1 | |
---|
2 | ! $Id: cv3p1_closure.F90 2224 2015-03-11 11:23:40Z fhourdin $ |
---|
3 | |
---|
4 | SUBROUTINE cv3p1_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
5 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
6 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmf, plfc, & |
---|
7 | wbeff) |
---|
8 | |
---|
9 | |
---|
10 | ! ************************************************************** |
---|
11 | ! * |
---|
12 | ! CV3P1_CLOSURE * |
---|
13 | ! Ale & Alp Closure of Convect3 * |
---|
14 | ! * |
---|
15 | ! written by : Kerry Emanuel * |
---|
16 | ! vectorization: S. Bony * |
---|
17 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
18 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
19 | ! ************************************************************** |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | |
---|
23 | include "cvthermo.h" |
---|
24 | include "cv3param.h" |
---|
25 | include "YOMCST2.h" |
---|
26 | include "YOMCST.h" |
---|
27 | include "conema3.h" |
---|
28 | include "iniprint.h" |
---|
29 | |
---|
30 | ! input: |
---|
31 | INTEGER ncum, nd, nloc |
---|
32 | INTEGER icb(nloc), inb(nloc) |
---|
33 | REAL pbase(nloc), plcl(nloc) |
---|
34 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
35 | REAL tv(nloc, nd), tvp(nloc, nd), buoy(nloc, nd) |
---|
36 | REAL supmax(nloc, nd) |
---|
37 | LOGICAL ok_inhib ! enable convection inhibition by dryness |
---|
38 | REAL ale(nloc), alp(nloc) |
---|
39 | REAL omega(nloc,nd) |
---|
40 | |
---|
41 | ! input/output: |
---|
42 | REAL sig(nloc, nd), w0(nloc, nd), ptop2(nloc) |
---|
43 | |
---|
44 | ! output: |
---|
45 | REAL cape(nloc), cin(nloc) |
---|
46 | REAL m(nloc, nd) |
---|
47 | REAL plim1(nloc), plim2(nloc) |
---|
48 | REAL asupmax(nloc, nd), supmax0(nloc) |
---|
49 | REAL asupmaxmin(nloc) |
---|
50 | REAL cbmf(nloc), plfc(nloc) |
---|
51 | REAL wbeff(nloc) |
---|
52 | INTEGER iflag(nloc) |
---|
53 | |
---|
54 | ! local variables: |
---|
55 | INTEGER il, i, j, k, icbmax, i0(nloc), klfc(nloc) |
---|
56 | REAL deltap, fac, w, amu |
---|
57 | REAL rhodp |
---|
58 | REAL pbmxup |
---|
59 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
60 | REAL coefmix(nloc, nd) |
---|
61 | REAL pzero(nloc), ptop2old(nloc) |
---|
62 | REAL cina(nloc), cinb(nloc) |
---|
63 | INTEGER ibeg(nloc) |
---|
64 | INTEGER nsupmax(nloc) |
---|
65 | REAL supcrit, temp(nloc, nd) |
---|
66 | REAL p1(nloc), pmin(nloc) |
---|
67 | REAL asupmax0(nloc) |
---|
68 | LOGICAL ok(nloc) |
---|
69 | REAL siglim(nloc, nd), wlim(nloc, nd), mlim(nloc, nd) |
---|
70 | REAL wb2(nloc) |
---|
71 | REAL cbmflim(nloc), cbmf1(nloc), cbmfmax(nloc) |
---|
72 | REAL cbmflast(nloc) |
---|
73 | REAL coef(nloc) |
---|
74 | REAL xp(nloc), xq(nloc), xr(nloc), discr(nloc), b3(nloc), b4(nloc) |
---|
75 | REAL theta(nloc), bb(nloc) |
---|
76 | REAL term1, term2, term3 |
---|
77 | REAL alp2(nloc) ! Alp with offset |
---|
78 | |
---|
79 | REAL sigmax |
---|
80 | PARAMETER (sigmax=0.1) |
---|
81 | |
---|
82 | CHARACTER (LEN=20) :: modname = 'cv3p1_closure' |
---|
83 | CHARACTER (LEN=80) :: abort_message |
---|
84 | |
---|
85 | ! print *,' -> cv3p1_closure, Ale ',ale(1) |
---|
86 | |
---|
87 | |
---|
88 | ! ------------------------------------------------------- |
---|
89 | ! -- Initialization |
---|
90 | ! ------------------------------------------------------- |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | DO il = 1, ncum |
---|
95 | alp2(il) = max(alp(il), 1.E-5) |
---|
96 | ! IM |
---|
97 | alp2(il) = max(alp(il), 1.E-12) |
---|
98 | END DO |
---|
99 | |
---|
100 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
101 | ! exist (if any) |
---|
102 | |
---|
103 | IF (prt_level>=20) PRINT *, 'cv3p1_param nloc ncum nd icb inb nl', nloc, & |
---|
104 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
105 | DO k = 1, nl |
---|
106 | DO il = 1, ncum |
---|
107 | m(il, k) = 0.0 |
---|
108 | END DO |
---|
109 | END DO |
---|
110 | |
---|
111 | ! ------------------------------------------------------- |
---|
112 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
113 | ! ------------------------------------------------------- |
---|
114 | |
---|
115 | ! update sig and w0 above LNB: |
---|
116 | |
---|
117 | DO k = 1, nl - 1 |
---|
118 | DO il = 1, ncum |
---|
119 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
120 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il & |
---|
121 | ,inb(il))) |
---|
122 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
123 | w0(il, k) = beta*w0(il, k) |
---|
124 | END IF |
---|
125 | END DO |
---|
126 | END DO |
---|
127 | |
---|
128 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 100' |
---|
129 | ! compute icbmax: |
---|
130 | |
---|
131 | icbmax = 2 |
---|
132 | DO il = 1, ncum |
---|
133 | icbmax = max(icbmax, icb(il)) |
---|
134 | END DO |
---|
135 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 200' |
---|
136 | |
---|
137 | ! update sig and w0 below cloud base: |
---|
138 | |
---|
139 | DO k = 1, icbmax |
---|
140 | DO il = 1, ncum |
---|
141 | IF (k<=icb(il)) THEN |
---|
142 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il, & |
---|
143 | icb(il)) |
---|
144 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
145 | w0(il, k) = beta*w0(il, k) |
---|
146 | END IF |
---|
147 | END DO |
---|
148 | END DO |
---|
149 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 300' |
---|
150 | ! ------------------------------------------------------------- |
---|
151 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
152 | ! -- and after 10 time steps of no convection |
---|
153 | ! ------------------------------------------------------------- |
---|
154 | |
---|
155 | DO k = 1, nl - 1 |
---|
156 | DO il = 1, ncum |
---|
157 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
158 | sig(il, k) = 0.0 |
---|
159 | w0(il, k) = 0.0 |
---|
160 | END IF |
---|
161 | END DO |
---|
162 | END DO |
---|
163 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 400' |
---|
164 | |
---|
165 | ! ------------------------------------------------------------- |
---|
166 | ! jyg1 |
---|
167 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
168 | ! ------------------------------------------------------------- |
---|
169 | |
---|
170 | |
---|
171 | ! c 1. Start at first level where precipitations form |
---|
172 | DO il = 1, ncum |
---|
173 | pzero(il) = plcl(il) - pbcrit |
---|
174 | END DO |
---|
175 | |
---|
176 | ! c 2. Add offset |
---|
177 | DO il = 1, ncum |
---|
178 | pzero(il) = pzero(il) - pbmxup |
---|
179 | END DO |
---|
180 | DO il = 1, ncum |
---|
181 | ptop2old(il) = ptop2(il) |
---|
182 | END DO |
---|
183 | |
---|
184 | DO il = 1, ncum |
---|
185 | ! CR:c est quoi ce 300?? |
---|
186 | p1(il) = pzero(il) - 300. |
---|
187 | END DO |
---|
188 | |
---|
189 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
190 | |
---|
191 | DO il = 1, ncum |
---|
192 | ok(il) = .TRUE. |
---|
193 | nsupmax(il) = inb(il) |
---|
194 | END DO |
---|
195 | |
---|
196 | DO i = 1, nl |
---|
197 | DO il = 1, ncum |
---|
198 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
199 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
200 | nsupmax(il) = i |
---|
201 | ok(il) = .FALSE. |
---|
202 | END IF ! end IF (P(i) ... ) |
---|
203 | END IF ! end IF (icb+1 le i le inb) |
---|
204 | END DO |
---|
205 | END DO |
---|
206 | |
---|
207 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 2.' |
---|
208 | DO i = 1, nl |
---|
209 | DO il = 1, ncum |
---|
210 | asupmax(il, i) = abs(supmax(il,i)) |
---|
211 | END DO |
---|
212 | END DO |
---|
213 | |
---|
214 | |
---|
215 | DO il = 1, ncum |
---|
216 | asupmaxmin(il) = 10. |
---|
217 | pmin(il) = 100. |
---|
218 | ! IM ?? |
---|
219 | asupmax0(il) = 0. |
---|
220 | END DO |
---|
221 | |
---|
222 | ! c 3. Compute in which level is Pzero |
---|
223 | |
---|
224 | ! IM bug i0 = 18 |
---|
225 | DO il = 1, ncum |
---|
226 | i0(il) = nl |
---|
227 | END DO |
---|
228 | |
---|
229 | DO i = 1, nl |
---|
230 | DO il = 1, ncum |
---|
231 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
232 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
233 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
234 | i0(il) = i |
---|
235 | END IF |
---|
236 | END IF |
---|
237 | END IF |
---|
238 | END DO |
---|
239 | END DO |
---|
240 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 3.' |
---|
241 | |
---|
242 | ! c 4. Compute asupmax at Pzero |
---|
243 | |
---|
244 | DO i = 1, nl |
---|
245 | DO il = 1, ncum |
---|
246 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
247 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
248 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))-( & |
---|
249 | pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il, & |
---|
250 | i0(il)-1)) |
---|
251 | END IF |
---|
252 | END IF |
---|
253 | END DO |
---|
254 | END DO |
---|
255 | |
---|
256 | |
---|
257 | DO i = 1, nl |
---|
258 | DO il = 1, ncum |
---|
259 | IF (p(il,i)==pzero(il)) THEN |
---|
260 | asupmax(i, il) = asupmax0(il) |
---|
261 | END IF |
---|
262 | END DO |
---|
263 | END DO |
---|
264 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 4.' |
---|
265 | |
---|
266 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
267 | |
---|
268 | DO i = 1, nl |
---|
269 | DO il = 1, ncum |
---|
270 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
271 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
272 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
273 | asupmaxmin(il) = asupmax(il, i) |
---|
274 | pmin(il) = p(il, i) |
---|
275 | END IF |
---|
276 | END IF |
---|
277 | END IF |
---|
278 | END DO |
---|
279 | END DO |
---|
280 | |
---|
281 | DO il = 1, ncum |
---|
282 | ! IM |
---|
283 | IF (prt_level>=20) THEN |
---|
284 | PRINT *, 'cv3p1_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
285 | asupmaxmin(il), pzero(il), pmin(il) |
---|
286 | END IF |
---|
287 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
288 | asupmaxmin(il) = asupmax0(il) |
---|
289 | pmin(il) = pzero(il) |
---|
290 | END IF |
---|
291 | END DO |
---|
292 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 5.' |
---|
293 | |
---|
294 | |
---|
295 | ! Compute Supmax at Pzero |
---|
296 | |
---|
297 | DO i = 1, nl |
---|
298 | DO il = 1, ncum |
---|
299 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
300 | IF (p(il,i)<=pzero(il)) THEN |
---|
301 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)-(p(il, & |
---|
302 | i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
303 | GO TO 425 |
---|
304 | END IF ! end IF (P(i) ... ) |
---|
305 | END IF ! end IF (icb+1 le i le inb) |
---|
306 | END DO |
---|
307 | END DO |
---|
308 | |
---|
309 | 425 CONTINUE |
---|
310 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 425.' |
---|
311 | |
---|
312 | ! c 6. Calculate ptop2 |
---|
313 | |
---|
314 | DO il = 1, ncum |
---|
315 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
316 | ptop2(il) = pmin(il) |
---|
317 | END IF |
---|
318 | |
---|
319 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
320 | ptop2(il) = ptop2old(il) |
---|
321 | END IF |
---|
322 | |
---|
323 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
324 | ptop2(il) = ph(il, inb(il)) |
---|
325 | END IF |
---|
326 | END DO |
---|
327 | |
---|
328 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 6.' |
---|
329 | |
---|
330 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
331 | |
---|
332 | |
---|
333 | IF (ok_inhib) THEN |
---|
334 | |
---|
335 | DO i = 1, nl |
---|
336 | DO il = 1, ncum |
---|
337 | IF (i<=nl) THEN |
---|
338 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph( & |
---|
339 | il,i)) |
---|
340 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
341 | END IF |
---|
342 | END DO |
---|
343 | END DO |
---|
344 | |
---|
345 | |
---|
346 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
347 | |
---|
348 | |
---|
349 | |
---|
350 | DO i = 1, nl |
---|
351 | DO il = 1, ncum |
---|
352 | IF (i<=nl) THEN |
---|
353 | coefmix(il, i) = 1. |
---|
354 | END IF |
---|
355 | END DO |
---|
356 | END DO |
---|
357 | |
---|
358 | END IF ! ok_inhib |
---|
359 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 7.' |
---|
360 | ! ------------------------------------------------------------------- |
---|
361 | ! ------------------------------------------------------------------- |
---|
362 | |
---|
363 | |
---|
364 | ! jyg2 |
---|
365 | |
---|
366 | ! ========================================================================== |
---|
367 | |
---|
368 | |
---|
369 | ! ------------------------------------------------------------- |
---|
370 | ! -- Calculate convective inhibition (CIN) |
---|
371 | ! ------------------------------------------------------------- |
---|
372 | |
---|
373 | ! do i=1,nloc |
---|
374 | ! print*,'avant cine p',pbase(i),plcl(i) |
---|
375 | ! enddo |
---|
376 | ! do j=1,nd |
---|
377 | ! do i=1,nloc |
---|
378 | ! print*,'avant cine t',tv(i),tvp(i) |
---|
379 | ! enddo |
---|
380 | ! enddo |
---|
381 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
382 | cinb, plfc) |
---|
383 | |
---|
384 | DO il = 1, ncum |
---|
385 | cin(il) = cina(il) + cinb(il) |
---|
386 | END DO |
---|
387 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_cine' |
---|
388 | ! ------------------------------------------------------------- |
---|
389 | ! --Update buoyancies to account for Ale |
---|
390 | ! ------------------------------------------------------------- |
---|
391 | |
---|
392 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
393 | tvp, buoy) |
---|
394 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_buoy' |
---|
395 | |
---|
396 | ! ------------------------------------------------------------- |
---|
397 | ! -- Calculate convective available potential energy (cape), |
---|
398 | ! -- vertical velocity (w), fractional area covered by |
---|
399 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
400 | ! ------------------------------------------------------------- |
---|
401 | |
---|
402 | DO il = 1, ncum |
---|
403 | cape(il) = 0.0 |
---|
404 | END DO |
---|
405 | |
---|
406 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
407 | |
---|
408 | DO k = 1, nl |
---|
409 | DO il = 1, ncum |
---|
410 | dtmin(il, k) = 100.0 |
---|
411 | END DO |
---|
412 | END DO |
---|
413 | |
---|
414 | DO k = 1, nl |
---|
415 | DO j = minorig, nl |
---|
416 | DO il = 1, ncum |
---|
417 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) .AND. (j<= & |
---|
418 | (k-1))) THEN |
---|
419 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
420 | END IF |
---|
421 | END DO |
---|
422 | END DO |
---|
423 | END DO |
---|
424 | |
---|
425 | ! the interval on which cape is computed starts at pbase : |
---|
426 | |
---|
427 | DO k = 1, nl |
---|
428 | DO il = 1, ncum |
---|
429 | |
---|
430 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
431 | |
---|
432 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
433 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
434 | cape(il) = amax1(0.0, cape(il)) |
---|
435 | sigold(il, k) = sig(il, k) |
---|
436 | |
---|
437 | |
---|
438 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
439 | ! sufficient |
---|
440 | ! fraction of mixed draughts are ascending. |
---|
441 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
442 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
443 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
444 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
445 | fac = 1. |
---|
446 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
447 | amu = siglim(il, k)*wlim(il, k) |
---|
448 | rhodp = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
449 | mlim(il, k) = amu*rhodp |
---|
450 | ! print*, 'siglim ', k,siglim(1,k) |
---|
451 | END IF |
---|
452 | |
---|
453 | END DO |
---|
454 | END DO |
---|
455 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 600' |
---|
456 | |
---|
457 | DO il = 1, ncum |
---|
458 | ! IM beg |
---|
459 | IF (prt_level>=20) THEN |
---|
460 | PRINT *, 'cv3p1_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
461 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
462 | ph(il, icb(il)+2) |
---|
463 | END IF |
---|
464 | |
---|
465 | IF (icb(il)+1<=inb(il)) THEN |
---|
466 | ! IM end |
---|
467 | mlim(il, icb(il)) = 0.5*mlim(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb( & |
---|
468 | il)+1))/(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
469 | ! IM beg |
---|
470 | END IF !(icb(il.le.inb(il))) then |
---|
471 | ! IM end |
---|
472 | END DO |
---|
473 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 700' |
---|
474 | |
---|
475 | ! jyg1 |
---|
476 | ! ------------------------------------------------------------------------ |
---|
477 | ! c Correct mass fluxes so that power used to overcome CIN does not |
---|
478 | ! c exceed Power Available for Lifting (PAL). |
---|
479 | ! ------------------------------------------------------------------------ |
---|
480 | |
---|
481 | DO il = 1, ncum |
---|
482 | cbmflim(il) = 0. |
---|
483 | cbmf(il) = 0. |
---|
484 | END DO |
---|
485 | |
---|
486 | ! c 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
487 | |
---|
488 | DO k = 1, nl |
---|
489 | DO il = 1, ncum |
---|
490 | ! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
491 | ! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
---|
492 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
493 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
494 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
495 | END IF |
---|
496 | END DO |
---|
497 | END DO |
---|
498 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim' |
---|
499 | |
---|
500 | ! c 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
501 | ! c allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
502 | ! c Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
503 | ! is |
---|
504 | ! -- exceedingly small. |
---|
505 | |
---|
506 | DO il = 1, ncum |
---|
507 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
508 | END DO |
---|
509 | |
---|
510 | DO il = 1, ncum |
---|
511 | IF (plfc(il)<100.) THEN |
---|
512 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
513 | wbeff(il) = 100.1 |
---|
514 | ELSE |
---|
515 | ! Calculate wbeff |
---|
516 | IF (flag_wb==0) THEN |
---|
517 | wbeff(il) = wbmax |
---|
518 | ELSE IF (flag_wb==1) THEN |
---|
519 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
520 | ELSE IF (flag_wb==2) THEN |
---|
521 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
522 | END IF |
---|
523 | END IF |
---|
524 | END DO |
---|
525 | |
---|
526 | !CR:Compute k at plfc |
---|
527 | DO il=1,ncum |
---|
528 | klfc(il)=nl |
---|
529 | ENDDO |
---|
530 | DO k=1,nl |
---|
531 | DO il=1,ncum |
---|
532 | if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
---|
533 | klfc(il)=k |
---|
534 | endif |
---|
535 | ENDDO |
---|
536 | ENDDO |
---|
537 | !RC |
---|
538 | |
---|
539 | DO il = 1, ncum |
---|
540 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
541 | ! c cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
542 | cbmf1(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
543 | !CR: Add large-scale component to the mass-flux |
---|
544 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
545 | if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
---|
546 | cbmf1(il) = cbmf1(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
547 | endif |
---|
548 | !RC |
---|
549 | IF (cbmf1(il)==0 .AND. alp2(il)/=0.) THEN |
---|
550 | WRITE (lunout, *) 'cv3p1_closure cbmf1=0 and alp NE 0 il alp2 alp cin ' & |
---|
551 | , il, alp2(il), alp(il), cin(il) |
---|
552 | abort_message = '' |
---|
553 | CALL abort_gcm(modname, abort_message, 1) |
---|
554 | END IF |
---|
555 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
556 | END DO |
---|
557 | |
---|
558 | DO il = 1, ncum |
---|
559 | IF (cbmflim(il)>1.E-6) THEN |
---|
560 | ! ATTENTION TEST CR |
---|
561 | ! if (cbmfmax(il).lt.1.e-12) then |
---|
562 | cbmf(il) = min(cbmf1(il), cbmfmax(il)) |
---|
563 | ! else |
---|
564 | ! cbmf(il) = cbmf1(il) |
---|
565 | ! endif |
---|
566 | ! print*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
567 | END IF |
---|
568 | END DO |
---|
569 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim_testCR' |
---|
570 | |
---|
571 | ! c 2. Compute coefficient and apply correction |
---|
572 | |
---|
573 | DO il = 1, ncum |
---|
574 | coef(il) = (cbmf(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
575 | END DO |
---|
576 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres coef_plantePLUS' |
---|
577 | |
---|
578 | DO k = 1, nl |
---|
579 | DO il = 1, ncum |
---|
580 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
581 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)* & |
---|
582 | wlim(il, k) |
---|
583 | w0(il, k) = wlim(il, k) |
---|
584 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
585 | sig(il, k) = amu/w0(il, k) |
---|
586 | sig(il, k) = min(sig(il,k), 1.) |
---|
587 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
588 | m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
589 | END IF |
---|
590 | END DO |
---|
591 | END DO |
---|
592 | ! jyg2 |
---|
593 | DO il = 1, ncum |
---|
594 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
595 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
596 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
597 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
598 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
599 | END DO |
---|
600 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres w0_sig_M' |
---|
601 | |
---|
602 | ! c 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
603 | ! c cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
604 | ! c the final mass flux (cbmflast) is greater than the target mass flux |
---|
605 | ! c (cbmf)). |
---|
606 | |
---|
607 | DO il = 1, ncum |
---|
608 | cbmflast(il) = 0. |
---|
609 | END DO |
---|
610 | |
---|
611 | DO k = 1, nl |
---|
612 | DO il = 1, ncum |
---|
613 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
614 | !IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
---|
615 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
616 | END IF |
---|
617 | END DO |
---|
618 | END DO |
---|
619 | |
---|
620 | DO il = 1, ncum |
---|
621 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmf(il)) THEN |
---|
622 | iflag(il) = 3 |
---|
623 | END IF |
---|
624 | END DO |
---|
625 | |
---|
626 | DO k = 1, nl |
---|
627 | DO il = 1, ncum |
---|
628 | IF (iflag(il)>=3) THEN |
---|
629 | m(il, k) = 0. |
---|
630 | sig(il, k) = 0. |
---|
631 | w0(il, k) = 0. |
---|
632 | END IF |
---|
633 | END DO |
---|
634 | END DO |
---|
635 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres iflag' |
---|
636 | |
---|
637 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
638 | ! effective |
---|
639 | ! c sigdz larger in the present case (using cv3p1_closure) than in the |
---|
640 | ! old |
---|
641 | ! c closure (using cv3_closure). |
---|
642 | IF (1==0) THEN |
---|
643 | DO il = 1, ncum |
---|
644 | ! c coef(il) = 2.*coef(il) |
---|
645 | coef(il) = 5.*coef(il) |
---|
646 | END DO |
---|
647 | ! version CVS du ..2008 |
---|
648 | ELSE |
---|
649 | IF (iflag_cvl_sigd==0) THEN |
---|
650 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
651 | coef(1:ncum) = 1. |
---|
652 | ELSE |
---|
653 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
654 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
655 | END IF |
---|
656 | END IF |
---|
657 | |
---|
658 | IF (prt_level>=20) PRINT *, 'cv3p1_param FIN' |
---|
659 | RETURN |
---|
660 | END SUBROUTINE cv3p1_closure |
---|
661 | |
---|
662 | |
---|