1 | module ACAMA_GWD_rando_m |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | SUBROUTINE ACAMA_GWD_rando(DTIME, pp, plat, tt, uu, vv, rot, & |
---|
8 | zustr, zvstr, d_u, d_v,east_gwstress,west_gwstress) |
---|
9 | |
---|
10 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
11 | ! number of gravity waves. |
---|
12 | ! Author: F. Lott, A. de la Camara |
---|
13 | ! July, 24th, 2014 |
---|
14 | ! Gaussian distribution of the source, source is vorticity squared |
---|
15 | ! Reference: de la Camara and Lott (GRL, 2015, vol 42, 2071-2078 ) |
---|
16 | ! Lott et al (JAS, 2010, vol 67, page 157-170) |
---|
17 | ! Lott et al (JAS, 2012, vol 69, page 2134-2151) |
---|
18 | |
---|
19 | ! ONLINE: |
---|
20 | use dimphy, only: klon, klev |
---|
21 | use assert_m, only: assert |
---|
22 | include "YOMCST.h" |
---|
23 | include "clesphys.h" |
---|
24 | ! OFFLINE: |
---|
25 | ! include "dimensions.h" |
---|
26 | ! include "dimphy.h" |
---|
27 | !END DIFFERENCE |
---|
28 | include "YOEGWD.h" |
---|
29 | |
---|
30 | ! 0. DECLARATIONS: |
---|
31 | |
---|
32 | ! 0.1 INPUTS |
---|
33 | REAL, intent(in)::DTIME ! Time step of the Physics |
---|
34 | REAL, intent(in):: PP(:, :) ! (KLON, KLEV) Pressure at full levels |
---|
35 | REAL, intent(in):: ROT(:,:) ! Relative vorticity |
---|
36 | REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels |
---|
37 | REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
---|
38 | REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
---|
39 | REAL, intent(in):: PLAT(:) ! (KLON) LATITUDE |
---|
40 | |
---|
41 | ! 0.2 OUTPUTS |
---|
42 | REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
---|
43 | |
---|
44 | REAL, intent(inout):: d_u(:, :), d_v(:, :) |
---|
45 | REAL, intent(inout):: east_gwstress(:, :) ! Profile of eastward stress |
---|
46 | REAL, intent(inout):: west_gwstress(:, :) ! Profile of westward stress |
---|
47 | ! (KLON, KLEV) tendencies on winds |
---|
48 | |
---|
49 | ! O.3 INTERNAL ARRAYS |
---|
50 | REAL BVLOW(klon) ! LOW LEVEL BV FREQUENCY |
---|
51 | REAL ROTBA(KLON),CORIO(KLON) ! BAROTROPIC REL. VORTICITY AND PLANETARY |
---|
52 | REAL UZ(KLON, KLEV + 1) |
---|
53 | |
---|
54 | INTEGER II, JJ, LL |
---|
55 | |
---|
56 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
57 | |
---|
58 | REAL DELTAT |
---|
59 | |
---|
60 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
61 | |
---|
62 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
63 | INTEGER JK, JP, JO, JW |
---|
64 | INTEGER, PARAMETER:: NA = 5 !number of realizations to get the phase speed |
---|
65 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
66 | REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
---|
67 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
68 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
---|
69 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
---|
70 | REAL ZO(NW, KLON) ! Absolute frequency ! |
---|
71 | |
---|
72 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
73 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
---|
74 | |
---|
75 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
76 | REAL WWM(NW, KLON), WWP(NW, KLON) |
---|
77 | |
---|
78 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
---|
79 | |
---|
80 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
---|
81 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
82 | |
---|
83 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
84 | |
---|
85 | REAL XLAUNCH ! Controle the launching altitude |
---|
86 | REAL XTROP ! SORT of Tropopause altitude |
---|
87 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
88 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
89 | |
---|
90 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
91 | ! for GWs parameterisation apply |
---|
92 | |
---|
93 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
94 | |
---|
95 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
96 | REAL CORSEC ! SECURITY FOR INTRINSIC CORIOLIS |
---|
97 | REAL RUWFRT,SATFRT |
---|
98 | |
---|
99 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
100 | |
---|
101 | REAL H0 ! Characteristic Height of the atmosphere |
---|
102 | REAL DZ ! Characteristic depth of the source! |
---|
103 | REAL PR, TR ! Reference Pressure and Temperature |
---|
104 | |
---|
105 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
106 | |
---|
107 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
108 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
109 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
110 | REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels |
---|
111 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
112 | REAL BVSEC ! Security to avoid negative BVF |
---|
113 | |
---|
114 | !----------------------------------------------------------------- |
---|
115 | |
---|
116 | ! 1. INITIALISATIONS |
---|
117 | |
---|
118 | ! 1.1 Basic parameter |
---|
119 | |
---|
120 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
121 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
122 | ! at constant pressure, earth rotation rate, pi). |
---|
123 | |
---|
124 | ! 1.2 Tuning parameters of V14 |
---|
125 | |
---|
126 | ! Values for linear in rot (recommended): |
---|
127 | ! RUWFRT=0.005 ! As RUWMAX but for frontal waves |
---|
128 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
129 | ! Values when rot^2 is used |
---|
130 | ! RUWFRT=0.02 ! As RUWMAX but for frontal waves |
---|
131 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
132 | ! CMAX = 30. ! Characteristic phase speed |
---|
133 | ! Values when rot^2*EXP(-pi*sqrt(J)) is used |
---|
134 | RUWFRT=2.0 ! As RUWMAX but for frontal waves ~ N0*F0/4*DZ |
---|
135 | SATFRT=0.60 ! As SAT but for frontal waves |
---|
136 | CMAX = 40. ! Characteristic phase speed |
---|
137 | ! Phase speed test |
---|
138 | ! RUWFRT=0.01 |
---|
139 | ! CMAX = 50. ! Characteristic phase speed (TEST) |
---|
140 | ! Values when rot^2 and exp(-m^2*dz^2) are used |
---|
141 | ! RUWFRT=0.03 ! As RUWMAX but for frontal waves |
---|
142 | ! SATFRT=1.00 ! As SAT but for frontal waves |
---|
143 | ! CRUCIAL PARAMETERS FOR THE WIND FILTERING |
---|
144 | XLAUNCH=0.95 ! Parameter that control launching altitude |
---|
145 | RDISS = 1 ! Diffusion parameter |
---|
146 | |
---|
147 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
148 | |
---|
149 | DZ = 1000. ! Characteristic depth of the source |
---|
150 | XTROP=0.2 ! Parameter that control tropopause altitude |
---|
151 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
---|
152 | ! DELTAT=DTIME ! No AR-1 Accumulation, OR OFFLINE |
---|
153 | |
---|
154 | KMIN = 2.E-5 |
---|
155 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
156 | |
---|
157 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
158 | CMIN = 1. ! Min phase velocity |
---|
159 | |
---|
160 | TR = 240. ! Reference Temperature |
---|
161 | PR = 101300. ! Reference pressure |
---|
162 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
163 | |
---|
164 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
165 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
166 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
167 | CORSEC = ROMEGA*2.*SIN(2.*RPI/180.)! Security for CORIO |
---|
168 | |
---|
169 | ! ONLINE |
---|
170 | call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
171 | size(vv, 1), size(rot,1), size(zustr), size(zvstr), size(d_u, 1), & |
---|
172 | size(d_v, 1), & |
---|
173 | size(east_gwstress,1), size(west_gwstress,1) /), & |
---|
174 | "ACAMA_GWD_RANDO klon") |
---|
175 | call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
176 | size(vv, 2), size(d_u, 2), size(d_v, 2), & |
---|
177 | size(east_gwstress,2), size(west_gwstress,2) /), & |
---|
178 | "ACAMA_GWD_RANDO klev") |
---|
179 | ! END ONLINE |
---|
180 | |
---|
181 | IF(DELTAT < DTIME)THEN |
---|
182 | PRINT *, 'flott_gwd_rando: deltat < dtime!' |
---|
183 | STOP 1 |
---|
184 | ENDIF |
---|
185 | |
---|
186 | IF (KLEV < NW) THEN |
---|
187 | PRINT *, 'flott_gwd_rando: you will have problem with random numbers' |
---|
188 | STOP 1 |
---|
189 | ENDIF |
---|
190 | |
---|
191 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
192 | |
---|
193 | ! Pressure and Inv of pressure |
---|
194 | DO LL = 2, KLEV |
---|
195 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
196 | PHM1(:, LL) = 1. / PH(:, LL) |
---|
197 | end DO |
---|
198 | |
---|
199 | PH(:, KLEV + 1) = 0. |
---|
200 | PHM1(:, KLEV + 1) = 1. / PSEC |
---|
201 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
202 | |
---|
203 | ! Launching altitude |
---|
204 | |
---|
205 | LAUNCH=0 |
---|
206 | LTROP =0 |
---|
207 | DO LL = 1, KLEV |
---|
208 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XLAUNCH) LAUNCH = LL |
---|
209 | ENDDO |
---|
210 | DO LL = 1, KLEV |
---|
211 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XTROP) LTROP = LL |
---|
212 | ENDDO |
---|
213 | |
---|
214 | ! PRINT *,'LAUNCH IN ACAMARA:',LAUNCH |
---|
215 | |
---|
216 | ! Log pressure vert. coordinate |
---|
217 | DO LL = 1, KLEV + 1 |
---|
218 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
219 | end DO |
---|
220 | |
---|
221 | ! BV frequency |
---|
222 | DO LL = 2, KLEV |
---|
223 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
224 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
225 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
226 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
227 | end DO |
---|
228 | BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
---|
229 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
---|
230 | - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
---|
231 | |
---|
232 | UH(:, 1) = UH(:, 2) |
---|
233 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
234 | BV(:, 1) = UH(:, 2) |
---|
235 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
236 | ! SMOOTHING THE BV HELPS |
---|
237 | DO LL = 2, KLEV |
---|
238 | BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
---|
239 | end DO |
---|
240 | |
---|
241 | BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
242 | BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
243 | |
---|
244 | ! WINDS |
---|
245 | DO LL = 2, KLEV |
---|
246 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
247 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
248 | UZ(:, LL) = ABS((SQRT(UU(:, LL)**2+VV(:, LL)**2) & |
---|
249 | - SQRT(UU(:,LL-1)**2+VV(:, LL-1)**2)) & |
---|
250 | /(ZH(:, LL)-ZH(:, LL-1)) ) |
---|
251 | end DO |
---|
252 | UH(:, 1) = 0. |
---|
253 | VH(:, 1) = 0. |
---|
254 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
255 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
256 | |
---|
257 | UZ(:, 1) = UZ(:, 2) |
---|
258 | UZ(:, KLEV + 1) = UZ(:, KLEV) |
---|
259 | UZ(:, :) = MAX(UZ(:,:), PSEC) |
---|
260 | |
---|
261 | ! BAROTROPIC VORTICITY AND INTEGRATED CORIOLIS PARAMETER |
---|
262 | |
---|
263 | CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),CORSEC) |
---|
264 | ROTBA(:)=0. |
---|
265 | DO LL = 1,KLEV-1 |
---|
266 | !ROTBA(:) = ROTBA(:) + (ROT(:,LL)+ROT(:,LL+1))/2./RG*(PP(:,LL)-PP(:,LL+1)) |
---|
267 | ! Introducing the complete formula (exp of Richardson number): |
---|
268 | ROTBA(:) = ROTBA(:) + & |
---|
269 | !((ROT(:,LL)+ROT(:,LL+1))/2.)**2 & |
---|
270 | (CORIO(:)*TANH(ABS(ROT(:,LL)+ROT(:,LL+1))/2./CORIO(:)))**2 & |
---|
271 | /RG*(PP(:,LL)-PP(:,LL+1)) & |
---|
272 | * EXP(-RPI*BV(:,LL+1)/UZ(:,LL+1)) & |
---|
273 | ! * DZ*BV(:,LL+1)/4./ABS(CORIO(:)) |
---|
274 | * DZ*BV(:,LL+1)/4./1.E-4 ! Changes after 1991 |
---|
275 | !ARRET |
---|
276 | ENDDO |
---|
277 | ! PRINT *,'MAX ROTBA:',MAXVAL(ROTBA) |
---|
278 | ! ROTBA(:)=(1.*ROTBA(:) & ! Testing zone |
---|
279 | ! +0.15*CORIO(:)**2 & |
---|
280 | ! /(COS(PLAT(:)*RPI/180.)+0.02) & |
---|
281 | ! )*DZ*0.01/0.0001/4. ! & ! Testing zone |
---|
282 | ! MODIF GWD4 AFTER 1985 |
---|
283 | ! *(1.25+SIN(PLAT(:)*RPI/180.))/(1.05+SIN(PLAT(:)*RPI/180.))/1.25 |
---|
284 | ! *1./(COS(PLAT(:)*RPI/180.)+0.02) |
---|
285 | ! CORIO(:) = MAX(ROMEGA*2.*ABS(SIN(PLAT(:)*RPI/180.)),ZOISEC)/RG*PP(:,1) |
---|
286 | |
---|
287 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
288 | |
---|
289 | ! The mod functions of weird arguments are used to produce the |
---|
290 | ! waves characteristics in an almost stochastic way |
---|
291 | |
---|
292 | JW = 0 |
---|
293 | DO JP = 1, NP |
---|
294 | DO JK = 1, NK |
---|
295 | DO JO = 1, NO |
---|
296 | JW = JW + 1 |
---|
297 | ! Angle |
---|
298 | DO II = 1, KLON |
---|
299 | ! Angle (0 or PI so far) |
---|
300 | ! ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) & |
---|
301 | ! * RPI / 2. |
---|
302 | ! Angle between 0 and pi |
---|
303 | ZP(JW, II) = MOD(TT(II, JW) * 10., 1.) * RPI |
---|
304 | ! TEST WITH POSITIVE WAVES ONLY (Part I/II) |
---|
305 | ! ZP(JW, II) = 0. |
---|
306 | ! Horizontal wavenumber amplitude |
---|
307 | ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
---|
308 | ! Horizontal phase speed |
---|
309 | CPHA = 0. |
---|
310 | DO JJ = 1, NA |
---|
311 | CPHA = CPHA + & |
---|
312 | CMAX*2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
313 | END DO |
---|
314 | IF (CPHA.LT.0.) THEN |
---|
315 | CPHA = -1.*CPHA |
---|
316 | ZP(JW,II) = ZP(JW,II) + RPI |
---|
317 | ! TEST WITH POSITIVE WAVES ONLY (Part II/II) |
---|
318 | ! ZP(JW, II) = 0. |
---|
319 | ENDIF |
---|
320 | CPHA = CPHA + CMIN !we dont allow |c|<1m/s |
---|
321 | ! Absolute frequency is imposed |
---|
322 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
323 | ! Intrinsic frequency is imposed |
---|
324 | ZO(JW, II) = ZO(JW, II) & |
---|
325 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
326 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
327 | ! Momentum flux at launch lev |
---|
328 | ! LAUNCHED RANDOM WAVES WITH LOG-NORMAL AMPLITUDE |
---|
329 | ! RIGHT IN THE SH (GWD4 after 1990) |
---|
330 | RUW0(JW, II) = 0. |
---|
331 | DO JJ = 1, NA |
---|
332 | RUW0(JW, II) = RUW0(JW,II) + & |
---|
333 | 2.*(MOD(TT(II, JW+4*(JJ-1)+JJ)**2, 1.)-0.5)*SQRT(3.)/SQRT(NA*1.) |
---|
334 | END DO |
---|
335 | RUW0(JW, II) = RUWFRT & |
---|
336 | * EXP(RUW0(JW,II))/1250. & ! 2 mpa at south pole |
---|
337 | *((1.05+SIN(PLAT(II)*RPI/180.))/(1.01+SIN(PLAT(II)*RPI/180.))-2.05/2.01) |
---|
338 | ! RUW0(JW, II) = RUWFRT |
---|
339 | ENDDO |
---|
340 | end DO |
---|
341 | end DO |
---|
342 | end DO |
---|
343 | |
---|
344 | ! 4. COMPUTE THE FLUXES |
---|
345 | |
---|
346 | ! 4.0 |
---|
347 | |
---|
348 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
349 | ! the correct value to the imposed fluxes. |
---|
350 | |
---|
351 | DO JW = 1, NW |
---|
352 | |
---|
353 | ! Evaluate intrinsic frequency at launching altitude: |
---|
354 | ZOP(JW, :) = ZO(JW, :) & |
---|
355 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
356 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
357 | |
---|
358 | ! VERSION WITH FRONTAL SOURCES |
---|
359 | |
---|
360 | ! Momentum flux at launch level imposed by vorticity sources |
---|
361 | |
---|
362 | ! tanh limitation for values above CORIO (inertial instability). |
---|
363 | ! WWP(JW, :) = RUW0(JW, :) & |
---|
364 | WWP(JW, :) = RUWFRT & |
---|
365 | ! * (CORIO(:)*TANH(ROTBA(:)/CORIO(:)))**2 & |
---|
366 | ! * ABS((CORIO(:)*TANH(ROTBA(:)/CORIO(:)))*CORIO(:)) & |
---|
367 | ! CONSTANT FLUX |
---|
368 | ! * (CORIO(:)*CORIO(:)) & |
---|
369 | ! MODERATION BY THE DEPTH OF THE SOURCE (DZ HERE) |
---|
370 | ! *EXP(-BVLOW(:)**2/MAX(ABS(ZOP(JW, :)),ZOISEC)**2 & |
---|
371 | ! *ZK(JW, :)**2*DZ**2) & |
---|
372 | ! COMPLETE FORMULA: |
---|
373 | !* CORIO(:)**2*TANH(ROTBA(:)/CORIO(:)**2) & |
---|
374 | * ROTBA(:) & |
---|
375 | ! RESTORE DIMENSION OF A FLUX |
---|
376 | ! *RD*TR/PR |
---|
377 | *1. + RUW0(JW, :) |
---|
378 | |
---|
379 | ! Factor related to the characteristics of the waves: NONE |
---|
380 | |
---|
381 | ! Moderation by the depth of the source (dz here): NONE |
---|
382 | |
---|
383 | ! Put the stress in the right direction: |
---|
384 | |
---|
385 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
386 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
387 | |
---|
388 | end DO |
---|
389 | |
---|
390 | ! 4.2 Uniform values below the launching altitude |
---|
391 | |
---|
392 | DO LL = 1, LAUNCH |
---|
393 | RUW(:, LL) = 0 |
---|
394 | RVW(:, LL) = 0 |
---|
395 | DO JW = 1, NW |
---|
396 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
---|
397 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
---|
398 | end DO |
---|
399 | end DO |
---|
400 | |
---|
401 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
402 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
403 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
404 | |
---|
405 | DO LL = LAUNCH, KLEV - 1 |
---|
406 | ! Warning: all the physics is here (passage from one level |
---|
407 | ! to the next) |
---|
408 | DO JW = 1, NW |
---|
409 | ZOM(JW, :) = ZOP(JW, :) |
---|
410 | WWM(JW, :) = WWP(JW, :) |
---|
411 | ! Intrinsic Frequency |
---|
412 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
---|
413 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
---|
414 | |
---|
415 | ! No breaking (Eq.6) |
---|
416 | ! Dissipation (Eq. 8) |
---|
417 | WWP(JW, :) = WWM(JW, :) * EXP(- 2. * RDISS * PR / (PH(:, LL + 1) & |
---|
418 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
419 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
---|
420 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
421 | |
---|
422 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
423 | ! Saturation (Eq. 12) |
---|
424 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
---|
425 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
---|
426 | ! / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * SATFRT**2 * KMIN**2 & |
---|
427 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * KMIN**2 & |
---|
428 | ! *(SATFRT*(2.5+1.5*TANH((ZH(:,LL+1)/H0-8.)/2.)))**2 & |
---|
429 | *SATFRT**2 & |
---|
430 | / ZK(JW, :)**4) |
---|
431 | end DO |
---|
432 | |
---|
433 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
434 | ! the stress |
---|
435 | |
---|
436 | DO JW = 1, NW |
---|
437 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
438 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
439 | end DO |
---|
440 | |
---|
441 | RUW(:, LL + 1) = 0. |
---|
442 | RVW(:, LL + 1) = 0. |
---|
443 | |
---|
444 | DO JW = 1, NW |
---|
445 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
---|
446 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
---|
447 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LL)+MAX(0.,RUWP(JW,:))/FLOAT(NW) |
---|
448 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LL)+MIN(0.,RUWP(JW,:))/FLOAT(NW) |
---|
449 | end DO |
---|
450 | end DO |
---|
451 | |
---|
452 | ! 5 CALCUL DES TENDANCES: |
---|
453 | |
---|
454 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
455 | |
---|
456 | RUW(:, KLEV + 1) = 0. |
---|
457 | RVW(:, KLEV + 1) = 0. |
---|
458 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
459 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
460 | DO LL = 1, LAUNCH |
---|
461 | RUW(:, LL) = RUW(:, LAUNCH+1) |
---|
462 | RVW(:, LL) = RVW(:, LAUNCH+1) |
---|
463 | EAST_GWSTRESS(:, LL)=EAST_GWSTRESS(:, LAUNCH) |
---|
464 | WEST_GWSTRESS(:, LL)=WEST_GWSTRESS(:, LAUNCH) |
---|
465 | end DO |
---|
466 | |
---|
467 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
468 | DO LL = 1, KLEV |
---|
469 | D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
470 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
471 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
472 | ! NO AR1 FOR MERIDIONAL TENDENCIES |
---|
473 | ! D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
474 | D_V(:, LL) = 1./REAL(NW) * & |
---|
475 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
476 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
477 | ENDDO |
---|
478 | |
---|
479 | ! Cosmetic: evaluation of the cumulated stress |
---|
480 | ZUSTR = 0. |
---|
481 | ZVSTR = 0. |
---|
482 | DO LL = 1, KLEV |
---|
483 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
484 | ! ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
485 | ENDDO |
---|
486 | ! COSMETICS TO VISUALIZE ROTBA |
---|
487 | ZVSTR = ROTBA |
---|
488 | |
---|
489 | END SUBROUTINE ACAMA_GWD_RANDO |
---|
490 | |
---|
491 | end module ACAMA_GWD_rando_m |
---|