1 | module coefpoly_m |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | SUBROUTINE coefpoly(xf1, xf2, xprim1, xprim2, xtild1, xtild2, a0, a1, a2, a3) |
---|
8 | |
---|
9 | ! From LMDZ4/libf/dyn3d/coefpoly.F, version 1.1.1.1 2004/05/19 12:53:05 |
---|
10 | |
---|
11 | ! Author: P. Le Van |
---|
12 | |
---|
13 | ! Calcul des coefficients a0, a1, a2, a3 du polynôme de degré 3 qui |
---|
14 | ! satisfait aux 4 équations suivantes : |
---|
15 | |
---|
16 | ! a0 + a1 * xtild1 + a2 * xtild1**2 + a3 * xtild1**3 = Xf1 |
---|
17 | ! a0 + a1 * xtild2 + a2 * xtild2**2 + a3 * xtild2**3 = Xf2 |
---|
18 | ! a1 + 2. * a2 * xtild1 + 3. * a3 * xtild1**2 = Xprim1 |
---|
19 | ! a1 + 2. * a2 * xtild2 + 3. * a3 * xtild2**2 = Xprim2 |
---|
20 | |
---|
21 | ! (passe par les points (Xf(it), xtild(it)) et (Xf(it + 1), |
---|
22 | ! xtild(it + 1)) |
---|
23 | |
---|
24 | ! On en revient à resoudre un système de 4 équations à 4 inconnues |
---|
25 | ! a0, a1, a2, a3. |
---|
26 | |
---|
27 | DOUBLE PRECISION, intent(in):: xf1, xf2, xprim1, xprim2, xtild1, xtild2 |
---|
28 | DOUBLE PRECISION, intent(out):: a0, a1, a2, a3 |
---|
29 | |
---|
30 | ! Local: |
---|
31 | DOUBLE PRECISION xtil1car, xtil2car, derr, x1x2car |
---|
32 | |
---|
33 | !------------------------------------------------------------ |
---|
34 | |
---|
35 | xtil1car = xtild1 * xtild1 |
---|
36 | xtil2car = xtild2 * xtild2 |
---|
37 | |
---|
38 | derr = 2. * (xf2-xf1)/(xtild1-xtild2) |
---|
39 | |
---|
40 | x1x2car = (xtild1-xtild2) * (xtild1-xtild2) |
---|
41 | |
---|
42 | a3 = (derr+xprim1+xprim2)/x1x2car |
---|
43 | a2 = (xprim1-xprim2+3. * a3 * (xtil2car-xtil1car))/(2. * (xtild1-xtild2)) |
---|
44 | |
---|
45 | a1 = xprim1 - 3. * a3 * xtil1car - 2. * a2 * xtild1 |
---|
46 | a0 = xf1 - a3 * xtild1 * xtil1car - a2 * xtil1car - a1 * xtild1 |
---|
47 | |
---|
48 | END SUBROUTINE coefpoly |
---|
49 | |
---|
50 | end module coefpoly_m |
---|