1 | ! |
---|
2 | ! |
---|
3 | ! |
---|
4 | SUBROUTINE coefcdrag (klon, knon, nsrf, zxli, & |
---|
5 | speed, t, q, zgeop, psol, & |
---|
6 | ts, qsurf, rugos, okri, ri1, & |
---|
7 | cdram, cdrah, cdran, zri1, pref) |
---|
8 | |
---|
9 | USE indice_sol_mod |
---|
10 | |
---|
11 | IMPLICIT none |
---|
12 | !------------------------------------------------------------------------- |
---|
13 | ! Objet : calcul des cdrags pour le moment (cdram) et les flux de chaleur |
---|
14 | ! sensible et latente (cdrah), du cdrag neutre (cdran), |
---|
15 | ! du nombre de Richardson entre la surface et le niveau de reference |
---|
16 | ! (zri1) et de la pression au niveau de reference (pref). |
---|
17 | ! |
---|
18 | ! I. Musat, 01.07.2002 |
---|
19 | !------------------------------------------------------------------------- |
---|
20 | ! |
---|
21 | ! klon----input-I- dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) |
---|
22 | ! knon----input-I- nombre de points pour un type de surface |
---|
23 | ! nsrf----input-I- indice pour le type de surface; voir indice_sol_mod.F90 |
---|
24 | ! zxli----input-L- TRUE si calcul des cdrags selon Laurent Li |
---|
25 | ! speed---input-R- module du vent au 1er niveau du modele |
---|
26 | ! t-------input-R- temperature de l'air au 1er niveau du modele |
---|
27 | ! q-------input-R- humidite de l'air au 1er niveau du modele |
---|
28 | ! zgeop---input-R- geopotentiel au 1er niveau du modele |
---|
29 | ! psol----input-R- pression au sol |
---|
30 | ! ts------input-R- temperature de l'air a la surface |
---|
31 | ! qsurf---input-R- humidite de l'air a la surface |
---|
32 | ! rugos---input-R- rugosite |
---|
33 | ! okri----input-L- TRUE si on veut tester le nb. Richardson entre la sfce |
---|
34 | ! et zref par rapport au Ri entre la sfce et la 1ere couche |
---|
35 | ! ri1-----input-R- nb. Richardson entre la surface et la 1ere couche |
---|
36 | ! |
---|
37 | ! cdram--output-R- cdrag pour le moment |
---|
38 | ! cdrah--output-R- cdrag pour les flux de chaleur latente et sensible |
---|
39 | ! cdran--output-R- cdrag neutre |
---|
40 | ! zri1---output-R- nb. Richardson entre la surface et la couche zgeop/RG |
---|
41 | ! pref---output-R- pression au niveau zgeop/RG |
---|
42 | ! |
---|
43 | INTEGER, intent(in) :: klon, knon, nsrf |
---|
44 | LOGICAL, intent(in) :: zxli |
---|
45 | REAL, dimension(klon), intent(in) :: speed, t, q, zgeop, psol |
---|
46 | REAL, dimension(klon), intent(in) :: ts, qsurf, rugos, ri1 |
---|
47 | LOGICAL, intent(in) :: okri |
---|
48 | ! |
---|
49 | REAL, dimension(klon), intent(out) :: cdram, cdrah, cdran, zri1, pref |
---|
50 | !------------------------------------------------------------------------- |
---|
51 | ! |
---|
52 | include "YOMCST.h" |
---|
53 | include "YOETHF.h" |
---|
54 | INCLUDE "clesphys.h" |
---|
55 | ! Quelques constantes : |
---|
56 | REAL, parameter :: RKAR=0.40, CB=5.0, CC=5.0, CD=5.0, cepdu2=(0.1)**2 |
---|
57 | ! |
---|
58 | ! Variables locales : |
---|
59 | INTEGER :: i |
---|
60 | REAL, dimension(klon) :: zdu2, zdphi, ztsolv, ztvd |
---|
61 | REAL, dimension(klon) :: zscf, friv, frih, zucf, zcr |
---|
62 | REAL, dimension(klon) :: zcfm1, zcfh1 |
---|
63 | REAL, dimension(klon) :: zcfm2, zcfh2 |
---|
64 | REAL, dimension(klon) :: trm0, trm1 |
---|
65 | |
---|
66 | !------------------------------------------------------------------------- |
---|
67 | REAL :: fsta, fins, x |
---|
68 | fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
---|
69 | fins(x) = SQRT(1.0-18.0*x) |
---|
70 | !------------------------------------------------------------------------- |
---|
71 | ! |
---|
72 | DO i = 1, knon |
---|
73 | ! |
---|
74 | zdphi(i) = zgeop(i) |
---|
75 | zdu2(i) = max(cepdu2,speed(i)**2) |
---|
76 | pref(i) = exp(log(psol(i)) - zdphi(i)/(RD*t(i)* & |
---|
77 | (1.+ RETV * max(q(i),0.0)))) |
---|
78 | ztsolv(i) = ts(i) |
---|
79 | ! ztvd(i) = t(i) * (psol(i)/pref(i))**RKAPPA |
---|
80 | ztvd(i) = (t(i)+zdphi(i)/RCPD/(1.+RVTMP2*q(i))) & |
---|
81 | *(1.+RETV*q(i)) |
---|
82 | trm0(i) = 1. + RETV * max(qsurf(i),0.0) |
---|
83 | trm1(i) = 1. + RETV * max(q(i),0.0) |
---|
84 | ztsolv(i) = ztsolv(i) * trm0(i) |
---|
85 | ! ztvd(i) = ztvd(i) * trm1(i) |
---|
86 | zri1(i) = zdphi(i)*(ztvd(i)-ztsolv(i))/(zdu2(i)*ztvd(i)) |
---|
87 | ! |
---|
88 | ! on teste zri1 par rapport au Richardson de la 1ere couche ri1 |
---|
89 | ! |
---|
90 | !IM +++ |
---|
91 | IF(1.EQ.0) THEN |
---|
92 | IF (okri) THEN |
---|
93 | IF (ri1(i).GE.0.0.AND.zri1(i).LT.0.0) THEN |
---|
94 | zri1(i) = ri1(i) |
---|
95 | ELSE IF(ri1(i).LT.0.0.AND.zri1(i).GE.0.0) THEN |
---|
96 | zri1(i) = ri1(i) |
---|
97 | ENDIF |
---|
98 | ENDIF |
---|
99 | ENDIF |
---|
100 | !IM --- |
---|
101 | ! |
---|
102 | cdran(i) = (RKAR/log(1.+zdphi(i)/(RG*rugos(i))))**2 |
---|
103 | |
---|
104 | IF (zri1(i) .ge. 0.) THEN |
---|
105 | ! |
---|
106 | ! situation stable : pour eviter les inconsistances dans les cas |
---|
107 | ! tres stables on limite zri1 a 20. cf Hess et al. (1995) |
---|
108 | ! |
---|
109 | zri1(i) = min(20.,zri1(i)) |
---|
110 | ! |
---|
111 | IF (.NOT.zxli) THEN |
---|
112 | zscf(i) = SQRT(1.+CD*ABS(zri1(i))) |
---|
113 | friv(i) = max(1. / (1.+2.*CB*zri1(i)/ zscf(i)), f_ri_cd_min) |
---|
114 | zcfm1(i) = cdran(i) * friv(i) |
---|
115 | frih(i) = max(1./ (1.+3.*CB*zri1(i)*zscf(i)), f_ri_cd_min ) |
---|
116 | ! zcfh1(i) = cdran(i) * frih(i) |
---|
117 | zcfh1(i) = f_cdrag_ter*cdran(i) * frih(i) |
---|
118 | IF(nsrf.EQ.is_oce) zcfh1(i)=f_cdrag_oce*cdran(i)*frih(i) |
---|
119 | cdram(i) = zcfm1(i) |
---|
120 | cdrah(i) = zcfh1(i) |
---|
121 | ELSE |
---|
122 | cdram(i) = cdran(i)* fsta(zri1(i)) |
---|
123 | cdrah(i) = cdran(i)* fsta(zri1(i)) |
---|
124 | ENDIF |
---|
125 | ! |
---|
126 | ELSE |
---|
127 | ! |
---|
128 | ! situation instable |
---|
129 | ! |
---|
130 | IF (.NOT.zxli) THEN |
---|
131 | zucf(i) = 1./(1.+3.0*CB*CC*cdran(i)*SQRT(ABS(zri1(i)) & |
---|
132 | *(1.0+zdphi(i)/(RG*rugos(i))))) |
---|
133 | zcfm2(i) = cdran(i)*max((1.-2.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
---|
134 | ! zcfh2(i) = cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
---|
135 | zcfh2(i) = f_cdrag_ter*cdran(i)*max((1.-3.0*CB*zri1(i)*zucf(i)),f_ri_cd_min) |
---|
136 | cdram(i) = zcfm2(i) |
---|
137 | cdrah(i) = zcfh2(i) |
---|
138 | ELSE |
---|
139 | cdram(i) = cdran(i)* fins(zri1(i)) |
---|
140 | cdrah(i) = cdran(i)* fins(zri1(i)) |
---|
141 | ENDIF |
---|
142 | ! |
---|
143 | ! cdrah sur l'ocean cf. Miller et al. (1992) |
---|
144 | ! |
---|
145 | zcr(i) = (0.0016/(cdran(i)*SQRT(zdu2(i))))*ABS(ztvd(i)-ztsolv(i)) & |
---|
146 | **(1./3.) |
---|
147 | ! IF (nsrf.EQ.is_oce) cdrah(i) = cdran(i)*(1.0+zcr(i)**1.25) & |
---|
148 | ! **(1./1.25) |
---|
149 | IF (nsrf.EQ.is_oce) cdrah(i)=f_cdrag_oce*cdran(i)*(1.0+zcr(i)**1.25) & |
---|
150 | **(1./1.25) |
---|
151 | ENDIF |
---|
152 | ! |
---|
153 | END DO |
---|
154 | RETURN |
---|
155 | END SUBROUTINE coefcdrag |
---|