1 | |
---|
2 | ! $Id: wake.F90 1999 2014-03-20 09:57:19Z fairhead $ |
---|
3 | |
---|
4 | SUBROUTINE wake(p, ph, pi, dtime, sigd_con, te0, qe0, omgb, dtdwn, dqdwn, & |
---|
5 | amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, deltaqw, & |
---|
6 | dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, dp_omgb, & |
---|
7 | wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & |
---|
8 | d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
9 | |
---|
10 | |
---|
11 | ! ************************************************************** |
---|
12 | ! * |
---|
13 | ! WAKE * |
---|
14 | ! retour a un Pupper fixe * |
---|
15 | ! * |
---|
16 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
17 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
18 | ! ************************************************************** |
---|
19 | |
---|
20 | USE dimphy |
---|
21 | IMPLICIT NONE |
---|
22 | ! ============================================================================ |
---|
23 | |
---|
24 | |
---|
25 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
26 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
27 | ! le declenchement de nouvelles colonnes convectives. |
---|
28 | |
---|
29 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
30 | ! area |
---|
31 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
32 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
33 | |
---|
34 | ! Variable de sortie : |
---|
35 | |
---|
36 | ! wape : WAke Potential Energy |
---|
37 | ! fip : Front Incident Power (W/m2) - ALP |
---|
38 | ! gfl : Gust Front Length per unit area (m-1) |
---|
39 | ! dtls : large scale temperature tendency due to wake |
---|
40 | ! dqls : large scale humidity tendency due to wake |
---|
41 | ! hw : hauteur de la poche |
---|
42 | ! dp_omgb : vertical gradient of large scale omega |
---|
43 | ! wdens : densite de poches |
---|
44 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
45 | ! dtKE : differential heating (wake - unpertubed) |
---|
46 | ! dqKE : differential moistening (wake - unpertubed) |
---|
47 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
48 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
49 | ! spread : spreading term in dt_wake and dq_wake |
---|
50 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
51 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
52 | ! sigmaw : updated wake fractional area. |
---|
53 | ! d_deltat_gw : delta T tendency due to GW |
---|
54 | |
---|
55 | ! Variables d'entree : |
---|
56 | |
---|
57 | ! aire : aire de la maille |
---|
58 | ! te0 : temperature dans l'environnement (K) |
---|
59 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
60 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
61 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
62 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
63 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
64 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
65 | ! amdwn: flux de masse total des descentes, par unite de |
---|
66 | ! surface de la maille (kg/m2/s) |
---|
67 | ! amup : flux de masse total des ascendances, par unite de |
---|
68 | ! surface de la maille (kg/m2/s) |
---|
69 | ! p : pressions aux milieux des couches (Pa) |
---|
70 | ! ph : pressions aux interfaces (Pa) |
---|
71 | ! pi : (p/p_0)**kapa (adim) |
---|
72 | ! dtime: increment temporel (s) |
---|
73 | |
---|
74 | ! Variables internes : |
---|
75 | |
---|
76 | ! rhow : masse volumique de la poche froide |
---|
77 | ! rho : environment density at P levels |
---|
78 | ! rhoh : environment density at Ph levels |
---|
79 | ! te : environment temperature | may change within |
---|
80 | ! qe : environment humidity | sub-time-stepping |
---|
81 | ! the : environment potential temperature |
---|
82 | ! thu : potential temperature in undisturbed area |
---|
83 | ! tu : temperature in undisturbed area |
---|
84 | ! qu : humidity in undisturbed area |
---|
85 | ! dp_omgb: vertical gradient og LS omega |
---|
86 | ! omgbw : wake average vertical omega |
---|
87 | ! dp_omgbw: vertical gradient of omgbw |
---|
88 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
89 | ! dth : potential temperature diff. wake-undist. |
---|
90 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
91 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
92 | ! q1 : first humidity for vertical advection |
---|
93 | ! q2 : second humidity for vertical advection |
---|
94 | ! d_deltatw : terme de redistribution pour deltatw |
---|
95 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
96 | ! deltatw0 : deltatw initial |
---|
97 | ! deltaqw0 : deltaqw initial |
---|
98 | ! hw0 : hw initial |
---|
99 | ! sigmaw0: sigmaw initial |
---|
100 | ! amflux : horizontal mass flux through wake boundary |
---|
101 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
102 | ! unit length (2D), at the beginning of each time step |
---|
103 | ! Tgw : 1 sur la période de onde de gravité |
---|
104 | ! Cgw : vitesse de propagation de onde de gravité |
---|
105 | ! LL : distance entre 2 poches |
---|
106 | |
---|
107 | ! ------------------------------------------------------------------------- |
---|
108 | ! Déclaration de variables |
---|
109 | ! ------------------------------------------------------------------------- |
---|
110 | |
---|
111 | include "dimensions.h" |
---|
112 | include "YOMCST.h" |
---|
113 | include "cvthermo.h" |
---|
114 | include "iniprint.h" |
---|
115 | |
---|
116 | ! Arguments en entree |
---|
117 | ! -------------------- |
---|
118 | |
---|
119 | REAL, DIMENSION (klon, klev) :: p, pi |
---|
120 | REAL, DIMENSION (klon, klev+1) :: ph, omgb |
---|
121 | REAL dtime |
---|
122 | REAL, DIMENSION (klon, klev) :: te0, qe0 |
---|
123 | REAL, DIMENSION (klon, klev) :: dtdwn, dqdwn |
---|
124 | REAL, DIMENSION (klon, klev) :: wdtpbl, wdqpbl |
---|
125 | REAL, DIMENSION (klon, klev) :: udtpbl, udqpbl |
---|
126 | REAL, DIMENSION (klon, klev) :: amdwn, amup |
---|
127 | REAL, DIMENSION (klon, klev) :: dta, dqa |
---|
128 | REAL, DIMENSION (klon) :: sigd_con |
---|
129 | |
---|
130 | ! Sorties |
---|
131 | ! -------- |
---|
132 | |
---|
133 | REAL, DIMENSION (klon, klev) :: deltatw, deltaqw, dth |
---|
134 | REAL, DIMENSION (klon, klev) :: tu, qu |
---|
135 | REAL, DIMENSION (klon, klev) :: dtls, dqls |
---|
136 | REAL, DIMENSION (klon, klev) :: dtke, dqke |
---|
137 | REAL, DIMENSION (klon, klev) :: dtpbl, dqpbl |
---|
138 | REAL, DIMENSION (klon, klev) :: spread |
---|
139 | REAL, DIMENSION (klon, klev) :: d_deltatgw |
---|
140 | REAL, DIMENSION (klon, klev) :: d_deltatw2, d_deltaqw2 |
---|
141 | REAL, DIMENSION (klon, klev+1) :: omgbdth, omg |
---|
142 | REAL, DIMENSION (klon, klev) :: dp_omgb, dp_deltomg |
---|
143 | REAL, DIMENSION (klon, klev) :: d_deltat_gw |
---|
144 | REAL, DIMENSION (klon) :: hw, sigmaw, wape, fip, gfl, cstar |
---|
145 | REAL, DIMENSION (klon) :: wdens |
---|
146 | INTEGER, DIMENSION (klon) :: ktopw |
---|
147 | |
---|
148 | ! Variables internes |
---|
149 | ! ------------------- |
---|
150 | |
---|
151 | ! Variables à fixer |
---|
152 | REAL alon |
---|
153 | REAL coefgw |
---|
154 | REAL :: wdens_ref |
---|
155 | REAL stark |
---|
156 | REAL alpk |
---|
157 | REAL delta_t_min |
---|
158 | INTEGER nsub |
---|
159 | REAL dtimesub |
---|
160 | REAL sigmad, hwmin, wapecut |
---|
161 | REAL :: sigmaw_max |
---|
162 | REAL :: dens_rate |
---|
163 | REAL wdens0 |
---|
164 | ! IM 080208 |
---|
165 | LOGICAL, DIMENSION (klon) :: gwake |
---|
166 | |
---|
167 | ! Variables de sauvegarde |
---|
168 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
169 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
170 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
171 | REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 |
---|
172 | |
---|
173 | ! Variables pour les GW |
---|
174 | REAL, DIMENSION (klon) :: ll |
---|
175 | REAL, DIMENSION (klon, klev) :: n2 |
---|
176 | REAL, DIMENSION (klon, klev) :: cgw |
---|
177 | REAL, DIMENSION (klon, klev) :: tgw |
---|
178 | |
---|
179 | ! Variables liées au calcul de hw |
---|
180 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
181 | REAL, DIMENSION (klon) :: sum_dth |
---|
182 | REAL, DIMENSION (klon) :: dthmin |
---|
183 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
184 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
185 | |
---|
186 | ! Sub-timestep tendencies and related variables |
---|
187 | REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) |
---|
188 | REAL d_te(klon, klev), d_qe(klon, klev) |
---|
189 | REAL d_sigmaw(klon), alpha(klon) |
---|
190 | REAL q0_min(klon), q1_min(klon) |
---|
191 | LOGICAL wk_adv(klon), ok_qx_qw(klon) |
---|
192 | REAL epsilon |
---|
193 | DATA epsilon/1.E-15/ |
---|
194 | |
---|
195 | ! Autres variables internes |
---|
196 | INTEGER isubstep, k, i |
---|
197 | |
---|
198 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
199 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
200 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
201 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
202 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
203 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
204 | |
---|
205 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
206 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
207 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
208 | REAL, DIMENSION (klon, klev) :: zh |
---|
209 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
210 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
211 | |
---|
212 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
213 | |
---|
214 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
215 | |
---|
216 | REAL, DIMENSION (klon, klev+1) :: omgbw |
---|
217 | REAL, DIMENSION (klon) :: pupper |
---|
218 | REAL, DIMENSION (klon) :: omgtop |
---|
219 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
220 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
221 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
222 | |
---|
223 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
224 | REAL :: rrd1, rrd2 |
---|
225 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
226 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
227 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
228 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
229 | |
---|
230 | REAL, DIMENSION (klon) :: ff, gg |
---|
231 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
232 | |
---|
233 | REAL, DIMENSION (klon, klev) :: crep |
---|
234 | REAL crep_upper, crep_sol |
---|
235 | |
---|
236 | REAL, DIMENSION (klon, klev) :: ppi |
---|
237 | |
---|
238 | ! cc nrlmd |
---|
239 | REAL, DIMENSION (klon) :: death_rate, nat_rate |
---|
240 | REAL, DIMENSION (klon, klev) :: entr |
---|
241 | REAL, DIMENSION (klon, klev) :: detr |
---|
242 | |
---|
243 | ! ------------------------------------------------------------------------- |
---|
244 | ! Initialisations |
---|
245 | ! ------------------------------------------------------------------------- |
---|
246 | |
---|
247 | ! print*, 'wake initialisations' |
---|
248 | |
---|
249 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
250 | ! ------------------------------------------------------------------------- |
---|
251 | |
---|
252 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
253 | ! cc nrlmd |
---|
254 | DATA sigmaw_max/0.4/ |
---|
255 | DATA dens_rate/0.1/ |
---|
256 | ! cc |
---|
257 | ! Longueur de maille (en m) |
---|
258 | ! ------------------------------------------------------------------------- |
---|
259 | |
---|
260 | ! ALON = 3.e5 |
---|
261 | alon = 1.E6 |
---|
262 | |
---|
263 | |
---|
264 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
265 | |
---|
266 | ! coefgw : Coefficient pour les ondes de gravité |
---|
267 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
268 | ! wdens : Densité de poche froide par maille |
---|
269 | ! ------------------------------------------------------------------------- |
---|
270 | |
---|
271 | ! cc nrlmd coefgw=10 |
---|
272 | ! coefgw=1 |
---|
273 | ! wdens0 = 1.0/(alon**2) |
---|
274 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
275 | ! cc nrlmd stark = 0.50 |
---|
276 | ! CRtest |
---|
277 | ! cc nrlmd alpk=0.1 |
---|
278 | ! alpk = 1.0 |
---|
279 | ! alpk = 0.5 |
---|
280 | ! alpk = 0.05 |
---|
281 | |
---|
282 | stark = 0.33 |
---|
283 | alpk = 0.25 |
---|
284 | wdens_ref = 8.E-12 |
---|
285 | coefgw = 4. |
---|
286 | crep_upper = 0.9 |
---|
287 | crep_sol = 1.0 |
---|
288 | |
---|
289 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
290 | OPEN (99, FILE='wake_param.data', STATUS='old', FORM='formatted', ERR=9999) |
---|
291 | READ (99, *, END=9998) stark |
---|
292 | READ (99, *, END=9998) alpk |
---|
293 | READ (99, *, END=9998) wdens_ref |
---|
294 | READ (99, *, END=9998) coefgw |
---|
295 | 9998 CONTINUE |
---|
296 | CLOSE (99) |
---|
297 | 9999 CONTINUE |
---|
298 | |
---|
299 | ! Initialisation de toutes des densites a wdens_ref. |
---|
300 | ! Les densites peuvent evoluer si les poches debordent |
---|
301 | ! (voir au tout debut de la boucle sur les substeps) |
---|
302 | wdens = wdens_ref |
---|
303 | |
---|
304 | ! print*,'stark',stark |
---|
305 | ! print*,'alpk',alpk |
---|
306 | ! print*,'wdens',wdens |
---|
307 | ! print*,'coefgw',coefgw |
---|
308 | ! cc |
---|
309 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
310 | ! ------------------------------------------------------------------------- |
---|
311 | |
---|
312 | delta_t_min = 0.2 |
---|
313 | |
---|
314 | ! 1. - Save initial values and initialize tendencies |
---|
315 | ! -------------------------------------------------- |
---|
316 | |
---|
317 | DO k = 1, klev |
---|
318 | DO i = 1, klon |
---|
319 | ppi(i, k) = pi(i, k) |
---|
320 | deltatw0(i, k) = deltatw(i, k) |
---|
321 | deltaqw0(i, k) = deltaqw(i, k) |
---|
322 | te(i, k) = te0(i, k) |
---|
323 | qe(i, k) = qe0(i, k) |
---|
324 | dtls(i, k) = 0. |
---|
325 | dqls(i, k) = 0. |
---|
326 | d_deltat_gw(i, k) = 0. |
---|
327 | d_te(i, k) = 0. |
---|
328 | d_qe(i, k) = 0. |
---|
329 | d_deltatw(i, k) = 0. |
---|
330 | d_deltaqw(i, k) = 0. |
---|
331 | ! IM 060508 beg |
---|
332 | d_deltatw2(i, k) = 0. |
---|
333 | d_deltaqw2(i, k) = 0. |
---|
334 | ! IM 060508 end |
---|
335 | END DO |
---|
336 | END DO |
---|
337 | ! sigmaw1=sigmaw |
---|
338 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
339 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
340 | ! ENDIF |
---|
341 | DO i = 1, klon |
---|
342 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
343 | sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
344 | sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
345 | sigmaw0(i) = sigmaw(i) |
---|
346 | wape(i) = 0. |
---|
347 | wape2(i) = 0. |
---|
348 | d_sigmaw(i) = 0. |
---|
349 | ktopw(i) = 0 |
---|
350 | END DO |
---|
351 | |
---|
352 | |
---|
353 | ! 2. - Prognostic part |
---|
354 | ! -------------------- |
---|
355 | |
---|
356 | |
---|
357 | ! 2.1 - Undisturbed area and Wake integrals |
---|
358 | ! --------------------------------------------------------- |
---|
359 | |
---|
360 | DO i = 1, klon |
---|
361 | z(i) = 0. |
---|
362 | ktop(i) = 0 |
---|
363 | kupper(i) = 0 |
---|
364 | sum_thu(i) = 0. |
---|
365 | sum_tu(i) = 0. |
---|
366 | sum_qu(i) = 0. |
---|
367 | sum_thvu(i) = 0. |
---|
368 | sum_dth(i) = 0. |
---|
369 | sum_dq(i) = 0. |
---|
370 | sum_rho(i) = 0. |
---|
371 | sum_dtdwn(i) = 0. |
---|
372 | sum_dqdwn(i) = 0. |
---|
373 | |
---|
374 | av_thu(i) = 0. |
---|
375 | av_tu(i) = 0. |
---|
376 | av_qu(i) = 0. |
---|
377 | av_thvu(i) = 0. |
---|
378 | av_dth(i) = 0. |
---|
379 | av_dq(i) = 0. |
---|
380 | av_rho(i) = 0. |
---|
381 | av_dtdwn(i) = 0. |
---|
382 | av_dqdwn(i) = 0. |
---|
383 | END DO |
---|
384 | |
---|
385 | ! Distance between wakes |
---|
386 | DO i = 1, klon |
---|
387 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
388 | END DO |
---|
389 | ! Potential temperatures and humidity |
---|
390 | ! ---------------------------------------------------------- |
---|
391 | DO k = 1, klev |
---|
392 | DO i = 1, klon |
---|
393 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
394 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
395 | ! write(*,*)'wake 2',rho(i,k) |
---|
396 | IF (k==1) THEN |
---|
397 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
398 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
399 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
400 | zhh(i, k) = 0 |
---|
401 | ELSE |
---|
402 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
403 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
404 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
405 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
406 | END IF |
---|
407 | ! write(*,*)'wake 7',ppi(i,k) |
---|
408 | the(i, k) = te(i, k)/ppi(i, k) |
---|
409 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
410 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
411 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
412 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
413 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
414 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | |
---|
418 | DO k = 1, klev - 1 |
---|
419 | DO i = 1, klon |
---|
420 | IF (k==1) THEN |
---|
421 | n2(i, k) = 0 |
---|
422 | ELSE |
---|
423 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & |
---|
424 | k-1))/(p(i,k+1)-p(i,k-1))) |
---|
425 | END IF |
---|
426 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
427 | |
---|
428 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
429 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
430 | END DO |
---|
431 | END DO |
---|
432 | |
---|
433 | DO i = 1, klon |
---|
434 | n2(i, klev) = 0 |
---|
435 | zh(i, klev) = 0 |
---|
436 | cgw(i, klev) = 0 |
---|
437 | tgw(i, klev) = 0 |
---|
438 | END DO |
---|
439 | |
---|
440 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
441 | ! ----------------------------------------------------------------- |
---|
442 | |
---|
443 | DO k = 1, klev |
---|
444 | DO i = 1, klon |
---|
445 | epaisseur1(i, k) = 0. |
---|
446 | epaisseur2(i, k) = 0. |
---|
447 | END DO |
---|
448 | END DO |
---|
449 | |
---|
450 | DO i = 1, klon |
---|
451 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
452 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
453 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
454 | END DO |
---|
455 | |
---|
456 | DO k = 2, klev |
---|
457 | DO i = 1, klon |
---|
458 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
459 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
460 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
461 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
462 | END DO |
---|
463 | END DO |
---|
464 | |
---|
465 | |
---|
466 | ! Choose an integration bound well above wake top |
---|
467 | ! ----------------------------------------------------------------- |
---|
468 | |
---|
469 | ! Pupper = 50000. ! melting level |
---|
470 | ! Pupper = 60000. |
---|
471 | ! Pupper = 80000. ! essais pour case_e |
---|
472 | DO i = 1, klon |
---|
473 | pupper(i) = 0.6*ph(i, 1) |
---|
474 | pupper(i) = max(pupper(i), 45000.) |
---|
475 | ! cc Pupper(i) = 60000. |
---|
476 | END DO |
---|
477 | |
---|
478 | |
---|
479 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
480 | ! -------------------------------------------------------- |
---|
481 | |
---|
482 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
483 | |
---|
484 | DO i = 1, klon |
---|
485 | ptop_provis(i) = ph(i, 1) |
---|
486 | END DO |
---|
487 | DO k = 2, klev |
---|
488 | DO i = 1, klon |
---|
489 | |
---|
490 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
491 | |
---|
492 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
493 | ptop_provis(i)==ph(i,1)) THEN |
---|
494 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
495 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
496 | END IF |
---|
497 | END DO |
---|
498 | END DO |
---|
499 | |
---|
500 | ! -2/ dth integral |
---|
501 | |
---|
502 | DO i = 1, klon |
---|
503 | sum_dth(i) = 0. |
---|
504 | dthmin(i) = -delta_t_min |
---|
505 | z(i) = 0. |
---|
506 | END DO |
---|
507 | |
---|
508 | DO k = 1, klev |
---|
509 | DO i = 1, klon |
---|
510 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
511 | IF (dz(i)>0) THEN |
---|
512 | z(i) = z(i) + dz(i) |
---|
513 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
514 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
515 | END IF |
---|
516 | END DO |
---|
517 | END DO |
---|
518 | |
---|
519 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
520 | |
---|
521 | DO i = 1, klon |
---|
522 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
523 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
524 | END DO |
---|
525 | |
---|
526 | ! -4/ now, get Ptop |
---|
527 | |
---|
528 | DO i = 1, klon |
---|
529 | z(i) = 0. |
---|
530 | ptop(i) = ph(i, 1) |
---|
531 | END DO |
---|
532 | |
---|
533 | DO k = 1, klev |
---|
534 | DO i = 1, klon |
---|
535 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
536 | IF (dz(i)>0) THEN |
---|
537 | z(i) = z(i) + dz(i) |
---|
538 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
539 | END IF |
---|
540 | END DO |
---|
541 | END DO |
---|
542 | |
---|
543 | |
---|
544 | ! -5/ Determination de ktop et kupper |
---|
545 | |
---|
546 | DO k = klev, 1, -1 |
---|
547 | DO i = 1, klon |
---|
548 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
549 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
550 | END DO |
---|
551 | END DO |
---|
552 | |
---|
553 | ! On evite kupper = 1 et kupper = klev |
---|
554 | DO i = 1, klon |
---|
555 | kupper(i) = max(kupper(i), 2) |
---|
556 | kupper(i) = min(kupper(i), klev-1) |
---|
557 | END DO |
---|
558 | |
---|
559 | |
---|
560 | ! -6/ Correct ktop and ptop |
---|
561 | |
---|
562 | DO i = 1, klon |
---|
563 | ptop_new(i) = ptop(i) |
---|
564 | END DO |
---|
565 | DO k = klev, 2, -1 |
---|
566 | DO i = 1, klon |
---|
567 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
568 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
569 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
570 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
571 | END IF |
---|
572 | END DO |
---|
573 | END DO |
---|
574 | |
---|
575 | DO i = 1, klon |
---|
576 | ptop(i) = ptop_new(i) |
---|
577 | END DO |
---|
578 | |
---|
579 | DO k = klev, 1, -1 |
---|
580 | DO i = 1, klon |
---|
581 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
582 | END DO |
---|
583 | END DO |
---|
584 | |
---|
585 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
586 | |
---|
587 | DO k = 1, klev |
---|
588 | DO i = 1, klon |
---|
589 | IF (k>=kupper(i)) THEN |
---|
590 | deltatw(i, k) = 0. |
---|
591 | deltaqw(i, k) = 0. |
---|
592 | END IF |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | |
---|
596 | |
---|
597 | ! Vertical gradient of LS omega |
---|
598 | |
---|
599 | DO k = 1, klev |
---|
600 | DO i = 1, klon |
---|
601 | IF (k<=kupper(i)) THEN |
---|
602 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
603 | END IF |
---|
604 | END DO |
---|
605 | END DO |
---|
606 | |
---|
607 | ! Integrals (and wake top level number) |
---|
608 | ! -------------------------------------- |
---|
609 | |
---|
610 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
611 | |
---|
612 | DO i = 1, klon |
---|
613 | z(i) = 1. |
---|
614 | dz(i) = 1. |
---|
615 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
616 | sum_dth(i) = 0. |
---|
617 | END DO |
---|
618 | |
---|
619 | DO k = 1, klev |
---|
620 | DO i = 1, klon |
---|
621 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
622 | IF (dz(i)>0) THEN |
---|
623 | z(i) = z(i) + dz(i) |
---|
624 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
625 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
626 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
627 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
628 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
629 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
630 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
631 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
632 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
633 | END IF |
---|
634 | END DO |
---|
635 | END DO |
---|
636 | |
---|
637 | DO i = 1, klon |
---|
638 | hw0(i) = z(i) |
---|
639 | END DO |
---|
640 | |
---|
641 | |
---|
642 | ! 2.1 - WAPE and mean forcing computation |
---|
643 | ! --------------------------------------- |
---|
644 | |
---|
645 | ! --------------------------------------- |
---|
646 | |
---|
647 | ! Means |
---|
648 | |
---|
649 | DO i = 1, klon |
---|
650 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
651 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
652 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
653 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
654 | ! av_thve = sum_thve/hw0 |
---|
655 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
656 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
657 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
658 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
659 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
660 | |
---|
661 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & |
---|
662 | )+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
663 | END DO |
---|
664 | |
---|
665 | ! 2.2 Prognostic variable update |
---|
666 | ! ------------------------------ |
---|
667 | |
---|
668 | ! Filter out bad wakes |
---|
669 | |
---|
670 | DO k = 1, klev |
---|
671 | DO i = 1, klon |
---|
672 | IF (wape(i)<0.) THEN |
---|
673 | deltatw(i, k) = 0. |
---|
674 | deltaqw(i, k) = 0. |
---|
675 | dth(i, k) = 0. |
---|
676 | END IF |
---|
677 | END DO |
---|
678 | END DO |
---|
679 | |
---|
680 | DO i = 1, klon |
---|
681 | IF (wape(i)<0.) THEN |
---|
682 | wape(i) = 0. |
---|
683 | cstar(i) = 0. |
---|
684 | hw(i) = hwmin |
---|
685 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
686 | fip(i) = 0. |
---|
687 | gwake(i) = .FALSE. |
---|
688 | ELSE |
---|
689 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
690 | gwake(i) = .TRUE. |
---|
691 | END IF |
---|
692 | END DO |
---|
693 | |
---|
694 | |
---|
695 | ! Check qx and qw positivity |
---|
696 | ! -------------------------- |
---|
697 | DO i = 1, klon |
---|
698 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & |
---|
699 | 1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
700 | END DO |
---|
701 | DO k = 2, klev |
---|
702 | DO i = 1, klon |
---|
703 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & |
---|
704 | k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
705 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
706 | q0_min(i) = q1_min(i) |
---|
707 | END IF |
---|
708 | END DO |
---|
709 | END DO |
---|
710 | |
---|
711 | DO i = 1, klon |
---|
712 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
713 | alpha(i) = 1. |
---|
714 | END DO |
---|
715 | |
---|
716 | ! C ----------------------------------------------------------------- |
---|
717 | ! Sub-time-stepping |
---|
718 | ! ----------------- |
---|
719 | |
---|
720 | nsub = 10 |
---|
721 | dtimesub = dtime/nsub |
---|
722 | |
---|
723 | ! ------------------------------------------------------------ |
---|
724 | DO isubstep = 1, nsub |
---|
725 | ! ------------------------------------------------------------ |
---|
726 | |
---|
727 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
728 | ! loop |
---|
729 | DO i = 1, klon |
---|
730 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
731 | END DO |
---|
732 | |
---|
733 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
734 | ! négatif de ktop à kupper -------- |
---|
735 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
736 | ! aurait un entrainement nul --- |
---|
737 | DO i = 1, klon |
---|
738 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
739 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
740 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
741 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
742 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
743 | wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & |
---|
744 | ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
745 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
746 | wdens(i) = wdens0 |
---|
747 | END IF |
---|
748 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
749 | ! c $ ,ph(i,1)-pupper(i)', |
---|
750 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
751 | ! c $ ,ph(i,1)-pupper(i) |
---|
752 | END IF |
---|
753 | END DO |
---|
754 | |
---|
755 | ! cc nrlmd |
---|
756 | |
---|
757 | DO i = 1, klon |
---|
758 | IF (wk_adv(i)) THEN |
---|
759 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
760 | sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
761 | END IF |
---|
762 | END DO |
---|
763 | DO i = 1, klon |
---|
764 | IF (wk_adv(i)) THEN |
---|
765 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
766 | ! test sur sigmaw_max=0.4 |
---|
767 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
768 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
769 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
770 | ELSE |
---|
771 | death_rate(i) = 0. |
---|
772 | END IF |
---|
773 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
774 | dtimesub |
---|
775 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
776 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
777 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
778 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
779 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
780 | |
---|
781 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
782 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
783 | ! wdens = wdens0/(10.*sigmaw) |
---|
784 | ! sigmaw =max(sigmaw,sigd_con) |
---|
785 | ! sigmaw =max(sigmaw,sigmad) |
---|
786 | END IF |
---|
787 | END DO |
---|
788 | |
---|
789 | |
---|
790 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
791 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
792 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on |
---|
793 | ! definit |
---|
794 | ! IM 060208 au niveau k=1..? |
---|
795 | DO k = 1, klev |
---|
796 | DO i = 1, klon |
---|
797 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
798 | dp_deltomg(i, k) = 0. |
---|
799 | END IF |
---|
800 | END DO |
---|
801 | END DO |
---|
802 | DO k = 1, klev + 1 |
---|
803 | DO i = 1, klon |
---|
804 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
805 | omg(i, k) = 0. |
---|
806 | END IF |
---|
807 | END DO |
---|
808 | END DO |
---|
809 | |
---|
810 | DO i = 1, klon |
---|
811 | IF (wk_adv(i)) THEN |
---|
812 | z(i) = 0. |
---|
813 | omg(i, 1) = 0. |
---|
814 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
815 | END IF |
---|
816 | END DO |
---|
817 | |
---|
818 | DO k = 2, klev |
---|
819 | DO i = 1, klon |
---|
820 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
821 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
822 | z(i) = z(i) + dz(i) |
---|
823 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
824 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
825 | END IF |
---|
826 | END DO |
---|
827 | END DO |
---|
828 | |
---|
829 | DO i = 1, klon |
---|
830 | IF (wk_adv(i)) THEN |
---|
831 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
832 | ztop(i) = z(i) + dztop(i) |
---|
833 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
834 | END IF |
---|
835 | END DO |
---|
836 | |
---|
837 | ! ----------------- |
---|
838 | ! From m/s to Pa/s |
---|
839 | ! ----------------- |
---|
840 | |
---|
841 | DO i = 1, klon |
---|
842 | IF (wk_adv(i)) THEN |
---|
843 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
844 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
845 | END IF |
---|
846 | END DO |
---|
847 | |
---|
848 | DO k = 1, klev |
---|
849 | DO i = 1, klon |
---|
850 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
851 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
852 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
853 | END IF |
---|
854 | END DO |
---|
855 | END DO |
---|
856 | |
---|
857 | ! raccordement lineaire de omg de ptop a pupper |
---|
858 | |
---|
859 | DO i = 1, klon |
---|
860 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
861 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
862 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
863 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
864 | (ptop(i)-pupper(i)) |
---|
865 | END IF |
---|
866 | END DO |
---|
867 | |
---|
868 | ! c DO i=1,klon |
---|
869 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
870 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
871 | ! c print*,'Pente entre ktop et kupper' |
---|
872 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
873 | ! c ENDDO |
---|
874 | ! c |
---|
875 | DO k = 1, klev |
---|
876 | DO i = 1, klon |
---|
877 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
878 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
879 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
880 | END IF |
---|
881 | END DO |
---|
882 | END DO |
---|
883 | ! cc nrlmd |
---|
884 | ! c DO i=1,klon |
---|
885 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
886 | ! c END DO |
---|
887 | ! cc |
---|
888 | |
---|
889 | |
---|
890 | ! -- Compute wake average vertical velocity omgbw |
---|
891 | |
---|
892 | |
---|
893 | DO k = 1, klev + 1 |
---|
894 | DO i = 1, klon |
---|
895 | IF (wk_adv(i)) THEN |
---|
896 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
897 | END IF |
---|
898 | END DO |
---|
899 | END DO |
---|
900 | ! -- and its vertical gradient dp_omgbw |
---|
901 | |
---|
902 | DO k = 1, klev |
---|
903 | DO i = 1, klon |
---|
904 | IF (wk_adv(i)) THEN |
---|
905 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
906 | END IF |
---|
907 | END DO |
---|
908 | END DO |
---|
909 | |
---|
910 | ! -- Upstream coefficients for omgb velocity |
---|
911 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
912 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
913 | DO k = 1, klev |
---|
914 | DO i = 1, klon |
---|
915 | IF (wk_adv(i)) THEN |
---|
916 | alpha_up(i, k) = 0. |
---|
917 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
918 | END IF |
---|
919 | END DO |
---|
920 | END DO |
---|
921 | |
---|
922 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
923 | |
---|
924 | DO i = 1, klon |
---|
925 | IF (wk_adv(i)) THEN |
---|
926 | rre1(i) = 1. - sigmaw(i) |
---|
927 | rre2(i) = sigmaw(i) |
---|
928 | END IF |
---|
929 | END DO |
---|
930 | rrd1 = -1. |
---|
931 | rrd2 = 1. |
---|
932 | |
---|
933 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
934 | |
---|
935 | DO k = 1, klev |
---|
936 | DO i = 1, klon |
---|
937 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
938 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
939 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
940 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
941 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
942 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
943 | END IF |
---|
944 | END DO |
---|
945 | END DO |
---|
946 | |
---|
947 | DO i = 1, klon |
---|
948 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
949 | d_th1(i, 1) = 0. |
---|
950 | d_th2(i, 1) = 0. |
---|
951 | d_dth(i, 1) = 0. |
---|
952 | d_q1(i, 1) = 0. |
---|
953 | d_q2(i, 1) = 0. |
---|
954 | d_dq(i, 1) = 0. |
---|
955 | END IF |
---|
956 | END DO |
---|
957 | |
---|
958 | DO k = 2, klev |
---|
959 | DO i = 1, klon |
---|
960 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
961 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
962 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
963 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
964 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
965 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
966 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
967 | END IF |
---|
968 | END DO |
---|
969 | END DO |
---|
970 | |
---|
971 | DO i = 1, klon |
---|
972 | IF (wk_adv(i)) THEN |
---|
973 | omgbdth(i, 1) = 0. |
---|
974 | omgbdq(i, 1) = 0. |
---|
975 | END IF |
---|
976 | END DO |
---|
977 | |
---|
978 | DO k = 2, klev |
---|
979 | DO i = 1, klon |
---|
980 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
981 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
982 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
983 | END IF |
---|
984 | END DO |
---|
985 | END DO |
---|
986 | |
---|
987 | ! ----------------------------------------------------------------- |
---|
988 | DO k = 1, klev |
---|
989 | DO i = 1, klon |
---|
990 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
991 | ! ----------------------------------------------------------------- |
---|
992 | |
---|
993 | ! Compute redistribution (advective) term |
---|
994 | |
---|
995 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
996 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
997 | i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & |
---|
998 | omgbdth(i,k+1))*ppi(i, k) |
---|
999 | ! print*,'d_deltatw=',d_deltatw(i,k) |
---|
1000 | |
---|
1001 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
1002 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
1003 | i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & |
---|
1004 | omgbdq(i,k+1)) |
---|
1005 | ! print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
1006 | |
---|
1007 | ! and increment large scale tendencies |
---|
1008 | |
---|
1009 | |
---|
1010 | |
---|
1011 | |
---|
1012 | ! C |
---|
1013 | ! ----------------------------------------------------------------- |
---|
1014 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
1015 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & |
---|
1016 | k+1)) & ! cc nrlmd $ |
---|
1017 | ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
1018 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & |
---|
1019 | k)-ph(i,k+1)) & ! cc |
---|
1020 | )*ppi(i, k) |
---|
1021 | |
---|
1022 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
1023 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & |
---|
1024 | k+1)) & ! cc nrlmd $ |
---|
1025 | ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
1026 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & |
---|
1027 | k+1))/(ph(i,k)-ph(i,k+1)) & ! cc |
---|
1028 | ) |
---|
1029 | ! cc nrlmd |
---|
1030 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
1031 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
1032 | k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) |
---|
1033 | |
---|
1034 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
1035 | k)/(ph(i,k)-ph(i,k+1)))) |
---|
1036 | |
---|
1037 | END IF |
---|
1038 | ! cc |
---|
1039 | END DO |
---|
1040 | END DO |
---|
1041 | ! ------------------------------------------------------------------ |
---|
1042 | |
---|
1043 | ! Increment state variables |
---|
1044 | |
---|
1045 | DO k = 1, klev |
---|
1046 | DO i = 1, klon |
---|
1047 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1048 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1049 | ! cc |
---|
1050 | |
---|
1051 | |
---|
1052 | |
---|
1053 | ! Coefficient de répartition |
---|
1054 | |
---|
1055 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
1056 | (ph(i,kupper(i))-ph(i,1)) |
---|
1057 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & |
---|
1058 | ,kupper(i))) |
---|
1059 | |
---|
1060 | |
---|
1061 | ! Reintroduce compensating subsidence term. |
---|
1062 | |
---|
1063 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
1064 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
1065 | ! . /(1-sigmaw) |
---|
1066 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
1067 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
1068 | ! . /(1-sigmaw) |
---|
1069 | |
---|
1070 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
1071 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
1072 | ! . /(1-sigmaw) |
---|
1073 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
1074 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
1075 | ! . /(1-sigmaw) |
---|
1076 | |
---|
1077 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
1078 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
1079 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
1080 | |
---|
1081 | dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) |
---|
1082 | dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) |
---|
1083 | ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
1084 | |
---|
1085 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
1086 | ! cc Définitions de entr, detr |
---|
1087 | detr(i, k) = 0. |
---|
1088 | |
---|
1089 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
1090 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
1091 | |
---|
1092 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
1093 | ! cc spread(i,k) = |
---|
1094 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
1095 | ! cc $ sigmaw(i) |
---|
1096 | |
---|
1097 | |
---|
1098 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
1099 | ! Jingmei |
---|
1100 | |
---|
1101 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
1102 | ! & Tgw(i,k),deltatw(i,k) |
---|
1103 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
1104 | dtimesub |
---|
1105 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
1106 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
1107 | |
---|
1108 | ! Sans GW |
---|
1109 | |
---|
1110 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
1111 | |
---|
1112 | ! GW formule 1 |
---|
1113 | |
---|
1114 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
1115 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
1116 | |
---|
1117 | ! GW formule 2 |
---|
1118 | |
---|
1119 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
1120 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc |
---|
1121 | ! $ |
---|
1122 | ! -spread(i,k)*deltatw(i,k) |
---|
1123 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
1124 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
1125 | -tgw(i,k)*deltatw(i,k)) |
---|
1126 | ELSE |
---|
1127 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & |
---|
1128 | k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ |
---|
1129 | ! -spread(i,k)*deltatw(i,k) |
---|
1130 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
1131 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
1132 | -tgw(i,k)*deltatw(i,k)) |
---|
1133 | END IF |
---|
1134 | |
---|
1135 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1136 | |
---|
1137 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
1138 | |
---|
1139 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ |
---|
1140 | ! -spread(i,k)*deltaqw(i,k)) |
---|
1141 | -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & |
---|
1142 | i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
1143 | ! cc |
---|
1144 | |
---|
1145 | ! cc nrlmd |
---|
1146 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1147 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1148 | ! cc |
---|
1149 | END IF |
---|
1150 | END DO |
---|
1151 | END DO |
---|
1152 | |
---|
1153 | |
---|
1154 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
1155 | |
---|
1156 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
1157 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1158 | |
---|
1159 | ! cc nrlmd |
---|
1160 | ! c print*,'alpha' |
---|
1161 | ! c do i=1,klon |
---|
1162 | ! c print*,alpha(i) |
---|
1163 | ! c end do |
---|
1164 | ! cc |
---|
1165 | DO k = 1, klev |
---|
1166 | DO i = 1, klon |
---|
1167 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1168 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
1169 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
1170 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
1171 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
1172 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
1173 | END IF |
---|
1174 | END DO |
---|
1175 | END DO |
---|
1176 | DO i = 1, klon |
---|
1177 | IF (wk_adv(i)) THEN |
---|
1178 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
1179 | END IF |
---|
1180 | END DO |
---|
1181 | |
---|
1182 | ! Update large scale variables and wake variables |
---|
1183 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
1184 | ! IM 060208 DO k = 1,kupper(i) |
---|
1185 | DO k = 1, klev |
---|
1186 | DO i = 1, klon |
---|
1187 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1188 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
1189 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
1190 | ! cc nrlmd |
---|
1191 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
1192 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
1193 | ! cc |
---|
1194 | END IF |
---|
1195 | END DO |
---|
1196 | END DO |
---|
1197 | DO k = 1, klev |
---|
1198 | DO i = 1, klon |
---|
1199 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
1200 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
1201 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
1202 | the(i, k) = te(i, k)/ppi(i, k) |
---|
1203 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
1204 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
1205 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1206 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
1207 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
1208 | END IF |
---|
1209 | END DO |
---|
1210 | END DO |
---|
1211 | DO i = 1, klon |
---|
1212 | IF (wk_adv(i)) THEN |
---|
1213 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
1214 | END IF |
---|
1215 | END DO |
---|
1216 | |
---|
1217 | |
---|
1218 | ! Determine Ptop from buoyancy integral |
---|
1219 | ! --------------------------------------- |
---|
1220 | |
---|
1221 | ! - 1/ Pressure of the level where dth changes sign. |
---|
1222 | |
---|
1223 | DO i = 1, klon |
---|
1224 | IF (wk_adv(i)) THEN |
---|
1225 | ptop_provis(i) = ph(i, 1) |
---|
1226 | END IF |
---|
1227 | END DO |
---|
1228 | |
---|
1229 | DO k = 2, klev |
---|
1230 | DO i = 1, klon |
---|
1231 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
1232 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1233 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
1234 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1235 | END IF |
---|
1236 | END DO |
---|
1237 | END DO |
---|
1238 | |
---|
1239 | ! - 2/ dth integral |
---|
1240 | |
---|
1241 | DO i = 1, klon |
---|
1242 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1243 | sum_dth(i) = 0. |
---|
1244 | dthmin(i) = -delta_t_min |
---|
1245 | z(i) = 0. |
---|
1246 | END IF |
---|
1247 | END DO |
---|
1248 | |
---|
1249 | DO k = 1, klev |
---|
1250 | DO i = 1, klon |
---|
1251 | IF (wk_adv(i)) THEN |
---|
1252 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1253 | IF (dz(i)>0) THEN |
---|
1254 | z(i) = z(i) + dz(i) |
---|
1255 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1256 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
1257 | END IF |
---|
1258 | END IF |
---|
1259 | END DO |
---|
1260 | END DO |
---|
1261 | |
---|
1262 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
1263 | |
---|
1264 | DO i = 1, klon |
---|
1265 | IF (wk_adv(i)) THEN |
---|
1266 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
1267 | hw(i) = amax1(hwmin, hw(i)) |
---|
1268 | END IF |
---|
1269 | END DO |
---|
1270 | |
---|
1271 | ! - 4/ now, get Ptop |
---|
1272 | |
---|
1273 | DO i = 1, klon |
---|
1274 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1275 | ktop(i) = 0 |
---|
1276 | z(i) = 0. |
---|
1277 | END IF |
---|
1278 | END DO |
---|
1279 | |
---|
1280 | DO k = 1, klev |
---|
1281 | DO i = 1, klon |
---|
1282 | IF (wk_adv(i)) THEN |
---|
1283 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
1284 | IF (dz(i)>0) THEN |
---|
1285 | z(i) = z(i) + dz(i) |
---|
1286 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
1287 | ktop(i) = k |
---|
1288 | END IF |
---|
1289 | END IF |
---|
1290 | END DO |
---|
1291 | END DO |
---|
1292 | |
---|
1293 | ! 4.5/Correct ktop and ptop |
---|
1294 | |
---|
1295 | DO i = 1, klon |
---|
1296 | IF (wk_adv(i)) THEN |
---|
1297 | ptop_new(i) = ptop(i) |
---|
1298 | END IF |
---|
1299 | END DO |
---|
1300 | |
---|
1301 | DO k = klev, 2, -1 |
---|
1302 | DO i = 1, klon |
---|
1303 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
1304 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
1305 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
1306 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
1307 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
1308 | END IF |
---|
1309 | END DO |
---|
1310 | END DO |
---|
1311 | |
---|
1312 | |
---|
1313 | DO i = 1, klon |
---|
1314 | IF (wk_adv(i)) THEN |
---|
1315 | ptop(i) = ptop_new(i) |
---|
1316 | END IF |
---|
1317 | END DO |
---|
1318 | |
---|
1319 | DO k = klev, 1, -1 |
---|
1320 | DO i = 1, klon |
---|
1321 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1322 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
1323 | END IF |
---|
1324 | END DO |
---|
1325 | END DO |
---|
1326 | |
---|
1327 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
1328 | |
---|
1329 | DO k = 1, klev |
---|
1330 | DO i = 1, klon |
---|
1331 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
1332 | deltatw(i, k) = 0. |
---|
1333 | deltaqw(i, k) = 0. |
---|
1334 | END IF |
---|
1335 | END DO |
---|
1336 | END DO |
---|
1337 | |
---|
1338 | |
---|
1339 | ! -------------Cstar computation--------------------------------- |
---|
1340 | DO i = 1, klon |
---|
1341 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1342 | sum_thu(i) = 0. |
---|
1343 | sum_tu(i) = 0. |
---|
1344 | sum_qu(i) = 0. |
---|
1345 | sum_thvu(i) = 0. |
---|
1346 | sum_dth(i) = 0. |
---|
1347 | sum_dq(i) = 0. |
---|
1348 | sum_rho(i) = 0. |
---|
1349 | sum_dtdwn(i) = 0. |
---|
1350 | sum_dqdwn(i) = 0. |
---|
1351 | |
---|
1352 | av_thu(i) = 0. |
---|
1353 | av_tu(i) = 0. |
---|
1354 | av_qu(i) = 0. |
---|
1355 | av_thvu(i) = 0. |
---|
1356 | av_dth(i) = 0. |
---|
1357 | av_dq(i) = 0. |
---|
1358 | av_rho(i) = 0. |
---|
1359 | av_dtdwn(i) = 0. |
---|
1360 | av_dqdwn(i) = 0. |
---|
1361 | END IF |
---|
1362 | END DO |
---|
1363 | |
---|
1364 | ! Integrals (and wake top level number) |
---|
1365 | ! -------------------------------------- |
---|
1366 | |
---|
1367 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1368 | |
---|
1369 | DO i = 1, klon |
---|
1370 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1371 | z(i) = 1. |
---|
1372 | dz(i) = 1. |
---|
1373 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
1374 | sum_dth(i) = 0. |
---|
1375 | END IF |
---|
1376 | END DO |
---|
1377 | |
---|
1378 | DO k = 1, klev |
---|
1379 | DO i = 1, klon |
---|
1380 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1381 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1382 | IF (dz(i)>0) THEN |
---|
1383 | z(i) = z(i) + dz(i) |
---|
1384 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1385 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1386 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1387 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
1388 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1389 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1390 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1391 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1392 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1393 | END IF |
---|
1394 | END IF |
---|
1395 | END DO |
---|
1396 | END DO |
---|
1397 | |
---|
1398 | DO i = 1, klon |
---|
1399 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1400 | hw0(i) = z(i) |
---|
1401 | END IF |
---|
1402 | END DO |
---|
1403 | |
---|
1404 | |
---|
1405 | ! - WAPE and mean forcing computation |
---|
1406 | ! --------------------------------------- |
---|
1407 | |
---|
1408 | ! --------------------------------------- |
---|
1409 | |
---|
1410 | ! Means |
---|
1411 | |
---|
1412 | DO i = 1, klon |
---|
1413 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1414 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1415 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1416 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1417 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1418 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1419 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1420 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1421 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1422 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1423 | |
---|
1424 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
1425 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
1426 | END IF |
---|
1427 | END DO |
---|
1428 | |
---|
1429 | ! Filter out bad wakes |
---|
1430 | |
---|
1431 | DO k = 1, klev |
---|
1432 | DO i = 1, klon |
---|
1433 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1434 | IF (wape(i)<0.) THEN |
---|
1435 | deltatw(i, k) = 0. |
---|
1436 | deltaqw(i, k) = 0. |
---|
1437 | dth(i, k) = 0. |
---|
1438 | END IF |
---|
1439 | END IF |
---|
1440 | END DO |
---|
1441 | END DO |
---|
1442 | |
---|
1443 | DO i = 1, klon |
---|
1444 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
1445 | IF (wape(i)<0.) THEN |
---|
1446 | wape(i) = 0. |
---|
1447 | cstar(i) = 0. |
---|
1448 | hw(i) = hwmin |
---|
1449 | sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
1450 | fip(i) = 0. |
---|
1451 | gwake(i) = .FALSE. |
---|
1452 | ELSE |
---|
1453 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
1454 | gwake(i) = .TRUE. |
---|
1455 | END IF |
---|
1456 | END IF |
---|
1457 | END DO |
---|
1458 | |
---|
1459 | END DO ! end sub-timestep loop |
---|
1460 | |
---|
1461 | ! ----------------------------------------------------------------- |
---|
1462 | ! Get back to tendencies per second |
---|
1463 | |
---|
1464 | DO k = 1, klev |
---|
1465 | DO i = 1, klon |
---|
1466 | |
---|
1467 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1468 | IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
1469 | ! cc |
---|
1470 | dtls(i, k) = dtls(i, k)/dtime |
---|
1471 | dqls(i, k) = dqls(i, k)/dtime |
---|
1472 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
1473 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
1474 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
1475 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
1476 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
1477 | END IF |
---|
1478 | END DO |
---|
1479 | END DO |
---|
1480 | |
---|
1481 | |
---|
1482 | ! ---------------------------------------------------------- |
---|
1483 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
1484 | ! filter out bad wakes. |
---|
1485 | ! ---------------------------------------------------------- |
---|
1486 | |
---|
1487 | ! 2.1 - Undisturbed area and Wake integrals |
---|
1488 | ! --------------------------------------------------------- |
---|
1489 | |
---|
1490 | DO i = 1, klon |
---|
1491 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
1492 | IF (ok_qx_qw(i)) THEN |
---|
1493 | ! cc |
---|
1494 | z(i) = 0. |
---|
1495 | sum_thu(i) = 0. |
---|
1496 | sum_tu(i) = 0. |
---|
1497 | sum_qu(i) = 0. |
---|
1498 | sum_thvu(i) = 0. |
---|
1499 | sum_dth(i) = 0. |
---|
1500 | sum_dq(i) = 0. |
---|
1501 | sum_rho(i) = 0. |
---|
1502 | sum_dtdwn(i) = 0. |
---|
1503 | sum_dqdwn(i) = 0. |
---|
1504 | |
---|
1505 | av_thu(i) = 0. |
---|
1506 | av_tu(i) = 0. |
---|
1507 | av_qu(i) = 0. |
---|
1508 | av_thvu(i) = 0. |
---|
1509 | av_dth(i) = 0. |
---|
1510 | av_dq(i) = 0. |
---|
1511 | av_rho(i) = 0. |
---|
1512 | av_dtdwn(i) = 0. |
---|
1513 | av_dqdwn(i) = 0. |
---|
1514 | END IF |
---|
1515 | END DO |
---|
1516 | ! Potential temperatures and humidity |
---|
1517 | ! ---------------------------------------------------------- |
---|
1518 | |
---|
1519 | DO k = 1, klev |
---|
1520 | DO i = 1, klon |
---|
1521 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1522 | IF (ok_qx_qw(i)) THEN |
---|
1523 | ! cc |
---|
1524 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
1525 | IF (k==1) THEN |
---|
1526 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
1527 | zhh(i, k) = 0 |
---|
1528 | ELSE |
---|
1529 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
1530 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
1531 | END IF |
---|
1532 | the(i, k) = te(i, k)/ppi(i, k) |
---|
1533 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
1534 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
1535 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
1536 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
1537 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
1538 | END IF |
---|
1539 | END DO |
---|
1540 | END DO |
---|
1541 | |
---|
1542 | ! Integrals (and wake top level number) |
---|
1543 | ! ----------------------------------------------------------- |
---|
1544 | |
---|
1545 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1546 | |
---|
1547 | DO i = 1, klon |
---|
1548 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1549 | IF (ok_qx_qw(i)) THEN |
---|
1550 | ! cc |
---|
1551 | z(i) = 1. |
---|
1552 | dz(i) = 1. |
---|
1553 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
1554 | sum_dth(i) = 0. |
---|
1555 | END IF |
---|
1556 | END DO |
---|
1557 | |
---|
1558 | DO k = 1, klev |
---|
1559 | DO i = 1, klon |
---|
1560 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1561 | IF (ok_qx_qw(i)) THEN |
---|
1562 | ! cc |
---|
1563 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1564 | IF (dz(i)>0) THEN |
---|
1565 | z(i) = z(i) + dz(i) |
---|
1566 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
1567 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
1568 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
1569 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
1570 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
1571 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
1572 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
1573 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
1574 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
1575 | END IF |
---|
1576 | END IF |
---|
1577 | END DO |
---|
1578 | END DO |
---|
1579 | |
---|
1580 | DO i = 1, klon |
---|
1581 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1582 | IF (ok_qx_qw(i)) THEN |
---|
1583 | ! cc |
---|
1584 | hw0(i) = z(i) |
---|
1585 | END IF |
---|
1586 | END DO |
---|
1587 | |
---|
1588 | ! - WAPE and mean forcing computation |
---|
1589 | ! ------------------------------------------------------------- |
---|
1590 | |
---|
1591 | ! Means |
---|
1592 | |
---|
1593 | DO i = 1, klon |
---|
1594 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1595 | IF (ok_qx_qw(i)) THEN |
---|
1596 | ! cc |
---|
1597 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1598 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1599 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1600 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1601 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1602 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1603 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1604 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1605 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1606 | |
---|
1607 | wape2(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
1608 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
1609 | END IF |
---|
1610 | END DO |
---|
1611 | |
---|
1612 | ! Prognostic variable update |
---|
1613 | ! ------------------------------------------------------------ |
---|
1614 | |
---|
1615 | ! Filter out bad wakes |
---|
1616 | |
---|
1617 | DO k = 1, klev |
---|
1618 | DO i = 1, klon |
---|
1619 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
1620 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
1621 | ! cc |
---|
1622 | deltatw(i, k) = 0. |
---|
1623 | deltaqw(i, k) = 0. |
---|
1624 | dth(i, k) = 0. |
---|
1625 | END IF |
---|
1626 | END DO |
---|
1627 | END DO |
---|
1628 | |
---|
1629 | |
---|
1630 | DO i = 1, klon |
---|
1631 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1632 | IF (ok_qx_qw(i)) THEN |
---|
1633 | ! cc |
---|
1634 | IF (wape2(i)<0.) THEN |
---|
1635 | wape2(i) = 0. |
---|
1636 | cstar2(i) = 0. |
---|
1637 | hw(i) = hwmin |
---|
1638 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
1639 | fip(i) = 0. |
---|
1640 | gwake(i) = .FALSE. |
---|
1641 | ELSE |
---|
1642 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
1643 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
1644 | gwake(i) = .TRUE. |
---|
1645 | END IF |
---|
1646 | END IF |
---|
1647 | END DO |
---|
1648 | |
---|
1649 | DO i = 1, klon |
---|
1650 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1651 | IF (ok_qx_qw(i)) THEN |
---|
1652 | ! cc |
---|
1653 | ktopw(i) = ktop(i) |
---|
1654 | END IF |
---|
1655 | END DO |
---|
1656 | |
---|
1657 | DO i = 1, klon |
---|
1658 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
1659 | IF (ok_qx_qw(i)) THEN |
---|
1660 | ! cc |
---|
1661 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
1662 | |
---|
1663 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
1664 | ! cc heff = 600. |
---|
1665 | ! Utilisation de la hauteur hw |
---|
1666 | ! c heff = 0.7*hw |
---|
1667 | heff(i) = hw(i) |
---|
1668 | |
---|
1669 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
1670 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
1671 | fip(i) = alpk*fip(i) |
---|
1672 | ! jyg2 |
---|
1673 | ELSE |
---|
1674 | fip(i) = 0. |
---|
1675 | END IF |
---|
1676 | END IF |
---|
1677 | END DO |
---|
1678 | |
---|
1679 | ! Limitation de sigmaw |
---|
1680 | |
---|
1681 | ! cc nrlmd |
---|
1682 | ! DO i=1,klon |
---|
1683 | ! IF (OK_qx_qw(i)) THEN |
---|
1684 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
1685 | ! ENDIF |
---|
1686 | ! ENDDO |
---|
1687 | ! cc |
---|
1688 | DO k = 1, klev |
---|
1689 | DO i = 1, klon |
---|
1690 | |
---|
1691 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
1692 | ! permanent |
---|
1693 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
1694 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
1695 | .NOT. ok_qx_qw(i)) THEN |
---|
1696 | ! cc |
---|
1697 | dtls(i, k) = 0. |
---|
1698 | dqls(i, k) = 0. |
---|
1699 | deltatw(i, k) = 0. |
---|
1700 | deltaqw(i, k) = 0. |
---|
1701 | END IF |
---|
1702 | END DO |
---|
1703 | END DO |
---|
1704 | |
---|
1705 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
1706 | DO i = 1, klon |
---|
1707 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
1708 | .NOT. ok_qx_qw(i)) THEN |
---|
1709 | wape(i) = 0. |
---|
1710 | cstar(i) = 0. |
---|
1711 | hw(i) = hwmin |
---|
1712 | sigmaw(i) = sigmad |
---|
1713 | fip(i) = 0. |
---|
1714 | ELSE |
---|
1715 | wape(i) = wape2(i) |
---|
1716 | cstar(i) = cstar2(i) |
---|
1717 | END IF |
---|
1718 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
1719 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
1720 | END DO |
---|
1721 | |
---|
1722 | |
---|
1723 | RETURN |
---|
1724 | END SUBROUTINE wake |
---|
1725 | |
---|
1726 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
1727 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
1728 | ! ------------------------------------------------------ |
---|
1729 | ! Dtermination du coefficient alpha tel que les tendances |
---|
1730 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
1731 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
1732 | ! ------------------------------------------------------ |
---|
1733 | |
---|
1734 | |
---|
1735 | ! Input |
---|
1736 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
1737 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
1738 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
1739 | LOGICAL wk_adv(nlon) |
---|
1740 | INTEGER nl, nlon |
---|
1741 | ! Output |
---|
1742 | REAL alpha(nlon) |
---|
1743 | ! Internal variables |
---|
1744 | REAL zeta(nlon, nl) |
---|
1745 | REAL alpha1(nlon) |
---|
1746 | REAL x, a, b, c, discrim |
---|
1747 | REAL epsilon |
---|
1748 | ! DATA epsilon/1.e-15/ |
---|
1749 | |
---|
1750 | DO k = 1, nl |
---|
1751 | DO i = 1, nlon |
---|
1752 | IF (wk_adv(i)) THEN |
---|
1753 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
1754 | zeta(i, k) = 0. |
---|
1755 | ELSE |
---|
1756 | zeta(i, k) = 1. |
---|
1757 | END IF |
---|
1758 | END IF |
---|
1759 | END DO |
---|
1760 | DO i = 1, nlon |
---|
1761 | IF (wk_adv(i)) THEN |
---|
1762 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
1763 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & |
---|
1764 | d_deltaqw(i,k)) |
---|
1765 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
1766 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
1767 | deltaqw(i, k)*d_sigmaw(i) |
---|
1768 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
1769 | discrim = b*b - 4.*a*c |
---|
1770 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
1771 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
1772 | alpha1(i) = 1. |
---|
1773 | ELSE |
---|
1774 | IF (x>=0.) THEN |
---|
1775 | alpha1(i) = 1. |
---|
1776 | ELSE |
---|
1777 | IF (a>0.) THEN |
---|
1778 | alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
1779 | ))/(2.*a)) |
---|
1780 | ELSE IF (a==0.) THEN |
---|
1781 | alpha1(i) = 0.9*(-c/b) |
---|
1782 | ELSE |
---|
1783 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
1784 | alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
1785 | ))/(2.*a)) |
---|
1786 | END IF |
---|
1787 | END IF |
---|
1788 | END IF |
---|
1789 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
1790 | END IF |
---|
1791 | END DO |
---|
1792 | END DO |
---|
1793 | |
---|
1794 | RETURN |
---|
1795 | END SUBROUTINE wake_vec_modulation |
---|
1796 | |
---|
1797 | SUBROUTINE wake_scal(p, ph, ppi, dtime, sigd_con, te0, qe0, omgb, dtdwn, & |
---|
1798 | dqdwn, amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, & |
---|
1799 | deltaqw, dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, & |
---|
1800 | dp_omgb, wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, & |
---|
1801 | spread, cstar, d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
1802 | |
---|
1803 | ! ************************************************************** |
---|
1804 | ! * |
---|
1805 | ! WAKE * |
---|
1806 | ! retour a un Pupper fixe * |
---|
1807 | ! * |
---|
1808 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
1809 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
1810 | ! ************************************************************** |
---|
1811 | |
---|
1812 | USE dimphy |
---|
1813 | IMPLICIT NONE |
---|
1814 | ! ============================================================================ |
---|
1815 | |
---|
1816 | |
---|
1817 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
1818 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
1819 | ! le declenchement de nouvelles colonnes convectives. |
---|
1820 | |
---|
1821 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
1822 | ! area |
---|
1823 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
1824 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
1825 | |
---|
1826 | ! Variable de sortie : |
---|
1827 | |
---|
1828 | ! wape : WAke Potential Energy |
---|
1829 | ! fip : Front Incident Power (W/m2) - ALP |
---|
1830 | ! gfl : Gust Front Length per unit area (m-1) |
---|
1831 | ! dtls : large scale temperature tendency due to wake |
---|
1832 | ! dqls : large scale humidity tendency due to wake |
---|
1833 | ! hw : hauteur de la poche |
---|
1834 | ! dp_omgb : vertical gradient of large scale omega |
---|
1835 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
1836 | ! dtKE : differential heating (wake - unpertubed) |
---|
1837 | ! dqKE : differential moistening (wake - unpertubed) |
---|
1838 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
1839 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
1840 | ! spread : spreading term in dt_wake and dq_wake |
---|
1841 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
1842 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
1843 | ! sigmaw : updated wake fractional area. |
---|
1844 | ! d_deltat_gw : delta T tendency due to GW |
---|
1845 | |
---|
1846 | ! Variables d'entree : |
---|
1847 | |
---|
1848 | ! aire : aire de la maille |
---|
1849 | ! te0 : temperature dans l'environnement (K) |
---|
1850 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
1851 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
1852 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
1853 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
1854 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
1855 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
1856 | ! amdwn: flux de masse total des descentes, par unite de |
---|
1857 | ! surface de la maille (kg/m2/s) |
---|
1858 | ! amup : flux de masse total des ascendances, par unite de |
---|
1859 | ! surface de la maille (kg/m2/s) |
---|
1860 | ! p : pressions aux milieux des couches (Pa) |
---|
1861 | ! ph : pressions aux interfaces (Pa) |
---|
1862 | ! ppi : (p/p_0)**kapa (adim) |
---|
1863 | ! dtime: increment temporel (s) |
---|
1864 | |
---|
1865 | ! Variables internes : |
---|
1866 | |
---|
1867 | ! rhow : masse volumique de la poche froide |
---|
1868 | ! rho : environment density at P levels |
---|
1869 | ! rhoh : environment density at Ph levels |
---|
1870 | ! te : environment temperature | may change within |
---|
1871 | ! qe : environment humidity | sub-time-stepping |
---|
1872 | ! the : environment potential temperature |
---|
1873 | ! thu : potential temperature in undisturbed area |
---|
1874 | ! tu : temperature in undisturbed area |
---|
1875 | ! qu : humidity in undisturbed area |
---|
1876 | ! dp_omgb: vertical gradient og LS omega |
---|
1877 | ! omgbw : wake average vertical omega |
---|
1878 | ! dp_omgbw: vertical gradient of omgbw |
---|
1879 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
1880 | ! dth : potential temperature diff. wake-undist. |
---|
1881 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
1882 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
1883 | ! q1 : first humidity for vertical advection |
---|
1884 | ! q2 : second humidity for vertical advection |
---|
1885 | ! d_deltatw : terme de redistribution pour deltatw |
---|
1886 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
1887 | ! deltatw0 : deltatw initial |
---|
1888 | ! deltaqw0 : deltaqw initial |
---|
1889 | ! hw0 : hw initial |
---|
1890 | ! sigmaw0: sigmaw initial |
---|
1891 | ! amflux : horizontal mass flux through wake boundary |
---|
1892 | ! wdens : number of wakes per unit area (3D) or per |
---|
1893 | ! unit length (2D) |
---|
1894 | ! Tgw : 1 sur la période de onde de gravité |
---|
1895 | ! Cgw : vitesse de propagation de onde de gravité |
---|
1896 | ! LL : distance entre 2 poches |
---|
1897 | |
---|
1898 | ! ------------------------------------------------------------------------- |
---|
1899 | ! Déclaration de variables |
---|
1900 | ! ------------------------------------------------------------------------- |
---|
1901 | |
---|
1902 | include "dimensions.h" |
---|
1903 | ! ccc include "dimphy.h" |
---|
1904 | include "YOMCST.h" |
---|
1905 | include "cvthermo.h" |
---|
1906 | include "iniprint.h" |
---|
1907 | |
---|
1908 | ! Arguments en entree |
---|
1909 | ! -------------------- |
---|
1910 | |
---|
1911 | REAL p(klev), ph(klev+1), ppi(klev) |
---|
1912 | REAL dtime |
---|
1913 | REAL te0(klev), qe0(klev) |
---|
1914 | REAL omgb(klev+1) |
---|
1915 | REAL dtdwn(klev), dqdwn(klev) |
---|
1916 | REAL wdtpbl(klev), wdqpbl(klev) |
---|
1917 | REAL udtpbl(klev), udqpbl(klev) |
---|
1918 | REAL amdwn(klev), amup(klev) |
---|
1919 | REAL dta(klev), dqa(klev) |
---|
1920 | REAL sigd_con |
---|
1921 | |
---|
1922 | ! Sorties |
---|
1923 | ! -------- |
---|
1924 | |
---|
1925 | REAL deltatw(klev), deltaqw(klev), dth(klev) |
---|
1926 | REAL tu(klev), qu(klev) |
---|
1927 | REAL dtls(klev), dqls(klev) |
---|
1928 | REAL dtke(klev), dqke(klev) |
---|
1929 | REAL dtpbl(klev), dqpbl(klev) |
---|
1930 | REAL spread(klev) |
---|
1931 | REAL d_deltatgw(klev) |
---|
1932 | REAL d_deltatw2(klev), d_deltaqw2(klev) |
---|
1933 | REAL omgbdth(klev+1), omg(klev+1) |
---|
1934 | REAL dp_omgb(klev), dp_deltomg(klev) |
---|
1935 | REAL d_deltat_gw(klev) |
---|
1936 | REAL hw, sigmaw, wape, fip, gfl, cstar |
---|
1937 | INTEGER ktopw |
---|
1938 | |
---|
1939 | ! Variables internes |
---|
1940 | ! ------------------- |
---|
1941 | |
---|
1942 | ! Variables à fixer |
---|
1943 | REAL alon |
---|
1944 | REAL coefgw |
---|
1945 | REAL wdens0, wdens |
---|
1946 | REAL stark |
---|
1947 | REAL alpk |
---|
1948 | REAL delta_t_min |
---|
1949 | REAL pupper |
---|
1950 | INTEGER nsub |
---|
1951 | REAL dtimesub |
---|
1952 | REAL sigmad, hwmin |
---|
1953 | |
---|
1954 | ! Variables de sauvegarde |
---|
1955 | REAL deltatw0(klev) |
---|
1956 | REAL deltaqw0(klev) |
---|
1957 | REAL te(klev), qe(klev) |
---|
1958 | REAL sigmaw0, sigmaw1 |
---|
1959 | |
---|
1960 | ! Variables pour les GW |
---|
1961 | REAL ll |
---|
1962 | REAL n2(klev) |
---|
1963 | REAL cgw(klev) |
---|
1964 | REAL tgw(klev) |
---|
1965 | |
---|
1966 | ! Variables liées au calcul de hw |
---|
1967 | REAL ptop_provis, ptop, ptop_new |
---|
1968 | REAL sum_dth |
---|
1969 | REAL dthmin |
---|
1970 | REAL z, dz, hw0 |
---|
1971 | INTEGER ktop, kupper |
---|
1972 | |
---|
1973 | ! Autres variables internes |
---|
1974 | INTEGER isubstep, k |
---|
1975 | |
---|
1976 | REAL sum_thu, sum_tu, sum_qu, sum_thvu |
---|
1977 | REAL sum_dq, sum_rho |
---|
1978 | REAL sum_dtdwn, sum_dqdwn |
---|
1979 | REAL av_thu, av_tu, av_qu, av_thvu |
---|
1980 | REAL av_dth, av_dq, av_rho |
---|
1981 | REAL av_dtdwn, av_dqdwn |
---|
1982 | |
---|
1983 | REAL rho(klev), rhoh(klev+1), rhow(klev) |
---|
1984 | REAL rhow_moyen(klev) |
---|
1985 | REAL zh(klev), zhh(klev+1) |
---|
1986 | REAL epaisseur1(klev), epaisseur2(klev) |
---|
1987 | |
---|
1988 | REAL the(klev), thu(klev) |
---|
1989 | |
---|
1990 | REAL d_deltatw(klev), d_deltaqw(klev) |
---|
1991 | |
---|
1992 | REAL omgbw(klev+1), omgtop |
---|
1993 | REAL dp_omgbw(klev) |
---|
1994 | REAL ztop, dztop |
---|
1995 | REAL alpha_up(klev) |
---|
1996 | |
---|
1997 | REAL rre1, rre2, rrd1, rrd2 |
---|
1998 | REAL th1(klev), th2(klev), q1(klev), q2(klev) |
---|
1999 | REAL d_th1(klev), d_th2(klev), d_dth(klev) |
---|
2000 | REAL d_q1(klev), d_q2(klev), d_dq(klev) |
---|
2001 | REAL omgbdq(klev) |
---|
2002 | |
---|
2003 | REAL ff, gg |
---|
2004 | REAL wape2, cstar2, heff |
---|
2005 | |
---|
2006 | REAL crep(klev) |
---|
2007 | REAL crep_upper, crep_sol |
---|
2008 | |
---|
2009 | ! ------------------------------------------------------------------------- |
---|
2010 | ! Initialisations |
---|
2011 | ! ------------------------------------------------------------------------- |
---|
2012 | |
---|
2013 | ! print*, 'wake initialisations' |
---|
2014 | |
---|
2015 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
2016 | ! ------------------------------------------------------------------------- |
---|
2017 | |
---|
2018 | DATA sigmad, hwmin/.02, 10./ |
---|
2019 | |
---|
2020 | ! Longueur de maille (en m) |
---|
2021 | ! ------------------------------------------------------------------------- |
---|
2022 | |
---|
2023 | ! ALON = 3.e5 |
---|
2024 | alon = 1.E6 |
---|
2025 | |
---|
2026 | |
---|
2027 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
2028 | |
---|
2029 | ! coefgw : Coefficient pour les ondes de gravité |
---|
2030 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
2031 | ! wdens : Densité de poche froide par maille |
---|
2032 | ! ------------------------------------------------------------------------- |
---|
2033 | |
---|
2034 | coefgw = 10 |
---|
2035 | ! coefgw=1 |
---|
2036 | ! wdens0 = 1.0/(alon**2) |
---|
2037 | wdens = 1.0/(alon**2) |
---|
2038 | stark = 0.50 |
---|
2039 | ! CRtest |
---|
2040 | alpk = 0.1 |
---|
2041 | ! alpk = 1.0 |
---|
2042 | ! alpk = 0.5 |
---|
2043 | ! alpk = 0.05 |
---|
2044 | crep_upper = 0.9 |
---|
2045 | crep_sol = 1.0 |
---|
2046 | |
---|
2047 | |
---|
2048 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
2049 | ! ------------------------------------------------------------------------- |
---|
2050 | |
---|
2051 | delta_t_min = 0.2 |
---|
2052 | |
---|
2053 | |
---|
2054 | ! 1. - Save initial values and initialize tendencies |
---|
2055 | ! -------------------------------------------------- |
---|
2056 | |
---|
2057 | DO k = 1, klev |
---|
2058 | deltatw0(k) = deltatw(k) |
---|
2059 | deltaqw0(k) = deltaqw(k) |
---|
2060 | te(k) = te0(k) |
---|
2061 | qe(k) = qe0(k) |
---|
2062 | dtls(k) = 0. |
---|
2063 | dqls(k) = 0. |
---|
2064 | d_deltat_gw(k) = 0. |
---|
2065 | d_deltatw2(k) = 0. |
---|
2066 | d_deltaqw2(k) = 0. |
---|
2067 | END DO |
---|
2068 | ! sigmaw1=sigmaw |
---|
2069 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
2070 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
2071 | ! ENDIF |
---|
2072 | sigmaw = max(sigmaw, sigd_con) |
---|
2073 | sigmaw = max(sigmaw, sigmad) |
---|
2074 | sigmaw = min(sigmaw, 0.99) |
---|
2075 | sigmaw0 = sigmaw |
---|
2076 | ! wdens=wdens0/(10.*sigmaw) |
---|
2077 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
2078 | ! print*, 'sigmaw1,sigd1', sigmaw, sigd_con |
---|
2079 | ! ENDIF |
---|
2080 | |
---|
2081 | ! 2. - Prognostic part |
---|
2082 | ! ========================================================= |
---|
2083 | |
---|
2084 | ! print *, 'prognostic wake computation' |
---|
2085 | |
---|
2086 | |
---|
2087 | ! 2.1 - Undisturbed area and Wake integrals |
---|
2088 | ! --------------------------------------------------------- |
---|
2089 | |
---|
2090 | z = 0. |
---|
2091 | ktop = 0 |
---|
2092 | kupper = 0 |
---|
2093 | sum_thu = 0. |
---|
2094 | sum_tu = 0. |
---|
2095 | sum_qu = 0. |
---|
2096 | sum_thvu = 0. |
---|
2097 | sum_dth = 0. |
---|
2098 | sum_dq = 0. |
---|
2099 | sum_rho = 0. |
---|
2100 | sum_dtdwn = 0. |
---|
2101 | sum_dqdwn = 0. |
---|
2102 | |
---|
2103 | av_thu = 0. |
---|
2104 | av_tu = 0. |
---|
2105 | av_qu = 0. |
---|
2106 | av_thvu = 0. |
---|
2107 | av_dth = 0. |
---|
2108 | av_dq = 0. |
---|
2109 | av_rho = 0. |
---|
2110 | av_dtdwn = 0. |
---|
2111 | av_dqdwn = 0. |
---|
2112 | |
---|
2113 | ! Potential temperatures and humidity |
---|
2114 | ! ---------------------------------------------------------- |
---|
2115 | |
---|
2116 | DO k = 1, klev |
---|
2117 | rho(k) = p(k)/(rd*te(k)) |
---|
2118 | IF (k==1) THEN |
---|
2119 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
2120 | zhh(k) = 0 |
---|
2121 | ELSE |
---|
2122 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
2123 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
2124 | END IF |
---|
2125 | the(k) = te(k)/ppi(k) |
---|
2126 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
2127 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
2128 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
2129 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
2130 | dth(k) = deltatw(k)/ppi(k) |
---|
2131 | ll = (1-sqrt(sigmaw))/sqrt(wdens) |
---|
2132 | END DO |
---|
2133 | |
---|
2134 | DO k = 1, klev - 1 |
---|
2135 | IF (k==1) THEN |
---|
2136 | n2(k) = 0 |
---|
2137 | ELSE |
---|
2138 | n2(k) = max(0., -rg**2/the(k)*rho(k)*(the(k+1)-the(k-1))/(p(k+ & |
---|
2139 | 1)-p(k-1))) |
---|
2140 | END IF |
---|
2141 | zh(k) = (zhh(k)+zhh(k+1))/2 |
---|
2142 | |
---|
2143 | cgw(k) = sqrt(n2(k))*zh(k) |
---|
2144 | tgw(k) = coefgw*cgw(k)/ll |
---|
2145 | END DO |
---|
2146 | |
---|
2147 | n2(klev) = 0 |
---|
2148 | zh(klev) = 0 |
---|
2149 | cgw(klev) = 0 |
---|
2150 | tgw(klev) = 0 |
---|
2151 | |
---|
2152 | ! Calcul de la masse volumique moyenne de la colonne |
---|
2153 | ! ----------------------------------------------------------------- |
---|
2154 | |
---|
2155 | DO k = 1, klev |
---|
2156 | epaisseur1(k) = 0. |
---|
2157 | epaisseur2(k) = 0. |
---|
2158 | END DO |
---|
2159 | |
---|
2160 | epaisseur1(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
2161 | epaisseur2(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
2162 | rhow_moyen(1) = rhow(1) |
---|
2163 | |
---|
2164 | DO k = 2, klev |
---|
2165 | epaisseur1(k) = -(ph(k+1)-ph(k))/(rho(k)*rg) + 1. |
---|
2166 | epaisseur2(k) = epaisseur2(k-1) + epaisseur1(k) |
---|
2167 | rhow_moyen(k) = (rhow_moyen(k-1)*epaisseur2(k-1)+rhow(k)*epaisseur1(k))/ & |
---|
2168 | epaisseur2(k) |
---|
2169 | END DO |
---|
2170 | |
---|
2171 | |
---|
2172 | ! Choose an integration bound well above wake top |
---|
2173 | ! ----------------------------------------------------------------- |
---|
2174 | |
---|
2175 | ! Pupper = 50000. ! melting level |
---|
2176 | pupper = 60000. |
---|
2177 | ! Pupper = 70000. |
---|
2178 | |
---|
2179 | |
---|
2180 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
2181 | ! ----------------------------------------------------------------- |
---|
2182 | |
---|
2183 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
2184 | |
---|
2185 | ptop_provis = ph(1) |
---|
2186 | DO k = 2, klev |
---|
2187 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
2188 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
2189 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
2190 | GO TO 25 |
---|
2191 | END IF |
---|
2192 | END DO |
---|
2193 | 25 CONTINUE |
---|
2194 | |
---|
2195 | ! -2/ dth integral |
---|
2196 | |
---|
2197 | sum_dth = 0. |
---|
2198 | dthmin = -delta_t_min |
---|
2199 | z = 0. |
---|
2200 | |
---|
2201 | DO k = 1, klev |
---|
2202 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
2203 | IF (dz<=0) GO TO 40 |
---|
2204 | z = z + dz |
---|
2205 | sum_dth = sum_dth + dth(k)*dz |
---|
2206 | dthmin = min(dthmin, dth(k)) |
---|
2207 | END DO |
---|
2208 | 40 CONTINUE |
---|
2209 | |
---|
2210 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
2211 | |
---|
2212 | hw0 = 2.*sum_dth/min(dthmin, -0.5) |
---|
2213 | hw0 = max(hwmin, hw0) |
---|
2214 | |
---|
2215 | ! -4/ now, get Ptop |
---|
2216 | |
---|
2217 | z = 0. |
---|
2218 | ptop = ph(1) |
---|
2219 | |
---|
2220 | DO k = 1, klev |
---|
2221 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw0-z) |
---|
2222 | IF (dz<=0) GO TO 45 |
---|
2223 | z = z + dz |
---|
2224 | ptop = ph(k) - rho(k)*rg*dz |
---|
2225 | END DO |
---|
2226 | 45 CONTINUE |
---|
2227 | |
---|
2228 | |
---|
2229 | ! -5/ Determination de ktop et kupper |
---|
2230 | |
---|
2231 | DO k = klev, 1, -1 |
---|
2232 | IF (ph(k+1)<ptop) ktop = k |
---|
2233 | IF (ph(k+1)<pupper) kupper = k |
---|
2234 | END DO |
---|
2235 | |
---|
2236 | ! -6/ Correct ktop and ptop |
---|
2237 | |
---|
2238 | ptop_new = ptop |
---|
2239 | DO k = ktop, 2, -1 |
---|
2240 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
2241 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
2242 | (dth(k)-dth(k-1)) |
---|
2243 | GO TO 225 |
---|
2244 | END IF |
---|
2245 | END DO |
---|
2246 | 225 CONTINUE |
---|
2247 | |
---|
2248 | ptop = ptop_new |
---|
2249 | |
---|
2250 | DO k = klev, 1, -1 |
---|
2251 | IF (ph(k+1)<ptop) ktop = k |
---|
2252 | END DO |
---|
2253 | |
---|
2254 | ! Set deltatw & deltaqw to 0 above kupper |
---|
2255 | ! ----------------------------------------------------------- |
---|
2256 | |
---|
2257 | DO k = kupper, klev |
---|
2258 | deltatw(k) = 0. |
---|
2259 | deltaqw(k) = 0. |
---|
2260 | END DO |
---|
2261 | |
---|
2262 | |
---|
2263 | ! Vertical gradient of LS omega |
---|
2264 | ! ------------------------------------------------------------ |
---|
2265 | |
---|
2266 | DO k = 1, kupper |
---|
2267 | dp_omgb(k) = (omgb(k+1)-omgb(k))/(ph(k+1)-ph(k)) |
---|
2268 | END DO |
---|
2269 | |
---|
2270 | |
---|
2271 | ! Integrals (and wake top level number) |
---|
2272 | ! ----------------------------------------------------------- |
---|
2273 | |
---|
2274 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
2275 | |
---|
2276 | z = 1. |
---|
2277 | dz = 1. |
---|
2278 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
2279 | sum_dth = 0. |
---|
2280 | |
---|
2281 | DO k = 1, klev |
---|
2282 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
2283 | IF (dz<=0) GO TO 50 |
---|
2284 | z = z + dz |
---|
2285 | sum_thu = sum_thu + thu(k)*dz |
---|
2286 | sum_tu = sum_tu + tu(k)*dz |
---|
2287 | sum_qu = sum_qu + qu(k)*dz |
---|
2288 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
2289 | sum_dth = sum_dth + dth(k)*dz |
---|
2290 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
2291 | sum_rho = sum_rho + rhow(k)*dz |
---|
2292 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
2293 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
2294 | END DO |
---|
2295 | 50 CONTINUE |
---|
2296 | |
---|
2297 | hw0 = z |
---|
2298 | |
---|
2299 | ! 2.1 - WAPE and mean forcing computation |
---|
2300 | ! ------------------------------------------------------------- |
---|
2301 | |
---|
2302 | ! Means |
---|
2303 | |
---|
2304 | av_thu = sum_thu/hw0 |
---|
2305 | av_tu = sum_tu/hw0 |
---|
2306 | av_qu = sum_qu/hw0 |
---|
2307 | av_thvu = sum_thvu/hw0 |
---|
2308 | ! av_thve = sum_thve/hw0 |
---|
2309 | av_dth = sum_dth/hw0 |
---|
2310 | av_dq = sum_dq/hw0 |
---|
2311 | av_rho = sum_rho/hw0 |
---|
2312 | av_dtdwn = sum_dtdwn/hw0 |
---|
2313 | av_dqdwn = sum_dqdwn/hw0 |
---|
2314 | |
---|
2315 | wape = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
2316 | av_thvu |
---|
2317 | |
---|
2318 | ! 2.2 Prognostic variable update |
---|
2319 | ! ------------------------------------------------------------ |
---|
2320 | |
---|
2321 | ! Filter out bad wakes |
---|
2322 | |
---|
2323 | IF (wape<0.) THEN |
---|
2324 | IF (prt_level>=10) PRINT *, 'wape<0' |
---|
2325 | wape = 0. |
---|
2326 | hw = hwmin |
---|
2327 | sigmaw = max(sigmad, sigd_con) |
---|
2328 | fip = 0. |
---|
2329 | DO k = 1, klev |
---|
2330 | deltatw(k) = 0. |
---|
2331 | deltaqw(k) = 0. |
---|
2332 | dth(k) = 0. |
---|
2333 | END DO |
---|
2334 | ELSE |
---|
2335 | IF (prt_level>=10) PRINT *, 'wape>0' |
---|
2336 | cstar = stark*sqrt(2.*wape) |
---|
2337 | END IF |
---|
2338 | |
---|
2339 | ! ------------------------------------------------------------------ |
---|
2340 | ! Sub-time-stepping |
---|
2341 | ! ------------------------------------------------------------------ |
---|
2342 | |
---|
2343 | ! nsub=36 |
---|
2344 | nsub = 10 |
---|
2345 | dtimesub = dtime/nsub |
---|
2346 | |
---|
2347 | ! ------------------------------------------------------------ |
---|
2348 | DO isubstep = 1, nsub |
---|
2349 | ! ------------------------------------------------------------ |
---|
2350 | |
---|
2351 | ! print*,'---------------','substep=',isubstep,'-------------' |
---|
2352 | |
---|
2353 | ! Evolution of sigmaw |
---|
2354 | |
---|
2355 | |
---|
2356 | gfl = 2.*sqrt(3.14*wdens*sigmaw) |
---|
2357 | |
---|
2358 | sigmaw = sigmaw + gfl*cstar*dtimesub |
---|
2359 | sigmaw = min(sigmaw, 0.99) !!!!!!!! |
---|
2360 | ! wdens = wdens0/(10.*sigmaw) |
---|
2361 | ! sigmaw =max(sigmaw,sigd_con) |
---|
2362 | ! sigmaw =max(sigmaw,sigmad) |
---|
2363 | |
---|
2364 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
2365 | |
---|
2366 | z = 0. |
---|
2367 | dp_deltomg(1:klev) = 0. |
---|
2368 | omg(1:klev+1) = 0. |
---|
2369 | |
---|
2370 | omg(1) = 0. |
---|
2371 | dp_deltomg(1) = -(gfl*cstar)/(sigmaw*(1-sigmaw)) |
---|
2372 | |
---|
2373 | DO k = 2, ktop |
---|
2374 | dz = -(ph(k)-ph(k-1))/(rho(k-1)*rg) |
---|
2375 | z = z + dz |
---|
2376 | dp_deltomg(k) = dp_deltomg(1) |
---|
2377 | omg(k) = dp_deltomg(1)*z |
---|
2378 | END DO |
---|
2379 | |
---|
2380 | dztop = -(ptop-ph(ktop))/(rho(ktop)*rg) |
---|
2381 | ztop = z + dztop |
---|
2382 | omgtop = dp_deltomg(1)*ztop |
---|
2383 | |
---|
2384 | |
---|
2385 | ! Conversion de la vitesse verticale de m/s a Pa/s |
---|
2386 | |
---|
2387 | omgtop = -rho(ktop)*rg*omgtop |
---|
2388 | dp_deltomg(1) = omgtop/(ptop-ph(1)) |
---|
2389 | |
---|
2390 | DO k = 1, ktop |
---|
2391 | omg(k) = -rho(k)*rg*omg(k) |
---|
2392 | dp_deltomg(k) = dp_deltomg(1) |
---|
2393 | END DO |
---|
2394 | |
---|
2395 | ! raccordement lineaire de omg de ptop a pupper |
---|
2396 | |
---|
2397 | IF (kupper>ktop) THEN |
---|
2398 | omg(kupper+1) = -rg*amdwn(kupper+1)/sigmaw + rg*amup(kupper+1)/(1.- & |
---|
2399 | sigmaw) |
---|
2400 | dp_deltomg(kupper) = (omgtop-omg(kupper+1))/(ptop-pupper) |
---|
2401 | DO k = ktop + 1, kupper |
---|
2402 | dp_deltomg(k) = dp_deltomg(kupper) |
---|
2403 | omg(k) = omgtop + (ph(k)-ptop)*dp_deltomg(kupper) |
---|
2404 | END DO |
---|
2405 | END IF |
---|
2406 | |
---|
2407 | ! Compute wake average vertical velocity omgbw |
---|
2408 | |
---|
2409 | DO k = 1, klev + 1 |
---|
2410 | omgbw(k) = omgb(k) + (1.-sigmaw)*omg(k) |
---|
2411 | END DO |
---|
2412 | |
---|
2413 | ! and its vertical gradient dp_omgbw |
---|
2414 | |
---|
2415 | DO k = 1, klev |
---|
2416 | dp_omgbw(k) = (omgbw(k+1)-omgbw(k))/(ph(k+1)-ph(k)) |
---|
2417 | END DO |
---|
2418 | |
---|
2419 | |
---|
2420 | ! Upstream coefficients for omgb velocity |
---|
2421 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
2422 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
2423 | |
---|
2424 | DO k = 1, klev |
---|
2425 | alpha_up(k) = 0. |
---|
2426 | IF (omgb(k)>0.) alpha_up(k) = 1. |
---|
2427 | END DO |
---|
2428 | |
---|
2429 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
2430 | |
---|
2431 | rre1 = 1. - sigmaw |
---|
2432 | rre2 = sigmaw |
---|
2433 | rrd1 = -1. |
---|
2434 | rrd2 = 1. |
---|
2435 | |
---|
2436 | ! Get [Th1,Th2], dth and [q1,q2] |
---|
2437 | |
---|
2438 | DO k = 1, kupper + 1 |
---|
2439 | dth(k) = deltatw(k)/ppi(k) |
---|
2440 | th1(k) = the(k) - sigmaw*dth(k) ! undisturbed area |
---|
2441 | th2(k) = the(k) + (1.-sigmaw)*dth(k) ! wake |
---|
2442 | q1(k) = qe(k) - sigmaw*deltaqw(k) ! undisturbed area |
---|
2443 | q2(k) = qe(k) + (1.-sigmaw)*deltaqw(k) ! wake |
---|
2444 | END DO |
---|
2445 | |
---|
2446 | d_th1(1) = 0. |
---|
2447 | d_th2(1) = 0. |
---|
2448 | d_dth(1) = 0. |
---|
2449 | d_q1(1) = 0. |
---|
2450 | d_q2(1) = 0. |
---|
2451 | d_dq(1) = 0. |
---|
2452 | |
---|
2453 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
2454 | d_th1(k) = th1(k-1) - th1(k) |
---|
2455 | d_th2(k) = th2(k-1) - th2(k) |
---|
2456 | d_dth(k) = dth(k-1) - dth(k) |
---|
2457 | d_q1(k) = q1(k-1) - q1(k) |
---|
2458 | d_q2(k) = q2(k-1) - q2(k) |
---|
2459 | d_dq(k) = deltaqw(k-1) - deltaqw(k) |
---|
2460 | END DO |
---|
2461 | |
---|
2462 | omgbdth(1) = 0. |
---|
2463 | omgbdq(1) = 0. |
---|
2464 | |
---|
2465 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
2466 | omgbdth(k) = omgb(k)*(dth(k-1)-dth(k)) |
---|
2467 | omgbdq(k) = omgb(k)*(deltaqw(k-1)-deltaqw(k)) |
---|
2468 | END DO |
---|
2469 | |
---|
2470 | |
---|
2471 | ! ----------------------------------------------------------------- |
---|
2472 | DO k = 1, kupper - 1 |
---|
2473 | ! ----------------------------------------------------------------- |
---|
2474 | |
---|
2475 | ! Compute redistribution (advective) term |
---|
2476 | |
---|
2477 | d_deltatw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_th1(k)- & |
---|
2478 | rrd2*omg(k+1)*(1.-sigmaw)*d_th2(k+1)-(1.-alpha_up( & |
---|
2479 | k))*omgbdth(k)-alpha_up(k+1)*omgbdth(k+1))*ppi(k) |
---|
2480 | ! print*,'d_deltatw=',d_deltatw(k) |
---|
2481 | |
---|
2482 | d_deltaqw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_q1(k)- & |
---|
2483 | rrd2*omg(k+1)*(1.-sigmaw)*d_q2(k+1)-(1.-alpha_up( & |
---|
2484 | k))*omgbdq(k)-alpha_up(k+1)*omgbdq(k+1)) |
---|
2485 | ! print*,'d_deltaqw=',d_deltaqw(k) |
---|
2486 | |
---|
2487 | ! and increment large scale tendencies |
---|
2488 | |
---|
2489 | dtls(k) = dtls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_th1(k)-rre2*omg(k+ & |
---|
2490 | 1)*(1.-sigmaw)*d_th2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*dth(k)* & |
---|
2491 | dp_deltomg(k))*ppi(k) |
---|
2492 | ! print*,'dtls=',dtls(k) |
---|
2493 | |
---|
2494 | dqls(k) = dqls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_q1(k)-rre2*omg(k+ & |
---|
2495 | 1)*(1.-sigmaw)*d_q2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*deltaqw( & |
---|
2496 | k)*dp_deltomg(k)) |
---|
2497 | ! print*,'dqls=',dqls(k) |
---|
2498 | |
---|
2499 | ! ------------------------------------------------------------------- |
---|
2500 | END DO |
---|
2501 | ! ------------------------------------------------------------------ |
---|
2502 | |
---|
2503 | ! Increment state variables |
---|
2504 | |
---|
2505 | DO k = 1, kupper - 1 |
---|
2506 | |
---|
2507 | ! Coefficient de répartition |
---|
2508 | |
---|
2509 | crep(k) = crep_sol*(ph(kupper)-ph(k))/(ph(kupper)-ph(1)) |
---|
2510 | crep(k) = crep(k) + crep_upper*(ph(1)-ph(k))/(p(1)-ph(kupper)) |
---|
2511 | |
---|
2512 | |
---|
2513 | ! Reintroduce compensating subsidence term. |
---|
2514 | |
---|
2515 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
2516 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
2517 | ! . /(1-sigmaw) |
---|
2518 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
2519 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
2520 | ! . /(1-sigmaw) |
---|
2521 | |
---|
2522 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
2523 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
2524 | ! . /(1-sigmaw) |
---|
2525 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
2526 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
2527 | ! . /(1-sigmaw) |
---|
2528 | |
---|
2529 | dtke(k) = (dtdwn(k)/sigmaw-dta(k)/(1.-sigmaw)) |
---|
2530 | dqke(k) = (dqdwn(k)/sigmaw-dqa(k)/(1.-sigmaw)) |
---|
2531 | ! print*,'dtKE=',dtKE(k) |
---|
2532 | ! print*,'dqKE=',dqKE(k) |
---|
2533 | |
---|
2534 | dtpbl(k) = (wdtpbl(k)/sigmaw-udtpbl(k)/(1.-sigmaw)) |
---|
2535 | dqpbl(k) = (wdqpbl(k)/sigmaw-udqpbl(k)/(1.-sigmaw)) |
---|
2536 | |
---|
2537 | spread(k) = (1.-sigmaw)*dp_deltomg(k) + gfl*cstar/sigmaw |
---|
2538 | ! print*,'spread=',spread(k) |
---|
2539 | |
---|
2540 | |
---|
2541 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
2542 | ! Jingmei |
---|
2543 | |
---|
2544 | d_deltat_gw(k) = d_deltat_gw(k) - tgw(k)*deltatw(k)*dtimesub |
---|
2545 | ! print*,'d_delta_gw=',d_deltat_gw(k) |
---|
2546 | ff = d_deltatw(k)/dtimesub |
---|
2547 | |
---|
2548 | ! Sans GW |
---|
2549 | |
---|
2550 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
2551 | |
---|
2552 | ! GW formule 1 |
---|
2553 | |
---|
2554 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
2555 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
2556 | |
---|
2557 | ! GW formule 2 |
---|
2558 | |
---|
2559 | IF (dtimesub*tgw(k)<1.E-10) THEN |
---|
2560 | deltatw(k) = deltatw(k) + dtimesub*(ff+dtke(k)+dtpbl(k)-spread(k)* & |
---|
2561 | deltatw(k)-tgw(k)*deltatw(k)) |
---|
2562 | ELSE |
---|
2563 | deltatw(k) = deltatw(k) + 1/tgw(k)*(1-exp(-dtimesub*tgw(k)))*(ff+dtke & |
---|
2564 | (k)+dtpbl(k)-spread(k)*deltatw(k)-tgw(k)*deltatw(k)) |
---|
2565 | END IF |
---|
2566 | |
---|
2567 | dth(k) = deltatw(k)/ppi(k) |
---|
2568 | |
---|
2569 | gg = d_deltaqw(k)/dtimesub |
---|
2570 | |
---|
2571 | deltaqw(k) = deltaqw(k) + dtimesub*(gg+dqke(k)+dqpbl(k)-spread(k)* & |
---|
2572 | deltaqw(k)) |
---|
2573 | |
---|
2574 | d_deltatw2(k) = d_deltatw2(k) + d_deltatw(k) |
---|
2575 | d_deltaqw2(k) = d_deltaqw2(k) + d_deltaqw(k) |
---|
2576 | END DO |
---|
2577 | |
---|
2578 | ! And update large scale variables |
---|
2579 | |
---|
2580 | DO k = 1, kupper |
---|
2581 | te(k) = te0(k) + dtls(k) |
---|
2582 | qe(k) = qe0(k) + dqls(k) |
---|
2583 | the(k) = te(k)/ppi(k) |
---|
2584 | END DO |
---|
2585 | |
---|
2586 | ! Determine Ptop from buoyancy integral |
---|
2587 | ! ---------------------------------------------------------------------- |
---|
2588 | |
---|
2589 | ! -1/ Pressure of the level where dth changes sign. |
---|
2590 | |
---|
2591 | ptop_provis = ph(1) |
---|
2592 | |
---|
2593 | DO k = 2, klev |
---|
2594 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
2595 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
2596 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
2597 | GO TO 65 |
---|
2598 | END IF |
---|
2599 | END DO |
---|
2600 | 65 CONTINUE |
---|
2601 | |
---|
2602 | ! -2/ dth integral |
---|
2603 | |
---|
2604 | sum_dth = 0. |
---|
2605 | dthmin = -delta_t_min |
---|
2606 | z = 0. |
---|
2607 | |
---|
2608 | DO k = 1, klev |
---|
2609 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
2610 | IF (dz<=0) GO TO 70 |
---|
2611 | z = z + dz |
---|
2612 | sum_dth = sum_dth + dth(k)*dz |
---|
2613 | dthmin = min(dthmin, dth(k)) |
---|
2614 | END DO |
---|
2615 | 70 CONTINUE |
---|
2616 | |
---|
2617 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
2618 | |
---|
2619 | hw = 2.*sum_dth/min(dthmin, -0.5) |
---|
2620 | hw = max(hwmin, hw) |
---|
2621 | |
---|
2622 | ! -4/ now, get Ptop |
---|
2623 | |
---|
2624 | ktop = 0 |
---|
2625 | z = 0. |
---|
2626 | |
---|
2627 | DO k = 1, klev |
---|
2628 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw-z) |
---|
2629 | IF (dz<=0) GO TO 75 |
---|
2630 | z = z + dz |
---|
2631 | ptop = ph(k) - rho(k)*rg*dz |
---|
2632 | ktop = k |
---|
2633 | END DO |
---|
2634 | 75 CONTINUE |
---|
2635 | |
---|
2636 | ! -5/Correct ktop and ptop |
---|
2637 | |
---|
2638 | ptop_new = ptop |
---|
2639 | |
---|
2640 | DO k = ktop, 2, -1 |
---|
2641 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
2642 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
2643 | (dth(k)-dth(k-1)) |
---|
2644 | GO TO 275 |
---|
2645 | END IF |
---|
2646 | END DO |
---|
2647 | 275 CONTINUE |
---|
2648 | |
---|
2649 | ptop = ptop_new |
---|
2650 | |
---|
2651 | DO k = klev, 1, -1 |
---|
2652 | IF (ph(k+1)<ptop) ktop = k |
---|
2653 | END DO |
---|
2654 | |
---|
2655 | ! -6/ Set deltatw & deltaqw to 0 above kupper |
---|
2656 | |
---|
2657 | DO k = kupper, klev |
---|
2658 | deltatw(k) = 0. |
---|
2659 | deltaqw(k) = 0. |
---|
2660 | END DO |
---|
2661 | |
---|
2662 | ! ------------------------------------------------------------------ |
---|
2663 | END DO ! end sub-timestep loop |
---|
2664 | ! ----------------------------------------------------------------- |
---|
2665 | |
---|
2666 | ! Get back to tendencies per second |
---|
2667 | |
---|
2668 | DO k = 1, kupper - 1 |
---|
2669 | dtls(k) = dtls(k)/dtime |
---|
2670 | dqls(k) = dqls(k)/dtime |
---|
2671 | d_deltatw2(k) = d_deltatw2(k)/dtime |
---|
2672 | d_deltaqw2(k) = d_deltaqw2(k)/dtime |
---|
2673 | d_deltat_gw(k) = d_deltat_gw(k)/dtime |
---|
2674 | END DO |
---|
2675 | |
---|
2676 | ! 2.1 - Undisturbed area and Wake integrals |
---|
2677 | ! --------------------------------------------------------- |
---|
2678 | |
---|
2679 | z = 0. |
---|
2680 | sum_thu = 0. |
---|
2681 | sum_tu = 0. |
---|
2682 | sum_qu = 0. |
---|
2683 | sum_thvu = 0. |
---|
2684 | sum_dth = 0. |
---|
2685 | sum_dq = 0. |
---|
2686 | sum_rho = 0. |
---|
2687 | sum_dtdwn = 0. |
---|
2688 | sum_dqdwn = 0. |
---|
2689 | |
---|
2690 | av_thu = 0. |
---|
2691 | av_tu = 0. |
---|
2692 | av_qu = 0. |
---|
2693 | av_thvu = 0. |
---|
2694 | av_dth = 0. |
---|
2695 | av_dq = 0. |
---|
2696 | av_rho = 0. |
---|
2697 | av_dtdwn = 0. |
---|
2698 | av_dqdwn = 0. |
---|
2699 | |
---|
2700 | ! Potential temperatures and humidity |
---|
2701 | ! ---------------------------------------------------------- |
---|
2702 | |
---|
2703 | DO k = 1, klev |
---|
2704 | rho(k) = p(k)/(rd*te(k)) |
---|
2705 | IF (k==1) THEN |
---|
2706 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
2707 | zhh(k) = 0 |
---|
2708 | ELSE |
---|
2709 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
2710 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
2711 | END IF |
---|
2712 | the(k) = te(k)/ppi(k) |
---|
2713 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
2714 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
2715 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
2716 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
2717 | dth(k) = deltatw(k)/ppi(k) |
---|
2718 | |
---|
2719 | END DO |
---|
2720 | |
---|
2721 | ! Integrals (and wake top level number) |
---|
2722 | ! ----------------------------------------------------------- |
---|
2723 | |
---|
2724 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
2725 | |
---|
2726 | z = 1. |
---|
2727 | dz = 1. |
---|
2728 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
2729 | sum_dth = 0. |
---|
2730 | |
---|
2731 | DO k = 1, klev |
---|
2732 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
2733 | |
---|
2734 | IF (dz<=0) GO TO 51 |
---|
2735 | z = z + dz |
---|
2736 | sum_thu = sum_thu + thu(k)*dz |
---|
2737 | sum_tu = sum_tu + tu(k)*dz |
---|
2738 | sum_qu = sum_qu + qu(k)*dz |
---|
2739 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
2740 | sum_dth = sum_dth + dth(k)*dz |
---|
2741 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
2742 | sum_rho = sum_rho + rhow(k)*dz |
---|
2743 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
2744 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
2745 | END DO |
---|
2746 | 51 CONTINUE |
---|
2747 | |
---|
2748 | hw0 = z |
---|
2749 | |
---|
2750 | ! 2.1 - WAPE and mean forcing computation |
---|
2751 | ! ------------------------------------------------------------- |
---|
2752 | |
---|
2753 | ! Means |
---|
2754 | |
---|
2755 | av_thu = sum_thu/hw0 |
---|
2756 | av_tu = sum_tu/hw0 |
---|
2757 | av_qu = sum_qu/hw0 |
---|
2758 | av_thvu = sum_thvu/hw0 |
---|
2759 | av_dth = sum_dth/hw0 |
---|
2760 | av_dq = sum_dq/hw0 |
---|
2761 | av_rho = sum_rho/hw0 |
---|
2762 | av_dtdwn = sum_dtdwn/hw0 |
---|
2763 | av_dqdwn = sum_dqdwn/hw0 |
---|
2764 | |
---|
2765 | wape2 = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
2766 | av_thvu |
---|
2767 | |
---|
2768 | |
---|
2769 | ! 2.2 Prognostic variable update |
---|
2770 | ! ------------------------------------------------------------ |
---|
2771 | |
---|
2772 | ! Filter out bad wakes |
---|
2773 | |
---|
2774 | IF (wape2<0.) THEN |
---|
2775 | IF (prt_level>=10) PRINT *, 'wape2<0' |
---|
2776 | wape2 = 0. |
---|
2777 | hw = hwmin |
---|
2778 | sigmaw = max(sigmad, sigd_con) |
---|
2779 | fip = 0. |
---|
2780 | DO k = 1, klev |
---|
2781 | deltatw(k) = 0. |
---|
2782 | deltaqw(k) = 0. |
---|
2783 | dth(k) = 0. |
---|
2784 | END DO |
---|
2785 | ELSE |
---|
2786 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
2787 | cstar2 = stark*sqrt(2.*wape2) |
---|
2788 | |
---|
2789 | END IF |
---|
2790 | |
---|
2791 | ktopw = ktop |
---|
2792 | |
---|
2793 | IF (ktopw>0) THEN |
---|
2794 | |
---|
2795 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
2796 | ! cc heff = 600. |
---|
2797 | ! Utilisation de la hauteur hw |
---|
2798 | ! c heff = 0.7*hw |
---|
2799 | heff = hw |
---|
2800 | |
---|
2801 | fip = 0.5*rho(ktopw)*cstar2**3*heff*2*sqrt(sigmaw*wdens*3.14) |
---|
2802 | fip = alpk*fip |
---|
2803 | ! jyg2 |
---|
2804 | ELSE |
---|
2805 | fip = 0. |
---|
2806 | END IF |
---|
2807 | |
---|
2808 | |
---|
2809 | ! Limitation de sigmaw |
---|
2810 | |
---|
2811 | ! sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
2812 | ! alors il disparait en se mélangeant à la partie undisturbed |
---|
2813 | |
---|
2814 | ! correction NICOLAS . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
2815 | IF ((sigmaw>0.9) .OR. ((wape>=wape2) .AND. (wape2<= & |
---|
2816 | 1.0)) .OR. (ktopw<=2)) THEN |
---|
2817 | ! IM cf NR/JYG 251108 . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
2818 | ! IF (sigmaw.GT.0.9) THEN |
---|
2819 | DO k = 1, klev |
---|
2820 | dtls(k) = 0. |
---|
2821 | dqls(k) = 0. |
---|
2822 | deltatw(k) = 0. |
---|
2823 | deltaqw(k) = 0. |
---|
2824 | END DO |
---|
2825 | wape = 0. |
---|
2826 | hw = hwmin |
---|
2827 | sigmaw = sigmad |
---|
2828 | fip = 0. |
---|
2829 | END IF |
---|
2830 | |
---|
2831 | RETURN |
---|
2832 | END SUBROUTINE wake_scal |
---|
2833 | |
---|
2834 | |
---|
2835 | |
---|