| 1 | |
|---|
| 2 | ! $Id: conema3.F90 2346 2015-08-21 15:13:46Z oboucher $ |
|---|
| 3 | |
|---|
| 4 | SUBROUTINE conema3(dtime, paprs, pplay, t, q, u, v, tra, ntra, work1, work2, & |
|---|
| 5 | d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas, ktop, upwd, dnwd, dnwdbis, & |
|---|
| 6 | bas, top, ma, cape, tvp, rflag, pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, & |
|---|
| 7 | dplcldr, qcond_incld) |
|---|
| 8 | |
|---|
| 9 | USE dimphy |
|---|
| 10 | USE infotrac_phy, ONLY: nbtr |
|---|
| 11 | IMPLICIT NONE |
|---|
| 12 | ! ====================================================================== |
|---|
| 13 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
|---|
| 14 | ! Objet: schema de convection de Emanuel (1991) interface |
|---|
| 15 | ! Mai 1998: Interface modifiee pour implementation dans LMDZ |
|---|
| 16 | ! ====================================================================== |
|---|
| 17 | ! Arguments: |
|---|
| 18 | ! dtime---input-R-pas d'integration (s) |
|---|
| 19 | ! paprs---input-R-pression inter-couches (Pa) |
|---|
| 20 | ! pplay---input-R-pression au milieu des couches (Pa) |
|---|
| 21 | ! t-------input-R-temperature (K) |
|---|
| 22 | ! q-------input-R-humidite specifique (kg/kg) |
|---|
| 23 | ! u-------input-R-vitesse du vent zonal (m/s) |
|---|
| 24 | ! v-------input-R-vitesse duvent meridien (m/s) |
|---|
| 25 | ! tra-----input-R-tableau de rapport de melange des traceurs |
|---|
| 26 | ! work*: input et output: deux variables de travail, |
|---|
| 27 | ! on peut les mettre a 0 au debut |
|---|
| 28 | |
|---|
| 29 | ! d_t-----output-R-increment de la temperature |
|---|
| 30 | ! d_q-----output-R-increment de la vapeur d'eau |
|---|
| 31 | ! d_u-----output-R-increment de la vitesse zonale |
|---|
| 32 | ! d_v-----output-R-increment de la vitesse meridienne |
|---|
| 33 | ! d_tra---output-R-increment du contenu en traceurs |
|---|
| 34 | ! rain----output-R-la pluie (mm/s) |
|---|
| 35 | ! snow----output-R-la neige (mm/s) |
|---|
| 36 | ! kbas----output-R-bas du nuage (integer) |
|---|
| 37 | ! ktop----output-R-haut du nuage (integer) |
|---|
| 38 | ! upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
|---|
| 39 | ! dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
|---|
| 40 | ! dnwdbis-output-R-unsaturated downdraft mass flux (kg/m**2/s) |
|---|
| 41 | ! bas-----output-R-bas du nuage (real) |
|---|
| 42 | ! top-----output-R-haut du nuage (real) |
|---|
| 43 | ! Ma------output-R-flux ascendant non dilue (kg/m**2/s) |
|---|
| 44 | ! cape----output-R-CAPE |
|---|
| 45 | ! tvp-----output-R-virtual temperature of the lifted parcel |
|---|
| 46 | ! rflag---output-R-flag sur le fonctionnement de convect |
|---|
| 47 | ! pbase---output-R-pression a la base du nuage (Pa) |
|---|
| 48 | ! bbase---output-R-buoyancy a la base du nuage (K) |
|---|
| 49 | ! dtvpdt1-output-R-derivative of parcel virtual temp wrt T1 |
|---|
| 50 | ! dtvpdq1-output-R-derivative of parcel virtual temp wrt Q1 |
|---|
| 51 | ! dplcldt-output-R-derivative of the PCP pressure wrt T1 |
|---|
| 52 | ! dplcldr-output-R-derivative of the PCP pressure wrt Q1 |
|---|
| 53 | ! ====================================================================== |
|---|
| 54 | |
|---|
| 55 | include "conema3.h" |
|---|
| 56 | INTEGER i, l, m, itra |
|---|
| 57 | INTEGER ntra ! if no tracer transport |
|---|
| 58 | ! is needed, set ntra = 1 (or 0) |
|---|
| 59 | REAL dtime |
|---|
| 60 | |
|---|
| 61 | REAL d_t2(klon, klev), d_q2(klon, klev) ! sbl |
|---|
| 62 | REAL d_u2(klon, klev), d_v2(klon, klev) ! sbl |
|---|
| 63 | REAL em_d_t2(klev), em_d_q2(klev) ! sbl |
|---|
| 64 | REAL em_d_u2(klev), em_d_v2(klev) ! sbl |
|---|
| 65 | |
|---|
| 66 | REAL paprs(klon, klev+1), pplay(klon, klev) |
|---|
| 67 | REAL t(klon, klev), q(klon, klev), d_t(klon, klev), d_q(klon, klev) |
|---|
| 68 | REAL u(klon, klev), v(klon, klev), tra(klon, klev, ntra) |
|---|
| 69 | REAL d_u(klon, klev), d_v(klon, klev), d_tra(klon, klev, ntra) |
|---|
| 70 | REAL work1(klon, klev), work2(klon, klev) |
|---|
| 71 | REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) |
|---|
| 72 | REAL rain(klon) |
|---|
| 73 | REAL snow(klon) |
|---|
| 74 | REAL cape(klon), tvp(klon, klev), rflag(klon) |
|---|
| 75 | REAL pbase(klon), bbase(klon) |
|---|
| 76 | REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) |
|---|
| 77 | REAL dplcldt(klon), dplcldr(klon) |
|---|
| 78 | INTEGER kbas(klon), ktop(klon) |
|---|
| 79 | |
|---|
| 80 | REAL wd(klon) |
|---|
| 81 | REAL qcond_incld(klon, klev) |
|---|
| 82 | |
|---|
| 83 | LOGICAL, SAVE :: first = .TRUE. |
|---|
| 84 | !$OMP THREADPRIVATE(first) |
|---|
| 85 | |
|---|
| 86 | ! ym REAL em_t(klev) |
|---|
| 87 | REAL, ALLOCATABLE, SAVE :: em_t(:) |
|---|
| 88 | !$OMP THREADPRIVATE(em_t) |
|---|
| 89 | ! ym REAL em_q(klev) |
|---|
| 90 | REAL, ALLOCATABLE, SAVE :: em_q(:) |
|---|
| 91 | !$OMP THREADPRIVATE(em_q) |
|---|
| 92 | ! ym REAL em_qs(klev) |
|---|
| 93 | REAL, ALLOCATABLE, SAVE :: em_qs(:) |
|---|
| 94 | !$OMP THREADPRIVATE(em_qs) |
|---|
| 95 | ! ym REAL em_u(klev), em_v(klev), em_tra(klev,nbtr) |
|---|
| 96 | REAL, ALLOCATABLE, SAVE :: em_u(:), em_v(:), em_tra(:, :) |
|---|
| 97 | !$OMP THREADPRIVATE(em_u,em_v,em_tra) |
|---|
| 98 | ! ym REAL em_ph(klev+1), em_p(klev) |
|---|
| 99 | REAL, ALLOCATABLE, SAVE :: em_ph(:), em_p(:) |
|---|
| 100 | !$OMP THREADPRIVATE(em_ph,em_p) |
|---|
| 101 | ! ym REAL em_work1(klev), em_work2(klev) |
|---|
| 102 | REAL, ALLOCATABLE, SAVE :: em_work1(:), em_work2(:) |
|---|
| 103 | !$OMP THREADPRIVATE(em_work1,em_work2) |
|---|
| 104 | ! ym REAL em_precip, em_d_t(klev), em_d_q(klev) |
|---|
| 105 | REAL, SAVE :: em_precip |
|---|
| 106 | !$OMP THREADPRIVATE(em_precip) |
|---|
| 107 | REAL, ALLOCATABLE, SAVE :: em_d_t(:), em_d_q(:) |
|---|
| 108 | !$OMP THREADPRIVATE(em_d_t,em_d_q) |
|---|
| 109 | ! ym REAL em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr) |
|---|
| 110 | REAL, ALLOCATABLE, SAVE :: em_d_u(:), em_d_v(:), em_d_tra(:, :) |
|---|
| 111 | !$OMP THREADPRIVATE(em_d_u,em_d_v,em_d_tra) |
|---|
| 112 | ! ym REAL em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev) |
|---|
| 113 | REAL, ALLOCATABLE, SAVE :: em_upwd(:), em_dnwd(:), em_dnwdbis(:) |
|---|
| 114 | !$OMP THREADPRIVATE(em_upwd,em_dnwd,em_dnwdbis) |
|---|
| 115 | REAL em_dtvpdt1(klev), em_dtvpdq1(klev) |
|---|
| 116 | REAL em_dplcldt, em_dplcldr |
|---|
| 117 | ! ym SAVE em_t,em_q, em_qs, em_ph, em_p, em_work1, em_work2 |
|---|
| 118 | ! ym SAVE em_u,em_v, em_tra |
|---|
| 119 | ! ym SAVE em_d_u,em_d_v, em_d_tra |
|---|
| 120 | ! ym SAVE em_precip, em_d_t, em_d_q, em_upwd, em_dnwd, em_dnwdbis |
|---|
| 121 | |
|---|
| 122 | INTEGER em_bas, em_top |
|---|
| 123 | SAVE em_bas, em_top |
|---|
| 124 | !$OMP THREADPRIVATE(em_bas,em_top) |
|---|
| 125 | REAL em_wd |
|---|
| 126 | REAL em_qcond(klev) |
|---|
| 127 | REAL em_qcondc(klev) |
|---|
| 128 | |
|---|
| 129 | REAL zx_t, zx_qs, zdelta, zcor |
|---|
| 130 | INTEGER iflag |
|---|
| 131 | REAL sigsum |
|---|
| 132 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 133 | ! VARIABLES A SORTIR |
|---|
| 134 | ! ccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 135 | |
|---|
| 136 | ! ym REAL emmip(klev) !variation de flux ascnon dilue i et i+1 |
|---|
| 137 | REAL, ALLOCATABLE, SAVE :: emmip(:) |
|---|
| 138 | !$OMP THREADPRIVATE(emmip) |
|---|
| 139 | ! ym SAVE emmip |
|---|
| 140 | ! ym real emMke(klev) |
|---|
| 141 | REAL, ALLOCATABLE, SAVE :: emmke(:) |
|---|
| 142 | !$OMP THREADPRIVATE(emMke) |
|---|
| 143 | ! ym save emMke |
|---|
| 144 | REAL top |
|---|
| 145 | REAL bas |
|---|
| 146 | ! ym real emMa(klev) |
|---|
| 147 | REAL, ALLOCATABLE, SAVE :: emma(:) |
|---|
| 148 | !$OMP THREADPRIVATE(emMa) |
|---|
| 149 | ! ym save emMa |
|---|
| 150 | REAL ma(klon, klev) |
|---|
| 151 | REAL ment(klev, klev) |
|---|
| 152 | REAL qent(klev, klev) |
|---|
| 153 | REAL tps(klev), tls(klev) |
|---|
| 154 | REAL sij(klev, klev) |
|---|
| 155 | REAL em_cape, em_tvp(klev) |
|---|
| 156 | REAL em_pbase, em_bbase |
|---|
| 157 | INTEGER iw, j, k, ix, iy |
|---|
| 158 | |
|---|
| 159 | ! -- sb: pour schema nuages: |
|---|
| 160 | |
|---|
| 161 | INTEGER iflagcon |
|---|
| 162 | INTEGER em_ifc(klev) |
|---|
| 163 | |
|---|
| 164 | REAL em_pradj |
|---|
| 165 | REAL em_cldf(klev), em_cldq(klev) |
|---|
| 166 | REAL em_ftadj(klev), em_fradj(klev) |
|---|
| 167 | |
|---|
| 168 | INTEGER ifc(klon, klev) |
|---|
| 169 | REAL pradj(klon) |
|---|
| 170 | REAL cldf(klon, klev), cldq(klon, klev) |
|---|
| 171 | REAL ftadj(klon, klev), fqadj(klon, klev) |
|---|
| 172 | |
|---|
| 173 | ! sb -- |
|---|
| 174 | |
|---|
| 175 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 176 | |
|---|
| 177 | include "YOMCST.h" |
|---|
| 178 | include "YOETHF.h" |
|---|
| 179 | include "FCTTRE.h" |
|---|
| 180 | |
|---|
| 181 | IF (first) THEN |
|---|
| 182 | |
|---|
| 183 | ALLOCATE (em_t(klev)) |
|---|
| 184 | ALLOCATE (em_q(klev)) |
|---|
| 185 | ALLOCATE (em_qs(klev)) |
|---|
| 186 | ALLOCATE (em_u(klev), em_v(klev), em_tra(klev,nbtr)) |
|---|
| 187 | ALLOCATE (em_ph(klev+1), em_p(klev)) |
|---|
| 188 | ALLOCATE (em_work1(klev), em_work2(klev)) |
|---|
| 189 | ALLOCATE (em_d_t(klev), em_d_q(klev)) |
|---|
| 190 | ALLOCATE (em_d_u(klev), em_d_v(klev), em_d_tra(klev,nbtr)) |
|---|
| 191 | ALLOCATE (em_upwd(klev), em_dnwd(klev), em_dnwdbis(klev)) |
|---|
| 192 | ALLOCATE (emmip(klev)) |
|---|
| 193 | ALLOCATE (emmke(klev)) |
|---|
| 194 | ALLOCATE (emma(klev)) |
|---|
| 195 | |
|---|
| 196 | first = .FALSE. |
|---|
| 197 | END IF |
|---|
| 198 | |
|---|
| 199 | qcond_incld(:, :) = 0. |
|---|
| 200 | |
|---|
| 201 | ! @$$ print*,'debut conema' |
|---|
| 202 | |
|---|
| 203 | DO i = 1, klon |
|---|
| 204 | DO l = 1, klev + 1 |
|---|
| 205 | em_ph(l) = paprs(i, l)/100.0 |
|---|
| 206 | END DO |
|---|
| 207 | |
|---|
| 208 | DO l = 1, klev |
|---|
| 209 | em_p(l) = pplay(i, l)/100.0 |
|---|
| 210 | em_t(l) = t(i, l) |
|---|
| 211 | em_q(l) = q(i, l) |
|---|
| 212 | em_u(l) = u(i, l) |
|---|
| 213 | em_v(l) = v(i, l) |
|---|
| 214 | DO itra = 1, ntra |
|---|
| 215 | em_tra(l, itra) = tra(i, l, itra) |
|---|
| 216 | END DO |
|---|
| 217 | ! @$$ print*,'em_t',em_t |
|---|
| 218 | ! @$$ print*,'em_q',em_q |
|---|
| 219 | ! @$$ print*,'em_qs',em_qs |
|---|
| 220 | ! @$$ print*,'em_u',em_u |
|---|
| 221 | ! @$$ print*,'em_v',em_v |
|---|
| 222 | ! @$$ print*,'em_tra',em_tra |
|---|
| 223 | ! @$$ print*,'em_p',em_p |
|---|
| 224 | |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | zx_t = em_t(l) |
|---|
| 228 | zdelta = max(0., sign(1.,rtt-zx_t)) |
|---|
| 229 | zx_qs = r2es*foeew(zx_t, zdelta)/em_p(l)/100.0 |
|---|
| 230 | zx_qs = min(0.5, zx_qs) |
|---|
| 231 | ! @$$ print*,'zx_qs',zx_qs |
|---|
| 232 | zcor = 1./(1.-retv*zx_qs) |
|---|
| 233 | zx_qs = zx_qs*zcor |
|---|
| 234 | em_qs(l) = zx_qs |
|---|
| 235 | ! @$$ print*,'em_qs',em_qs |
|---|
| 236 | |
|---|
| 237 | em_work1(l) = work1(i, l) |
|---|
| 238 | em_work2(l) = work2(i, l) |
|---|
| 239 | emmke(l) = 0 |
|---|
| 240 | ! emMa(l)=0 |
|---|
| 241 | ! Ma(i,l)=0 |
|---|
| 242 | |
|---|
| 243 | em_dtvpdt1(l) = 0. |
|---|
| 244 | em_dtvpdq1(l) = 0. |
|---|
| 245 | dtvpdt1(i, l) = 0. |
|---|
| 246 | dtvpdq1(i, l) = 0. |
|---|
| 247 | END DO |
|---|
| 248 | |
|---|
| 249 | em_dplcldt = 0. |
|---|
| 250 | em_dplcldr = 0. |
|---|
| 251 | rain(i) = 0.0 |
|---|
| 252 | snow(i) = 0.0 |
|---|
| 253 | kbas(i) = 1 |
|---|
| 254 | ktop(i) = 1 |
|---|
| 255 | ! ajout SB: |
|---|
| 256 | bas = 1 |
|---|
| 257 | top = 1 |
|---|
| 258 | |
|---|
| 259 | |
|---|
| 260 | ! sb3d write(*,1792) (em_work1(m),m=1,klev) |
|---|
| 261 | 1792 FORMAT ('sig avant convect ', /, 10(1X,E13.5)) |
|---|
| 262 | |
|---|
| 263 | ! sb d write(*,1793) (em_work2(m),m=1,klev) |
|---|
| 264 | 1793 FORMAT ('w avant convect ', /, 10(1X,E13.5)) |
|---|
| 265 | |
|---|
| 266 | ! @$$ print*,'avant convect' |
|---|
| 267 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 268 | |
|---|
| 269 | |
|---|
| 270 | ! print*,'avant convect i=',i |
|---|
| 271 | CALL convect3(dtime, epmax, ok_adj_ema, em_t, em_q, em_qs, em_u, em_v, & |
|---|
| 272 | em_tra, em_p, em_ph, klev, klev+1, klev-1, ntra, dtime, iflag, em_d_t, & |
|---|
| 273 | em_d_q, em_d_u, em_d_v, em_d_tra, em_precip, em_bas, em_top, em_upwd, & |
|---|
| 274 | em_dnwd, em_dnwdbis, em_work1, em_work2, emmip, emmke, emma, ment, & |
|---|
| 275 | qent, tps, tls, sij, em_cape, em_tvp, em_pbase, em_bbase, em_dtvpdt1, & |
|---|
| 276 | em_dtvpdq1, em_dplcldt, em_dplcldr, & ! sbl |
|---|
| 277 | em_d_t2, em_d_q2, em_d_u2, em_d_v2, em_wd, em_qcond, em_qcondc) !sbl |
|---|
| 278 | ! print*,'apres convect ' |
|---|
| 279 | |
|---|
| 280 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 281 | |
|---|
| 282 | ! -- sb: Appel schema statistique de nuages couple a la convection |
|---|
| 283 | ! (Bony et Emanuel 2001): |
|---|
| 284 | |
|---|
| 285 | ! -- creer cvthermo.h qui contiendra les cstes thermo de LMDZ: |
|---|
| 286 | |
|---|
| 287 | iflagcon = 3 |
|---|
| 288 | ! CALL cv_thermo(iflagcon) |
|---|
| 289 | |
|---|
| 290 | ! -- appel schema de nuages: |
|---|
| 291 | |
|---|
| 292 | ! CALL CLOUDS_SUB_LS(klev,em_q,em_qs,em_t |
|---|
| 293 | ! i ,em_p,em_ph,dtime,em_qcondc |
|---|
| 294 | ! o ,em_cldf,em_cldq,em_pradj,em_ftadj,em_fradj,em_ifc) |
|---|
| 295 | |
|---|
| 296 | DO k = 1, klev |
|---|
| 297 | cldf(i, k) = em_cldf(k) ! cloud fraction (0-1) |
|---|
| 298 | cldq(i, k) = em_cldq(k) ! in-cloud water content (kg/kg) |
|---|
| 299 | ftadj(i, k) = em_ftadj(k) ! (dT/dt)_{LS adj} (K/s) |
|---|
| 300 | fqadj(i, k) = em_fradj(k) ! (dq/dt)_{LS adj} (kg/kg/s) |
|---|
| 301 | ifc(i, k) = em_ifc(k) ! flag convergence clouds_gno (1 ou 2) |
|---|
| 302 | END DO |
|---|
| 303 | pradj(i) = em_pradj ! precip from LS supersat adj (mm/day) |
|---|
| 304 | |
|---|
| 305 | ! sb -- |
|---|
| 306 | |
|---|
| 307 | ! SB: |
|---|
| 308 | IF (iflag/=1 .AND. iflag/=4) THEN |
|---|
| 309 | em_cape = 0. |
|---|
| 310 | DO l = 1, klev |
|---|
| 311 | em_upwd(l) = 0. |
|---|
| 312 | em_dnwd(l) = 0. |
|---|
| 313 | em_dnwdbis(l) = 0. |
|---|
| 314 | emma(l) = 0. |
|---|
| 315 | em_tvp(l) = 0. |
|---|
| 316 | END DO |
|---|
| 317 | END IF |
|---|
| 318 | ! fin SB |
|---|
| 319 | |
|---|
| 320 | ! If sig has been set to zero, then set Ma to zero |
|---|
| 321 | |
|---|
| 322 | sigsum = 0. |
|---|
| 323 | DO k = 1, klev |
|---|
| 324 | sigsum = sigsum + em_work1(k) |
|---|
| 325 | END DO |
|---|
| 326 | IF (sigsum==0.0) THEN |
|---|
| 327 | DO k = 1, klev |
|---|
| 328 | emma(k) = 0. |
|---|
| 329 | END DO |
|---|
| 330 | END IF |
|---|
| 331 | |
|---|
| 332 | ! sb3d print*,'i, iflag=',i,iflag |
|---|
| 333 | |
|---|
| 334 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 335 | |
|---|
| 336 | ! SORTIE DES ICB ET INB |
|---|
| 337 | ! en fait inb et icb correspondent au niveau ou se trouve |
|---|
| 338 | ! le nuage,le numero d'interface |
|---|
| 339 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
|---|
| 340 | |
|---|
| 341 | ! modif SB: |
|---|
| 342 | IF (iflag==1 .OR. iflag==4) THEN |
|---|
| 343 | top = em_top |
|---|
| 344 | bas = em_bas |
|---|
| 345 | kbas(i) = em_bas |
|---|
| 346 | ktop(i) = em_top |
|---|
| 347 | END IF |
|---|
| 348 | |
|---|
| 349 | pbase(i) = em_pbase |
|---|
| 350 | bbase(i) = em_bbase |
|---|
| 351 | rain(i) = em_precip/86400.0 |
|---|
| 352 | snow(i) = 0.0 |
|---|
| 353 | cape(i) = em_cape |
|---|
| 354 | wd(i) = em_wd |
|---|
| 355 | rflag(i) = real(iflag) |
|---|
| 356 | ! SB kbas(i) = em_bas |
|---|
| 357 | ! SB ktop(i) = em_top |
|---|
| 358 | dplcldt(i) = em_dplcldt |
|---|
| 359 | dplcldr(i) = em_dplcldr |
|---|
| 360 | DO l = 1, klev |
|---|
| 361 | d_t2(i, l) = dtime*em_d_t2(l) |
|---|
| 362 | d_q2(i, l) = dtime*em_d_q2(l) |
|---|
| 363 | d_u2(i, l) = dtime*em_d_u2(l) |
|---|
| 364 | d_v2(i, l) = dtime*em_d_v2(l) |
|---|
| 365 | |
|---|
| 366 | d_t(i, l) = dtime*em_d_t(l) |
|---|
| 367 | d_q(i, l) = dtime*em_d_q(l) |
|---|
| 368 | d_u(i, l) = dtime*em_d_u(l) |
|---|
| 369 | d_v(i, l) = dtime*em_d_v(l) |
|---|
| 370 | DO itra = 1, ntra |
|---|
| 371 | d_tra(i, l, itra) = dtime*em_d_tra(l, itra) |
|---|
| 372 | END DO |
|---|
| 373 | upwd(i, l) = em_upwd(l) |
|---|
| 374 | dnwd(i, l) = em_dnwd(l) |
|---|
| 375 | dnwdbis(i, l) = em_dnwdbis(l) |
|---|
| 376 | work1(i, l) = em_work1(l) |
|---|
| 377 | work2(i, l) = em_work2(l) |
|---|
| 378 | ma(i, l) = emma(l) |
|---|
| 379 | tvp(i, l) = em_tvp(l) |
|---|
| 380 | dtvpdt1(i, l) = em_dtvpdt1(l) |
|---|
| 381 | dtvpdq1(i, l) = em_dtvpdq1(l) |
|---|
| 382 | |
|---|
| 383 | IF (iflag_clw==0) THEN |
|---|
| 384 | qcond_incld(i, l) = em_qcondc(l) |
|---|
| 385 | ELSE IF (iflag_clw==1) THEN |
|---|
| 386 | qcond_incld(i, l) = em_qcond(l) |
|---|
| 387 | END IF |
|---|
| 388 | END DO |
|---|
| 389 | END DO |
|---|
| 390 | |
|---|
| 391 | ! On calcule une eau liquide diagnostique en fonction de la |
|---|
| 392 | ! precip. |
|---|
| 393 | IF (iflag_clw==2) THEN |
|---|
| 394 | DO l = 1, klev |
|---|
| 395 | DO i = 1, klon |
|---|
| 396 | IF (ktop(i)-kbas(i)>0 .AND. l>=kbas(i) .AND. l<=ktop(i)) THEN |
|---|
| 397 | qcond_incld(i, l) = rain(i)*8.E4 & ! s *(pplay(i,l |
|---|
| 398 | ! )-paprs(i,ktop(i)+1)) |
|---|
| 399 | /(pplay(i,kbas(i))-pplay(i,ktop(i))) |
|---|
| 400 | ! s **2 |
|---|
| 401 | ELSE |
|---|
| 402 | qcond_incld(i, l) = 0. |
|---|
| 403 | END IF |
|---|
| 404 | END DO |
|---|
| 405 | PRINT *, 'l=', l, ', qcond_incld=', qcond_incld(1, l) |
|---|
| 406 | END DO |
|---|
| 407 | END IF |
|---|
| 408 | |
|---|
| 409 | |
|---|
| 410 | RETURN |
|---|
| 411 | END SUBROUTINE conema3 |
|---|
| 412 | |
|---|