[1992] | 1 | |
---|
[1403] | 2 | ! $Id: cv3p1_closure.F90 2224 2015-03-11 11:23:40Z fhourdin $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE cv3p1_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
[2201] | 5 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
[1992] | 6 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmf, plfc, & |
---|
| 7 | wbeff) |
---|
[879] | 8 | |
---|
| 9 | |
---|
[1992] | 10 | ! ************************************************************** |
---|
| 11 | ! * |
---|
| 12 | ! CV3P1_CLOSURE * |
---|
| 13 | ! Ale & Alp Closure of Convect3 * |
---|
| 14 | ! * |
---|
| 15 | ! written by : Kerry Emanuel * |
---|
| 16 | ! vectorization: S. Bony * |
---|
| 17 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
| 18 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
| 19 | ! ************************************************************** |
---|
[879] | 20 | |
---|
[1992] | 21 | IMPLICIT NONE |
---|
[879] | 22 | |
---|
[1992] | 23 | include "cvthermo.h" |
---|
| 24 | include "cv3param.h" |
---|
| 25 | include "YOMCST2.h" |
---|
| 26 | include "YOMCST.h" |
---|
| 27 | include "conema3.h" |
---|
| 28 | include "iniprint.h" |
---|
[1403] | 29 | |
---|
[1992] | 30 | ! input: |
---|
| 31 | INTEGER ncum, nd, nloc |
---|
| 32 | INTEGER icb(nloc), inb(nloc) |
---|
| 33 | REAL pbase(nloc), plcl(nloc) |
---|
| 34 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
| 35 | REAL tv(nloc, nd), tvp(nloc, nd), buoy(nloc, nd) |
---|
| 36 | REAL supmax(nloc, nd) |
---|
| 37 | LOGICAL ok_inhib ! enable convection inhibition by dryness |
---|
| 38 | REAL ale(nloc), alp(nloc) |
---|
[2201] | 39 | REAL omega(nloc,nd) |
---|
[879] | 40 | |
---|
[1992] | 41 | ! input/output: |
---|
| 42 | REAL sig(nloc, nd), w0(nloc, nd), ptop2(nloc) |
---|
[879] | 43 | |
---|
[1992] | 44 | ! output: |
---|
| 45 | REAL cape(nloc), cin(nloc) |
---|
| 46 | REAL m(nloc, nd) |
---|
| 47 | REAL plim1(nloc), plim2(nloc) |
---|
| 48 | REAL asupmax(nloc, nd), supmax0(nloc) |
---|
| 49 | REAL asupmaxmin(nloc) |
---|
| 50 | REAL cbmf(nloc), plfc(nloc) |
---|
| 51 | REAL wbeff(nloc) |
---|
| 52 | INTEGER iflag(nloc) |
---|
[879] | 53 | |
---|
[1992] | 54 | ! local variables: |
---|
[2224] | 55 | INTEGER il, i, j, k, icbmax, i0(nloc), klfc(nloc) |
---|
[1992] | 56 | REAL deltap, fac, w, amu |
---|
| 57 | REAL rhodp |
---|
| 58 | REAL pbmxup |
---|
| 59 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
| 60 | REAL coefmix(nloc, nd) |
---|
| 61 | REAL pzero(nloc), ptop2old(nloc) |
---|
| 62 | REAL cina(nloc), cinb(nloc) |
---|
| 63 | INTEGER ibeg(nloc) |
---|
| 64 | INTEGER nsupmax(nloc) |
---|
| 65 | REAL supcrit, temp(nloc, nd) |
---|
| 66 | REAL p1(nloc), pmin(nloc) |
---|
| 67 | REAL asupmax0(nloc) |
---|
| 68 | LOGICAL ok(nloc) |
---|
| 69 | REAL siglim(nloc, nd), wlim(nloc, nd), mlim(nloc, nd) |
---|
| 70 | REAL wb2(nloc) |
---|
| 71 | REAL cbmflim(nloc), cbmf1(nloc), cbmfmax(nloc) |
---|
| 72 | REAL cbmflast(nloc) |
---|
| 73 | REAL coef(nloc) |
---|
| 74 | REAL xp(nloc), xq(nloc), xr(nloc), discr(nloc), b3(nloc), b4(nloc) |
---|
| 75 | REAL theta(nloc), bb(nloc) |
---|
| 76 | REAL term1, term2, term3 |
---|
| 77 | REAL alp2(nloc) ! Alp with offset |
---|
[879] | 78 | |
---|
[1992] | 79 | REAL sigmax |
---|
| 80 | PARAMETER (sigmax=0.1) |
---|
[879] | 81 | |
---|
[1992] | 82 | CHARACTER (LEN=20) :: modname = 'cv3p1_closure' |
---|
| 83 | CHARACTER (LEN=80) :: abort_message |
---|
[879] | 84 | |
---|
[1992] | 85 | ! print *,' -> cv3p1_closure, Ale ',ale(1) |
---|
[879] | 86 | |
---|
| 87 | |
---|
[1992] | 88 | ! ------------------------------------------------------- |
---|
| 89 | ! -- Initialization |
---|
| 90 | ! ------------------------------------------------------- |
---|
[879] | 91 | |
---|
| 92 | |
---|
| 93 | |
---|
[1992] | 94 | DO il = 1, ncum |
---|
| 95 | alp2(il) = max(alp(il), 1.E-5) |
---|
| 96 | ! IM |
---|
| 97 | alp2(il) = max(alp(il), 1.E-12) |
---|
| 98 | END DO |
---|
[879] | 99 | |
---|
[1992] | 100 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
| 101 | ! exist (if any) |
---|
[879] | 102 | |
---|
[1992] | 103 | IF (prt_level>=20) PRINT *, 'cv3p1_param nloc ncum nd icb inb nl', nloc, & |
---|
| 104 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
| 105 | DO k = 1, nl |
---|
| 106 | DO il = 1, ncum |
---|
| 107 | m(il, k) = 0.0 |
---|
| 108 | END DO |
---|
| 109 | END DO |
---|
[879] | 110 | |
---|
[1992] | 111 | ! ------------------------------------------------------- |
---|
| 112 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 113 | ! ------------------------------------------------------- |
---|
[879] | 114 | |
---|
[1992] | 115 | ! update sig and w0 above LNB: |
---|
[879] | 116 | |
---|
[1992] | 117 | DO k = 1, nl - 1 |
---|
| 118 | DO il = 1, ncum |
---|
| 119 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
| 120 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il & |
---|
| 121 | ,inb(il))) |
---|
| 122 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 123 | w0(il, k) = beta*w0(il, k) |
---|
| 124 | END IF |
---|
| 125 | END DO |
---|
| 126 | END DO |
---|
[879] | 127 | |
---|
[1992] | 128 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 100' |
---|
| 129 | ! compute icbmax: |
---|
[879] | 130 | |
---|
[1992] | 131 | icbmax = 2 |
---|
| 132 | DO il = 1, ncum |
---|
| 133 | icbmax = max(icbmax, icb(il)) |
---|
| 134 | END DO |
---|
| 135 | ! if(prt.level.GE.20) print*,'cv3p1_param apres 200' |
---|
[879] | 136 | |
---|
[1992] | 137 | ! update sig and w0 below cloud base: |
---|
[973] | 138 | |
---|
[1992] | 139 | DO k = 1, icbmax |
---|
| 140 | DO il = 1, ncum |
---|
| 141 | IF (k<=icb(il)) THEN |
---|
| 142 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il, & |
---|
| 143 | icb(il)) |
---|
| 144 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 145 | w0(il, k) = beta*w0(il, k) |
---|
| 146 | END IF |
---|
| 147 | END DO |
---|
| 148 | END DO |
---|
| 149 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 300' |
---|
| 150 | ! ------------------------------------------------------------- |
---|
| 151 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 152 | ! -- and after 10 time steps of no convection |
---|
| 153 | ! ------------------------------------------------------------- |
---|
[879] | 154 | |
---|
[1992] | 155 | DO k = 1, nl - 1 |
---|
| 156 | DO il = 1, ncum |
---|
| 157 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
| 158 | sig(il, k) = 0.0 |
---|
| 159 | w0(il, k) = 0.0 |
---|
| 160 | END IF |
---|
| 161 | END DO |
---|
| 162 | END DO |
---|
| 163 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 400' |
---|
[879] | 164 | |
---|
[1992] | 165 | ! ------------------------------------------------------------- |
---|
| 166 | ! jyg1 |
---|
| 167 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
| 168 | ! ------------------------------------------------------------- |
---|
[879] | 169 | |
---|
| 170 | |
---|
[1992] | 171 | ! c 1. Start at first level where precipitations form |
---|
| 172 | DO il = 1, ncum |
---|
| 173 | pzero(il) = plcl(il) - pbcrit |
---|
| 174 | END DO |
---|
[879] | 175 | |
---|
[1992] | 176 | ! c 2. Add offset |
---|
| 177 | DO il = 1, ncum |
---|
| 178 | pzero(il) = pzero(il) - pbmxup |
---|
| 179 | END DO |
---|
| 180 | DO il = 1, ncum |
---|
| 181 | ptop2old(il) = ptop2(il) |
---|
| 182 | END DO |
---|
[879] | 183 | |
---|
[1992] | 184 | DO il = 1, ncum |
---|
| 185 | ! CR:c est quoi ce 300?? |
---|
| 186 | p1(il) = pzero(il) - 300. |
---|
| 187 | END DO |
---|
[879] | 188 | |
---|
[1992] | 189 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
[879] | 190 | |
---|
[1992] | 191 | DO il = 1, ncum |
---|
| 192 | ok(il) = .TRUE. |
---|
| 193 | nsupmax(il) = inb(il) |
---|
| 194 | END DO |
---|
[879] | 195 | |
---|
[1992] | 196 | DO i = 1, nl |
---|
| 197 | DO il = 1, ncum |
---|
| 198 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 199 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
| 200 | nsupmax(il) = i |
---|
| 201 | ok(il) = .FALSE. |
---|
| 202 | END IF ! end IF (P(i) ... ) |
---|
| 203 | END IF ! end IF (icb+1 le i le inb) |
---|
| 204 | END DO |
---|
| 205 | END DO |
---|
[879] | 206 | |
---|
[1992] | 207 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 2.' |
---|
| 208 | DO i = 1, nl |
---|
| 209 | DO il = 1, ncum |
---|
| 210 | asupmax(il, i) = abs(supmax(il,i)) |
---|
| 211 | END DO |
---|
| 212 | END DO |
---|
[879] | 213 | |
---|
| 214 | |
---|
[1992] | 215 | DO il = 1, ncum |
---|
| 216 | asupmaxmin(il) = 10. |
---|
| 217 | pmin(il) = 100. |
---|
| 218 | ! IM ?? |
---|
| 219 | asupmax0(il) = 0. |
---|
| 220 | END DO |
---|
[879] | 221 | |
---|
[1992] | 222 | ! c 3. Compute in which level is Pzero |
---|
[879] | 223 | |
---|
[1992] | 224 | ! IM bug i0 = 18 |
---|
| 225 | DO il = 1, ncum |
---|
| 226 | i0(il) = nl |
---|
| 227 | END DO |
---|
[879] | 228 | |
---|
[1992] | 229 | DO i = 1, nl |
---|
| 230 | DO il = 1, ncum |
---|
| 231 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 232 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 233 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
| 234 | i0(il) = i |
---|
| 235 | END IF |
---|
| 236 | END IF |
---|
| 237 | END IF |
---|
| 238 | END DO |
---|
| 239 | END DO |
---|
| 240 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 3.' |
---|
[879] | 241 | |
---|
[1992] | 242 | ! c 4. Compute asupmax at Pzero |
---|
[879] | 243 | |
---|
[1992] | 244 | DO i = 1, nl |
---|
| 245 | DO il = 1, ncum |
---|
| 246 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 247 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 248 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))-( & |
---|
| 249 | pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il, & |
---|
| 250 | i0(il)-1)) |
---|
| 251 | END IF |
---|
| 252 | END IF |
---|
| 253 | END DO |
---|
| 254 | END DO |
---|
[879] | 255 | |
---|
| 256 | |
---|
[1992] | 257 | DO i = 1, nl |
---|
| 258 | DO il = 1, ncum |
---|
| 259 | IF (p(il,i)==pzero(il)) THEN |
---|
| 260 | asupmax(i, il) = asupmax0(il) |
---|
| 261 | END IF |
---|
| 262 | END DO |
---|
| 263 | END DO |
---|
| 264 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 4.' |
---|
[879] | 265 | |
---|
[1992] | 266 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
[879] | 267 | |
---|
[1992] | 268 | DO i = 1, nl |
---|
| 269 | DO il = 1, ncum |
---|
| 270 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 271 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 272 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
| 273 | asupmaxmin(il) = asupmax(il, i) |
---|
| 274 | pmin(il) = p(il, i) |
---|
| 275 | END IF |
---|
| 276 | END IF |
---|
| 277 | END IF |
---|
| 278 | END DO |
---|
| 279 | END DO |
---|
[879] | 280 | |
---|
[1992] | 281 | DO il = 1, ncum |
---|
| 282 | ! IM |
---|
| 283 | IF (prt_level>=20) THEN |
---|
| 284 | PRINT *, 'cv3p1_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
| 285 | asupmaxmin(il), pzero(il), pmin(il) |
---|
| 286 | END IF |
---|
| 287 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
| 288 | asupmaxmin(il) = asupmax0(il) |
---|
| 289 | pmin(il) = pzero(il) |
---|
| 290 | END IF |
---|
| 291 | END DO |
---|
| 292 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 5.' |
---|
[879] | 293 | |
---|
| 294 | |
---|
[1992] | 295 | ! Compute Supmax at Pzero |
---|
[879] | 296 | |
---|
[1992] | 297 | DO i = 1, nl |
---|
| 298 | DO il = 1, ncum |
---|
| 299 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 300 | IF (p(il,i)<=pzero(il)) THEN |
---|
| 301 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)-(p(il, & |
---|
| 302 | i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
| 303 | GO TO 425 |
---|
| 304 | END IF ! end IF (P(i) ... ) |
---|
| 305 | END IF ! end IF (icb+1 le i le inb) |
---|
| 306 | END DO |
---|
| 307 | END DO |
---|
[879] | 308 | |
---|
[1992] | 309 | 425 CONTINUE |
---|
| 310 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 425.' |
---|
[879] | 311 | |
---|
[1992] | 312 | ! c 6. Calculate ptop2 |
---|
[879] | 313 | |
---|
[1992] | 314 | DO il = 1, ncum |
---|
| 315 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
| 316 | ptop2(il) = pmin(il) |
---|
| 317 | END IF |
---|
[973] | 318 | |
---|
[1992] | 319 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
| 320 | ptop2(il) = ptop2old(il) |
---|
| 321 | END IF |
---|
[879] | 322 | |
---|
[1992] | 323 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
| 324 | ptop2(il) = ph(il, inb(il)) |
---|
| 325 | END IF |
---|
| 326 | END DO |
---|
[973] | 327 | |
---|
[1992] | 328 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 6.' |
---|
[1574] | 329 | |
---|
[1992] | 330 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | IF (ok_inhib) THEN |
---|
| 334 | |
---|
| 335 | DO i = 1, nl |
---|
[1574] | 336 | DO il = 1, ncum |
---|
[1992] | 337 | IF (i<=nl) THEN |
---|
| 338 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph( & |
---|
| 339 | il,i)) |
---|
| 340 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
| 341 | END IF |
---|
[1574] | 342 | END DO |
---|
[1992] | 343 | END DO |
---|
[1574] | 344 | |
---|
| 345 | |
---|
[1992] | 346 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
[879] | 347 | |
---|
| 348 | |
---|
[1992] | 349 | |
---|
| 350 | DO i = 1, nl |
---|
| 351 | DO il = 1, ncum |
---|
| 352 | IF (i<=nl) THEN |
---|
| 353 | coefmix(il, i) = 1. |
---|
| 354 | END IF |
---|
| 355 | END DO |
---|
| 356 | END DO |
---|
| 357 | |
---|
| 358 | END IF ! ok_inhib |
---|
| 359 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 7.' |
---|
| 360 | ! ------------------------------------------------------------------- |
---|
| 361 | ! ------------------------------------------------------------------- |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | ! jyg2 |
---|
| 365 | |
---|
| 366 | ! ========================================================================== |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | ! ------------------------------------------------------------- |
---|
| 370 | ! -- Calculate convective inhibition (CIN) |
---|
| 371 | ! ------------------------------------------------------------- |
---|
| 372 | |
---|
| 373 | ! do i=1,nloc |
---|
| 374 | ! print*,'avant cine p',pbase(i),plcl(i) |
---|
| 375 | ! enddo |
---|
| 376 | ! do j=1,nd |
---|
| 377 | ! do i=1,nloc |
---|
| 378 | ! print*,'avant cine t',tv(i),tvp(i) |
---|
| 379 | ! enddo |
---|
| 380 | ! enddo |
---|
| 381 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
| 382 | cinb, plfc) |
---|
| 383 | |
---|
| 384 | DO il = 1, ncum |
---|
| 385 | cin(il) = cina(il) + cinb(il) |
---|
| 386 | END DO |
---|
| 387 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_cine' |
---|
| 388 | ! ------------------------------------------------------------- |
---|
| 389 | ! --Update buoyancies to account for Ale |
---|
| 390 | ! ------------------------------------------------------------- |
---|
| 391 | |
---|
| 392 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
| 393 | tvp, buoy) |
---|
| 394 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cv3_buoy' |
---|
| 395 | |
---|
| 396 | ! ------------------------------------------------------------- |
---|
| 397 | ! -- Calculate convective available potential energy (cape), |
---|
| 398 | ! -- vertical velocity (w), fractional area covered by |
---|
| 399 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 400 | ! ------------------------------------------------------------- |
---|
| 401 | |
---|
| 402 | DO il = 1, ncum |
---|
| 403 | cape(il) = 0.0 |
---|
| 404 | END DO |
---|
| 405 | |
---|
| 406 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 407 | |
---|
| 408 | DO k = 1, nl |
---|
| 409 | DO il = 1, ncum |
---|
| 410 | dtmin(il, k) = 100.0 |
---|
| 411 | END DO |
---|
| 412 | END DO |
---|
| 413 | |
---|
| 414 | DO k = 1, nl |
---|
| 415 | DO j = minorig, nl |
---|
| 416 | DO il = 1, ncum |
---|
| 417 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) .AND. (j<= & |
---|
| 418 | (k-1))) THEN |
---|
| 419 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
| 420 | END IF |
---|
| 421 | END DO |
---|
| 422 | END DO |
---|
| 423 | END DO |
---|
| 424 | |
---|
| 425 | ! the interval on which cape is computed starts at pbase : |
---|
| 426 | |
---|
| 427 | DO k = 1, nl |
---|
| 428 | DO il = 1, ncum |
---|
| 429 | |
---|
| 430 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
| 431 | |
---|
| 432 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
| 433 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
| 434 | cape(il) = amax1(0.0, cape(il)) |
---|
| 435 | sigold(il, k) = sig(il, k) |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
| 439 | ! sufficient |
---|
| 440 | ! fraction of mixed draughts are ascending. |
---|
| 441 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
| 442 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
| 443 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
| 444 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
| 445 | fac = 1. |
---|
| 446 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
| 447 | amu = siglim(il, k)*wlim(il, k) |
---|
| 448 | rhodp = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 449 | mlim(il, k) = amu*rhodp |
---|
| 450 | ! print*, 'siglim ', k,siglim(1,k) |
---|
| 451 | END IF |
---|
| 452 | |
---|
| 453 | END DO |
---|
| 454 | END DO |
---|
| 455 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 600' |
---|
| 456 | |
---|
| 457 | DO il = 1, ncum |
---|
| 458 | ! IM beg |
---|
| 459 | IF (prt_level>=20) THEN |
---|
| 460 | PRINT *, 'cv3p1_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
| 461 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
| 462 | ph(il, icb(il)+2) |
---|
| 463 | END IF |
---|
| 464 | |
---|
| 465 | IF (icb(il)+1<=inb(il)) THEN |
---|
| 466 | ! IM end |
---|
| 467 | mlim(il, icb(il)) = 0.5*mlim(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb( & |
---|
| 468 | il)+1))/(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 469 | ! IM beg |
---|
| 470 | END IF !(icb(il.le.inb(il))) then |
---|
| 471 | ! IM end |
---|
| 472 | END DO |
---|
| 473 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres 700' |
---|
| 474 | |
---|
| 475 | ! jyg1 |
---|
| 476 | ! ------------------------------------------------------------------------ |
---|
| 477 | ! c Correct mass fluxes so that power used to overcome CIN does not |
---|
| 478 | ! c exceed Power Available for Lifting (PAL). |
---|
| 479 | ! ------------------------------------------------------------------------ |
---|
| 480 | |
---|
| 481 | DO il = 1, ncum |
---|
| 482 | cbmflim(il) = 0. |
---|
| 483 | cbmf(il) = 0. |
---|
| 484 | END DO |
---|
| 485 | |
---|
| 486 | ! c 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
| 487 | |
---|
| 488 | DO k = 1, nl |
---|
| 489 | DO il = 1, ncum |
---|
| 490 | ! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
| 491 | ! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
---|
| 492 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
| 493 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
| 494 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
| 495 | END IF |
---|
| 496 | END DO |
---|
| 497 | END DO |
---|
| 498 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim' |
---|
| 499 | |
---|
| 500 | ! c 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
| 501 | ! c allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
| 502 | ! c Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
| 503 | ! is |
---|
| 504 | ! -- exceedingly small. |
---|
| 505 | |
---|
| 506 | DO il = 1, ncum |
---|
| 507 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
| 508 | END DO |
---|
| 509 | |
---|
| 510 | DO il = 1, ncum |
---|
| 511 | IF (plfc(il)<100.) THEN |
---|
| 512 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
| 513 | wbeff(il) = 100.1 |
---|
| 514 | ELSE |
---|
| 515 | ! Calculate wbeff |
---|
| 516 | IF (flag_wb==0) THEN |
---|
| 517 | wbeff(il) = wbmax |
---|
| 518 | ELSE IF (flag_wb==1) THEN |
---|
| 519 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
| 520 | ELSE IF (flag_wb==2) THEN |
---|
| 521 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
| 522 | END IF |
---|
| 523 | END IF |
---|
| 524 | END DO |
---|
| 525 | |
---|
[2201] | 526 | !CR:Compute k at plfc |
---|
[2224] | 527 | DO il=1,ncum |
---|
| 528 | klfc(il)=nl |
---|
| 529 | ENDDO |
---|
[2201] | 530 | DO k=1,nl |
---|
| 531 | DO il=1,ncum |
---|
| 532 | if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
---|
[2224] | 533 | klfc(il)=k |
---|
[2201] | 534 | endif |
---|
| 535 | ENDDO |
---|
| 536 | ENDDO |
---|
| 537 | !RC |
---|
[1992] | 538 | |
---|
| 539 | DO il = 1, ncum |
---|
| 540 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
| 541 | ! c cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
| 542 | cbmf1(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
[2201] | 543 | !CR: Add large-scale component to the mass-flux |
---|
| 544 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
[2224] | 545 | if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
---|
| 546 | cbmf1(il) = cbmf1(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
[2201] | 547 | endif |
---|
| 548 | !RC |
---|
[1992] | 549 | IF (cbmf1(il)==0 .AND. alp2(il)/=0.) THEN |
---|
| 550 | WRITE (lunout, *) 'cv3p1_closure cbmf1=0 and alp NE 0 il alp2 alp cin ' & |
---|
| 551 | , il, alp2(il), alp(il), cin(il) |
---|
| 552 | abort_message = '' |
---|
| 553 | CALL abort_gcm(modname, abort_message, 1) |
---|
| 554 | END IF |
---|
| 555 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
| 556 | END DO |
---|
| 557 | |
---|
| 558 | DO il = 1, ncum |
---|
| 559 | IF (cbmflim(il)>1.E-6) THEN |
---|
| 560 | ! ATTENTION TEST CR |
---|
| 561 | ! if (cbmfmax(il).lt.1.e-12) then |
---|
| 562 | cbmf(il) = min(cbmf1(il), cbmfmax(il)) |
---|
| 563 | ! else |
---|
| 564 | ! cbmf(il) = cbmf1(il) |
---|
| 565 | ! endif |
---|
| 566 | ! print*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
| 567 | END IF |
---|
| 568 | END DO |
---|
| 569 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres cbmflim_testCR' |
---|
| 570 | |
---|
| 571 | ! c 2. Compute coefficient and apply correction |
---|
| 572 | |
---|
| 573 | DO il = 1, ncum |
---|
| 574 | coef(il) = (cbmf(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
| 575 | END DO |
---|
| 576 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres coef_plantePLUS' |
---|
| 577 | |
---|
| 578 | DO k = 1, nl |
---|
| 579 | DO il = 1, ncum |
---|
| 580 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
| 581 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)* & |
---|
| 582 | wlim(il, k) |
---|
| 583 | w0(il, k) = wlim(il, k) |
---|
| 584 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
| 585 | sig(il, k) = amu/w0(il, k) |
---|
| 586 | sig(il, k) = min(sig(il,k), 1.) |
---|
| 587 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
| 588 | m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 589 | END IF |
---|
| 590 | END DO |
---|
| 591 | END DO |
---|
| 592 | ! jyg2 |
---|
| 593 | DO il = 1, ncum |
---|
| 594 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
| 595 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
| 596 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 597 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
| 598 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
| 599 | END DO |
---|
| 600 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres w0_sig_M' |
---|
| 601 | |
---|
| 602 | ! c 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
| 603 | ! c cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
| 604 | ! c the final mass flux (cbmflast) is greater than the target mass flux |
---|
| 605 | ! c (cbmf)). |
---|
| 606 | |
---|
| 607 | DO il = 1, ncum |
---|
| 608 | cbmflast(il) = 0. |
---|
| 609 | END DO |
---|
| 610 | |
---|
| 611 | DO k = 1, nl |
---|
| 612 | DO il = 1, ncum |
---|
| 613 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
| 614 | !IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
---|
| 615 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
| 616 | END IF |
---|
| 617 | END DO |
---|
| 618 | END DO |
---|
| 619 | |
---|
| 620 | DO il = 1, ncum |
---|
| 621 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmf(il)) THEN |
---|
| 622 | iflag(il) = 3 |
---|
| 623 | END IF |
---|
| 624 | END DO |
---|
| 625 | |
---|
| 626 | DO k = 1, nl |
---|
| 627 | DO il = 1, ncum |
---|
| 628 | IF (iflag(il)>=3) THEN |
---|
| 629 | m(il, k) = 0. |
---|
| 630 | sig(il, k) = 0. |
---|
| 631 | w0(il, k) = 0. |
---|
| 632 | END IF |
---|
| 633 | END DO |
---|
| 634 | END DO |
---|
| 635 | IF (prt_level>=20) PRINT *, 'cv3p1_param apres iflag' |
---|
| 636 | |
---|
| 637 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
| 638 | ! effective |
---|
| 639 | ! c sigdz larger in the present case (using cv3p1_closure) than in the |
---|
| 640 | ! old |
---|
| 641 | ! c closure (using cv3_closure). |
---|
| 642 | IF (1==0) THEN |
---|
| 643 | DO il = 1, ncum |
---|
| 644 | ! c coef(il) = 2.*coef(il) |
---|
| 645 | coef(il) = 5.*coef(il) |
---|
| 646 | END DO |
---|
| 647 | ! version CVS du ..2008 |
---|
| 648 | ELSE |
---|
| 649 | IF (iflag_cvl_sigd==0) THEN |
---|
| 650 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
| 651 | coef(1:ncum) = 1. |
---|
| 652 | ELSE |
---|
| 653 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
| 654 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
| 655 | END IF |
---|
| 656 | END IF |
---|
| 657 | |
---|
| 658 | IF (prt_level>=20) PRINT *, 'cv3p1_param FIN' |
---|
| 659 | RETURN |
---|
| 660 | END SUBROUTINE cv3p1_closure |
---|
| 661 | |
---|
| 662 | |
---|