6*((pqlwp(i,k)*pplay(i,k)/(rd*t(i,k)))/(4./3.*rpi* & |
---|
[2077] | 165 | 1000.*cdnc_pi(i,k)))**(1./3.), 3.)*(1.-zfice(i)) + rad_froid*zfice(i) |
---|
[1992] | 166 | cldtaupi(i, k) = 3.0/2.0*zflwp/radius |
---|
| 167 | END IF ! ok_aie |
---|
| 168 | |
---|
[2077] | 169 | radius = rad_chaud*(1.-zfice(i)) + rad_froid*zfice(i) |
---|
| 170 | coef = coef_chau*(1.-zfice(i)) + coef_froi*zfice(i) |
---|
[1992] | 171 | pcltau(i, k) = 3.0/2.0*zflwp/radius |
---|
| 172 | pclemi(i, k) = 1.0 - exp(-coef*zflwp) |
---|
| 173 | lo = (pclc(i,k)<=seuil_neb) |
---|
| 174 | IF (lo) pclc(i, k) = 0.0 |
---|
| 175 | IF (lo) pcltau(i, k) = 0.0 |
---|
| 176 | IF (lo) pclemi(i, k) = 0.0 |
---|
| 177 | |
---|
| 178 | IF (.NOT. ok_aie) cldtaupi(i, k) = pcltau(i, k) |
---|
| 179 | END DO |
---|
| 180 | END DO |
---|
| 181 | ! cc DO k = 1, klev |
---|
| 182 | ! cc DO i = 1, klon |
---|
| 183 | ! cc t(i,k) = t(i,k) |
---|
| 184 | ! cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 185 | ! cc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 186 | ! cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 187 | ! cc . /(rg*pclc(i,k)) |
---|
| 188 | ! cc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 189 | ! cc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 190 | ! cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 191 | ! cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 192 | ! cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 193 | ! cc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 194 | ! cc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 195 | ! cc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 196 | ! cc ENDDO |
---|
| 197 | ! cc ENDDO |
---|
| 198 | ! ccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 199 | ! ccccc DO k = 1, klev |
---|
| 200 | ! ccccc DO i = 1, klon |
---|
| 201 | ! ccccc pclc(i,k) = 0.0 |
---|
| 202 | ! ccccc pcltau(i,k) = 0.0 |
---|
| 203 | ! ccccc pclemi(i,k) = 0.0 |
---|
| 204 | ! ccccc ENDDO |
---|
| 205 | ! ccccc ENDDO |
---|
| 206 | |
---|
| 207 | ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 208 | |
---|
| 209 | DO i = 1, klon |
---|
| 210 | pct(i) = 1.0 |
---|
| 211 | pch(i) = 1.0 |
---|
| 212 | pcm(i) = 1.0 |
---|
| 213 | pcl(i) = 1.0 |
---|
| 214 | pctlwp(i) = 0.0 |
---|
| 215 | END DO |
---|
| 216 | |
---|
| 217 | DO k = klev, 1, -1 |
---|
| 218 | DO i = 1, klon |
---|
| 219 | pctlwp(i) = pctlwp(i) + pqlwp(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
---|
| 220 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
| 221 | IF (pplay(i,k)<=cetahb*paprs(i,1)) pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 222 | IF (pplay(i,k)>cetahb*paprs(i,1) .AND. pplay(i,k)<=cetamb*paprs(i,1)) & |
---|
| 223 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 224 | IF (pplay(i,k)>cetamb*paprs(i,1)) pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 225 | END DO |
---|
| 226 | END DO |
---|
| 227 | |
---|
| 228 | DO i = 1, klon |
---|
| 229 | pct(i) = 1. - pct(i) |
---|
| 230 | pch(i) = 1. - pch(i) |
---|
| 231 | pcm(i) = 1. - pcm(i) |
---|
| 232 | pcl(i) = 1. - pcl(i) |
---|
| 233 | END DO |
---|
| 234 | |
---|
| 235 | RETURN |
---|
| 236 | END SUBROUTINE nuage |
---|
| 237 | SUBROUTINE diagcld1(paprs, pplay, rain, snow, kbot, ktop, diafra, dialiq) |
---|
| 238 | USE dimphy |
---|
| 239 | IMPLICIT NONE |
---|
| 240 | |
---|
| 241 | ! Laurent Li (LMD/CNRS), le 12 octobre 1998 |
---|
| 242 | ! (adaptation du code ECMWF) |
---|
| 243 | |
---|
| 244 | ! Dans certains cas, le schema pronostique des nuages n'est |
---|
| 245 | ! pas suffisament performant. On a donc besoin de diagnostiquer |
---|
| 246 | ! ces nuages. Je dois avouer que c'est une frustration. |
---|
| 247 | |
---|
| 248 | ! ym#include "dimensions.h" |
---|
| 249 | ! ym#include "dimphy.h" |
---|
| 250 | include "YOMCST.h" |
---|
| 251 | |
---|
| 252 | ! Arguments d'entree: |
---|
| 253 | REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
---|
| 254 | REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
---|
| 255 | REAL t(klon, klev) ! temperature (K) |
---|
| 256 | REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
---|
| 257 | REAL rain(klon) ! pluie convective (kg/m2/s) |
---|
| 258 | REAL snow(klon) ! neige convective (kg/m2/s) |
---|
| 259 | INTEGER ktop(klon) ! sommet de la convection |
---|
| 260 | INTEGER kbot(klon) ! bas de la convection |
---|
| 261 | |
---|
| 262 | ! Arguments de sortie: |
---|
| 263 | REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
---|
| 264 | REAL dialiq(klon, klev) ! eau liquide nuageuse |
---|
| 265 | |
---|
| 266 | ! Constantes ajustables: |
---|
| 267 | REAL canva, canvb, canvh |
---|
| 268 | PARAMETER (canva=2.0, canvb=0.3, canvh=0.4) |
---|
| 269 | REAL cca, ccb, ccc |
---|
| 270 | PARAMETER (cca=0.125, ccb=1.5, ccc=0.8) |
---|
| 271 | REAL ccfct, ccscal |
---|
| 272 | PARAMETER (ccfct=0.400) |
---|
| 273 | PARAMETER (ccscal=1.0E+11) |
---|
| 274 | REAL cetahb, cetamb |
---|
| 275 | PARAMETER (cetahb=0.45, cetamb=0.80) |
---|
| 276 | REAL cclwmr |
---|
| 277 | PARAMETER (cclwmr=1.E-04) |
---|
| 278 | REAL zepscr |
---|
| 279 | PARAMETER (zepscr=1.0E-10) |
---|
| 280 | |
---|
| 281 | ! Variables locales: |
---|
| 282 | INTEGER i, k |
---|
| 283 | REAL zcc(klon) |
---|
| 284 | |
---|
| 285 | ! Initialisation: |
---|
| 286 | |
---|
| 287 | DO k = 1, klev |
---|
| 288 | DO i = 1, klon |
---|
| 289 | diafra(i, k) = 0.0 |
---|
| 290 | dialiq(i, k) = 0.0 |
---|
| 291 | END DO |
---|
| 292 | END DO |
---|
| 293 | |
---|
| 294 | DO i = 1, klon ! Calculer la fraction nuageuse |
---|
| 295 | zcc(i) = 0.0 |
---|
| 296 | IF ((rain(i)+snow(i))>0.) THEN |
---|
| 297 | zcc(i) = cca*log(max(zepscr,(rain(i)+snow(i))*ccscal)) - ccb |
---|
| 298 | zcc(i) = min(ccc, max(0.0,zcc(i))) |
---|
| 299 | END IF |
---|
| 300 | END DO |
---|
| 301 | |
---|
| 302 | DO i = 1, klon ! pour traiter les enclumes |
---|
| 303 | diafra(i, ktop(i)) = max(diafra(i,ktop(i)), zcc(i)*ccfct) |
---|
| 304 | IF ((zcc(i)>=canvh) .AND. (pplay(i,ktop(i))<=cetahb*paprs(i, & |
---|
| 305 | 1))) diafra(i, ktop(i)) = max(diafra(i,ktop(i)), max(zcc( & |
---|
| 306 | i)*ccfct,canva*(zcc(i)-canvb))) |
---|
| 307 | dialiq(i, ktop(i)) = cclwmr*diafra(i, ktop(i)) |
---|
| 308 | END DO |
---|
| 309 | |
---|
| 310 | DO k = 1, klev ! nuages convectifs (sauf enclumes) |
---|
| 311 | DO i = 1, klon |
---|
| 312 | IF (k<ktop(i) .AND. k>=kbot(i)) THEN |
---|
| 313 | diafra(i, k) = max(diafra(i,k), zcc(i)*ccfct) |
---|
| 314 | dialiq(i, k) = cclwmr*diafra(i, k) |
---|
| 315 | END IF |
---|
| 316 | END DO |
---|
| 317 | END DO |
---|
| 318 | |
---|
| 319 | RETURN |
---|
| 320 | END SUBROUTINE diagcld1 |
---|
| 321 | SUBROUTINE diagcld2(paprs, pplay, t, q, diafra, dialiq) |
---|
| 322 | USE dimphy |
---|
| 323 | IMPLICIT NONE |
---|
| 324 | |
---|
| 325 | ! ym#include "dimensions.h" |
---|
| 326 | ! ym#include "dimphy.h" |
---|
| 327 | include "YOMCST.h" |
---|
| 328 | |
---|
| 329 | ! Arguments d'entree: |
---|
| 330 | REAL paprs(klon, klev+1) ! pression (Pa) a inter-couche |
---|
| 331 | REAL pplay(klon, klev) ! pression (Pa) au milieu de couche |
---|
| 332 | REAL t(klon, klev) ! temperature (K) |
---|
| 333 | REAL q(klon, klev) ! humidite specifique (Kg/Kg) |
---|
| 334 | |
---|
| 335 | ! Arguments de sortie: |
---|
| 336 | REAL diafra(klon, klev) ! fraction nuageuse diagnostiquee |
---|
| 337 | REAL dialiq(klon, klev) ! eau liquide nuageuse |
---|
| 338 | |
---|
| 339 | REAL cetamb |
---|
| 340 | PARAMETER (cetamb=0.80) |
---|
| 341 | REAL cloia, cloib, cloic, cloid |
---|
| 342 | PARAMETER (cloia=1.0E+02, cloib=-10.00, cloic=-0.6, cloid=5.0) |
---|
| 343 | ! cc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
---|
| 344 | REAL rgammas |
---|
| 345 | PARAMETER (rgammas=0.05) |
---|
| 346 | REAL crhl |
---|
| 347 | PARAMETER (crhl=0.15) |
---|
| 348 | ! cc PARAMETER (CRHL=0.70) |
---|
| 349 | REAL t_coup |
---|
| 350 | PARAMETER (t_coup=234.0) |
---|
| 351 | |
---|
| 352 | ! Variables locales: |
---|
| 353 | INTEGER i, k, kb, invb(klon) |
---|
| 354 | REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
---|
| 355 | REAL zdelta, zcor |
---|
| 356 | |
---|
| 357 | ! Fonctions thermodynamiques: |
---|
| 358 | include "YOETHF.h" |
---|
| 359 | include "FCTTRE.h" |
---|
| 360 | |
---|
| 361 | ! Initialisation: |
---|
| 362 | |
---|
| 363 | DO k = 1, klev |
---|
| 364 | DO i = 1, klon |
---|
| 365 | diafra(i, k) = 0.0 |
---|
| 366 | dialiq(i, k) = 0.0 |
---|
| 367 | END DO |
---|
| 368 | END DO |
---|
| 369 | |
---|
| 370 | DO i = 1, klon |
---|
| 371 | invb(i) = klev |
---|
| 372 | zdthmin(i) = 0.0 |
---|
| 373 | END DO |
---|
| 374 | |
---|
| 375 | DO k = 2, klev/2 - 1 |
---|
| 376 | DO i = 1, klon |
---|
| 377 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) - & |
---|
| 378 | rd*0.5*(t(i,k)+t(i,k+1))/rcpd/paprs(i, k+1) |
---|
| 379 | zdthdp = zdthdp*cloia |
---|
| 380 | IF (pplay(i,k)>cetamb*paprs(i,1) .AND. zdthdp<zdthmin(i)) THEN |
---|
| 381 | zdthmin(i) = zdthdp |
---|
| 382 | invb(i) = k |
---|
| 383 | END IF |
---|
| 384 | END DO |
---|
| 385 | END DO |
---|
| 386 | |
---|
| 387 | DO i = 1, klon |
---|
| 388 | kb = invb(i) |
---|
| 389 | IF (thermcep) THEN |
---|
| 390 | zdelta = max(0., sign(1.,rtt-t(i,kb))) |
---|
| 391 | zqs = r2es*foeew(t(i,kb), zdelta)/pplay(i, kb) |
---|
| 392 | zqs = min(0.5, zqs) |
---|
| 393 | zcor = 1./(1.-retv*zqs) |
---|
| 394 | zqs = zqs*zcor |
---|
| 395 | ELSE |
---|
| 396 | IF (t(i,kb)<t_coup) THEN |
---|
| 397 | zqs = qsats(t(i,kb))/pplay(i, kb) |
---|
| 398 | ELSE |
---|
| 399 | zqs = qsatl(t(i,kb))/pplay(i, kb) |
---|
| 400 | END IF |
---|
| 401 | END IF |
---|
| 402 | zcll = cloib*zdthmin(i) + cloic |
---|
| 403 | zcll = min(1.0, max(0.0,zcll)) |
---|
| 404 | zrhb = q(i, kb)/zqs |
---|
| 405 | IF (zcll>0.0 .AND. zrhb<crhl) zcll = zcll*(1.-(crhl-zrhb)*cloid) |
---|
| 406 | zcll = min(1.0, max(0.0,zcll)) |
---|
| 407 | diafra(i, kb) = max(diafra(i,kb), zcll) |
---|
| 408 | dialiq(i, kb) = diafra(i, kb)*rgammas*zqs |
---|
| 409 | END DO |
---|
| 410 | |
---|
| 411 | RETURN |
---|
| 412 | END SUBROUTINE diagcld2 |
---|