source: LMDZ5/branches/testing/libf/phylmd/nonlocal.F90 @ 2056

Last change on this file since 2056 was 1999, checked in by Laurent Fairhead, 11 years ago

Merged trunk changes r1920:1997 into testing branch

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:executable set to *
  • Property svn:keywords set to Author Date Id Revision
File size: 12.1 KB
Line 
1
2! $Header$
3
4! ======================================================================
5SUBROUTINE nonlocal(knon, paprs, pplay, tsol, beta, u, v, t, q, cd_h, cd_m, &
6    pcfh, pcfm, cgh, cgq)
7  USE dimphy
8  IMPLICIT NONE
9  ! ======================================================================
10  ! Laurent Li (LMD/CNRS), le 30 septembre 1998
11  ! Couche limite non-locale. Adaptation du code du CCM3.
12  ! Code non teste, donc a ne pas utiliser.
13  ! ======================================================================
14  ! Nonlocal scheme that determines eddy diffusivities based on a
15  ! diagnosed boundary layer height and a turbulent velocity scale.
16  ! Also countergradient effects for heat and moisture are included.
17
18  ! For more information, see Holtslag, A.A.M., and B.A. Boville, 1993:
19  ! Local versus nonlocal boundary-layer diffusion in a global climate
20  ! model. J. of Climate, vol. 6, 1825-1842.
21  ! ======================================================================
22  include "YOMCST.h"
23  include "iniprint.h"
24
25  ! Arguments:
26
27  INTEGER knon ! nombre de points a calculer
28  REAL tsol(klon) ! temperature du sol (K)
29  REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1)
30  REAL paprs(klon, klev+1) ! pression a inter-couche (Pa)
31  REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
32  REAL u(klon, klev) ! vitesse U (m/s)
33  REAL v(klon, klev) ! vitesse V (m/s)
34  REAL t(klon, klev) ! temperature (K)
35  REAL q(klon, klev) ! vapeur d'eau (kg/kg)
36  REAL cd_h(klon) ! coefficient de friction au sol pour chaleur
37  REAL cd_m(klon) ! coefficient de friction au sol pour vitesse
38
39  INTEGER isommet
40  REAL vk
41  PARAMETER (vk=0.40)
42  REAL ricr
43  PARAMETER (ricr=0.4)
44  REAL fak
45  PARAMETER (fak=8.5)
46  REAL fakn
47  PARAMETER (fakn=7.2)
48  REAL onet
49  PARAMETER (onet=1.0/3.0)
50  REAL t_coup
51  PARAMETER (t_coup=273.15)
52  REAL zkmin
53  PARAMETER (zkmin=0.01)
54  REAL betam
55  PARAMETER (betam=15.0)
56  REAL betah
57  PARAMETER (betah=15.0)
58  REAL betas
59  PARAMETER (betas=5.0)
60  REAL sffrac
61  PARAMETER (sffrac=0.1)
62  REAL binm
63  PARAMETER (binm=betam*sffrac)
64  REAL binh
65  PARAMETER (binh=betah*sffrac)
66  REAL ccon
67  PARAMETER (ccon=fak*sffrac*vk)
68
69  REAL z(klon, klev)
70  REAL pcfm(klon, klev), pcfh(klon, klev)
71
72  INTEGER i, k
73  REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy
74  REAL zx_alf1, zx_alf2 ! parametres pour extrapolation
75  REAL khfs(klon) ! surface kinematic heat flux [mK/s]
76  REAL kqfs(klon) ! sfc kinematic constituent flux [m/s]
77  REAL heatv(klon) ! surface virtual heat flux
78  REAL ustar(klon)
79  REAL rino(klon, klev) ! bulk Richardon no. from level to ref lev
80  LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx)
81  LOGICAL stblev(klon) ! stable pbl with levels within pbl
82  LOGICAL unslev(klon) ! unstbl pbl with levels within pbl
83  LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr
84  LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr
85  LOGICAL check(klon) ! True=>chk if Richardson no.>critcal
86  REAL pblh(klon)
87  REAL cgh(klon, 2:klev) ! counter-gradient term for heat [K/m]
88  REAL cgq(klon, 2:klev) ! counter-gradient term for constituents
89  REAL cgs(klon, 2:klev) ! counter-gradient star (cg/flux)
90  REAL obklen(klon)
91  REAL ztvd, ztvu, zdu2
92  REAL therm(klon) ! thermal virtual temperature excess
93  REAL phiminv(klon) ! inverse phi function for momentum
94  REAL phihinv(klon) ! inverse phi function for heat
95  REAL wm(klon) ! turbulent velocity scale for momentum
96  REAL fak1(klon) ! k*ustar*pblh
97  REAL fak2(klon) ! k*wm*pblh
98  REAL fak3(klon) ! fakn*wstr/wm
99  REAL pblk(klon) ! level eddy diffusivity for momentum
100  REAL pr(klon) ! Prandtl number for eddy diffusivities
101  REAL zl(klon) ! zmzp / Obukhov length
102  REAL zh(klon) ! zmzp / pblh
103  REAL zzh(klon) ! (1-(zmzp/pblh))**2
104  REAL wstr(klon) ! w*, convective velocity scale
105  REAL zm(klon) ! current level height
106  REAL zp(klon) ! current level height + one level up
107  REAL zcor, zdelta, zcvm5, zxqs
108  REAL fac, pblmin, zmzp, term
109
110  include "YOETHF.h"
111  include "FCTTRE.h"
112
113  ! Initialisation
114
115  isommet = klev
116
117  DO i = 1, klon
118    pcfh(i, 1) = cd_h(i)
119    pcfm(i, 1) = cd_m(i)
120  END DO
121  DO k = 2, klev
122    DO i = 1, klon
123      pcfh(i, k) = zkmin
124      pcfm(i, k) = zkmin
125      cgs(i, k) = 0.0
126      cgh(i, k) = 0.0
127      cgq(i, k) = 0.0
128    END DO
129  END DO
130
131  ! Calculer les hauteurs de chaque couche
132
133  DO i = 1, knon
134    z(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i,1)))*(paprs(i,1)-pplay(i,1) &
135      )/rg
136  END DO
137  DO k = 2, klev
138    DO i = 1, knon
139      z(i, k) = z(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1 &
140        )-pplay(i,k))/rg
141    END DO
142  END DO
143
144  DO i = 1, knon
145    IF (thermcep) THEN
146      zdelta = max(0., sign(1.,rtt-tsol(i)))
147      zcvm5 = r5les*rlvtt*(1.-zdelta) + r5ies*rlstt*zdelta
148      zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,1))
149      zxqs = r2es*foeew(tsol(i), zdelta)/paprs(i, 1)
150      zxqs = min(0.5, zxqs)
151      zcor = 1./(1.-retv*zxqs)
152      zxqs = zxqs*zcor
153    ELSE
154      IF (tsol(i)<t_coup) THEN
155        zxqs = qsats(tsol(i))/paprs(i, 1)
156      ELSE
157        zxqs = qsatl(tsol(i))/paprs(i, 1)
158      END IF
159    END IF
160    zx_alf1 = 1.0
161    zx_alf2 = 1.0 - zx_alf1
162    zxt = (t(i,1)+z(i,1)*rg/rcpd/(1.+rvtmp2*q(i,1)))*(1.+retv*q(i,1))*zx_alf1 &
163      + (t(i,2)+z(i,2)*rg/rcpd/(1.+rvtmp2*q(i,2)))*(1.+retv*q(i,2))*zx_alf2
164    zxu = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2
165    zxv = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2
166    zxq = q(i, 1)*zx_alf1 + q(i, 2)*zx_alf2
167    zxmod = 1.0 + sqrt(zxu**2+zxv**2)
168    khfs(i) = (tsol(i)*(1.+retv*q(i,1))-zxt)*zxmod*cd_h(i)
169    kqfs(i) = (zxqs-zxq)*zxmod*cd_h(i)*beta(i)
170    heatv(i) = khfs(i) + 0.61*zxt*kqfs(i)
171    taux = zxu*zxmod*cd_m(i)
172    tauy = zxv*zxmod*cd_m(i)
173    ustar(i) = sqrt(taux**2+tauy**2)
174    ustar(i) = max(sqrt(ustar(i)), 0.01)
175  END DO
176
177  DO i = 1, knon
178    rino(i, 1) = 0.0
179    check(i) = .TRUE.
180    pblh(i) = z(i, 1)
181    obklen(i) = -t(i, 1)*ustar(i)**3/(rg*vk*heatv(i))
182  END DO
183
184
185  ! PBL height calculation:
186  ! Search for level of pbl. Scan upward until the Richardson number between
187  ! the first level and the current level exceeds the "critical" value.
188
189  fac = 100.0
190  DO k = 1, isommet
191    DO i = 1, knon
192      IF (check(i)) THEN
193        zdu2 = (u(i,k)-u(i,1))**2 + (v(i,k)-v(i,1))**2 + fac*ustar(i)**2
194        zdu2 = max(zdu2, 1.0E-20)
195        ztvd = (t(i,k)+z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, &
196          k)))*(1.+retv*q(i,k))
197        ztvu = (t(i,1)-z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, &
198          1)))*(1.+retv*q(i,1))
199        rino(i, k) = (z(i,k)-z(i,1))*rg*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu))
200        IF (rino(i,k)>=ricr) THEN
201          pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rino(i,k-1))/(rino(i, &
202            k-1)-rino(i,k))
203          check(i) = .FALSE.
204        END IF
205      END IF
206    END DO
207  END DO
208
209
210  ! Set pbl height to maximum value where computation exceeds number of
211  ! layers allowed
212
213  DO i = 1, knon
214    IF (check(i)) pblh(i) = z(i, isommet)
215  END DO
216
217  ! Improve estimate of pbl height for the unstable points.
218  ! Find unstable points (sensible heat flux is upward):
219
220  DO i = 1, knon
221    IF (heatv(i)>0.) THEN
222      unstbl(i) = .TRUE.
223      check(i) = .TRUE.
224    ELSE
225      unstbl(i) = .FALSE.
226      check(i) = .FALSE.
227    END IF
228  END DO
229
230  ! For the unstable case, compute velocity scale and the
231  ! convective temperature excess:
232
233  DO i = 1, knon
234    IF (check(i)) THEN
235      phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet
236      wm(i) = ustar(i)*phiminv(i)
237      therm(i) = heatv(i)*fak/wm(i)
238      rino(i, 1) = 0.0
239    END IF
240  END DO
241
242  ! Improve pblh estimate for unstable conditions using the
243  ! convective temperature excess:
244
245  DO k = 1, isommet
246    DO i = 1, knon
247      IF (check(i)) THEN
248        zdu2 = (u(i,k)-u(i,1))**2 + (v(i,k)-v(i,1))**2 + fac*ustar(i)**2
249        zdu2 = max(zdu2, 1.0E-20)
250        ztvd = (t(i,k)+z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, &
251          k)))*(1.+retv*q(i,k))
252        ztvu = (t(i,1)+therm(i)-z(i,k)*0.5*rg/rcpd/(1.+rvtmp2*q(i, &
253          1)))*(1.+retv*q(i,1))
254        rino(i, k) = (z(i,k)-z(i,1))*rg*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu))
255        IF (rino(i,k)>=ricr) THEN
256          pblh(i) = z(i, k-1) + (z(i,k-1)-z(i,k))*(ricr-rino(i,k-1))/(rino(i, &
257            k-1)-rino(i,k))
258          check(i) = .FALSE.
259        END IF
260      END IF
261    END DO
262  END DO
263
264  ! Set pbl height to maximum value where computation exceeds number of
265  ! layers allowed
266
267  DO i = 1, knon
268    IF (check(i)) pblh(i) = z(i, isommet)
269  END DO
270
271  ! Points for which pblh exceeds number of pbl layers allowed;
272  ! set to maximum
273
274  DO i = 1, knon
275    IF (check(i)) pblh(i) = z(i, isommet)
276  END DO
277
278  ! PBL height must be greater than some minimum mechanical mixing depth
279  ! Several investigators have proposed minimum mechanical mixing depth
280  ! relationships as a function of the local friction velocity, u*.  We
281  ! make use of a linear relationship of the form h = c u* where c=700.
282  ! The scaling arguments that give rise to this relationship most often
283  ! represent the coefficient c as some constant over the local coriolis
284  ! parameter.  Here we make use of the experimental results of Koracin
285  ! and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f
286  ! where f was evaluated at 39.5 N and 52 N.  Thus we use a typical mid
287  ! latitude value for f so that c = 0.07/f = 700.
288
289  DO i = 1, knon
290    pblmin = 700.0*ustar(i)
291    pblh(i) = max(pblh(i), pblmin)
292  END DO
293
294  ! pblh is now available; do preparation for diffusivity calculation:
295
296  DO i = 1, knon
297    pblk(i) = 0.0
298    fak1(i) = ustar(i)*pblh(i)*vk
299
300    ! Do additional preparation for unstable cases only, set temperature
301    ! and moisture perturbations depending on stability.
302
303    IF (unstbl(i)) THEN
304      zxt = (t(i,1)-z(i,1)*0.5*rg/rcpd/(1.+rvtmp2*q(i,1)))*(1.+retv*q(i,1))
305      phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet
306      phihinv(i) = sqrt(1.-binh*pblh(i)/obklen(i))
307      wm(i) = ustar(i)*phiminv(i)
308      fak2(i) = wm(i)*pblh(i)*vk
309      wstr(i) = (heatv(i)*rg*pblh(i)/zxt)**onet
310      fak3(i) = fakn*wstr(i)/wm(i)
311    END IF
312  END DO
313
314  ! Main level loop to compute the diffusivities and
315  ! counter-gradient terms:
316
317  DO k = 2, isommet
318
319    ! Find levels within boundary layer:
320
321    DO i = 1, knon
322      unslev(i) = .FALSE.
323      stblev(i) = .FALSE.
324      zm(i) = z(i, k-1)
325      zp(i) = z(i, k)
326      IF (zkmin==0.0 .AND. zp(i)>pblh(i)) zp(i) = pblh(i)
327      IF (zm(i)<pblh(i)) THEN
328        zmzp = 0.5*(zm(i)+zp(i))
329        zh(i) = zmzp/pblh(i)
330        zl(i) = zmzp/obklen(i)
331        zzh(i) = 0.
332        IF (zh(i)<=1.0) zzh(i) = (1.-zh(i))**2
333
334        ! stblev for points zm < plbh and stable and neutral
335        ! unslev for points zm < plbh and unstable
336
337        IF (unstbl(i)) THEN
338          unslev(i) = .TRUE.
339        ELSE
340          stblev(i) = .TRUE.
341        END IF
342      END IF
343    END DO
344
345    ! Stable and neutral points; set diffusivities; counter-gradient
346    ! terms zero for stable case:
347
348    DO i = 1, knon
349      IF (stblev(i)) THEN
350        IF (zl(i)<=1.) THEN
351          pblk(i) = fak1(i)*zh(i)*zzh(i)/(1.+betas*zl(i))
352        ELSE
353          pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas+zl(i))
354        END IF
355        pcfm(i, k) = pblk(i)
356        pcfh(i, k) = pcfm(i, k)
357      END IF
358    END DO
359
360    ! unssrf, unstable within surface layer of pbl
361    ! unsout, unstable within outer   layer of pbl
362
363    DO i = 1, knon
364      unssrf(i) = .FALSE.
365      unsout(i) = .FALSE.
366      IF (unslev(i)) THEN
367        IF (zh(i)<sffrac) THEN
368          unssrf(i) = .TRUE.
369        ELSE
370          unsout(i) = .TRUE.
371        END IF
372      END IF
373    END DO
374
375    ! Unstable for surface layer; counter-gradient terms zero
376
377    DO i = 1, knon
378      IF (unssrf(i)) THEN
379        term = (1.-betam*zl(i))**onet
380        pblk(i) = fak1(i)*zh(i)*zzh(i)*term
381        pr(i) = term/sqrt(1.-betah*zl(i))
382      END IF
383    END DO
384
385    ! Unstable for outer layer; counter-gradient terms non-zero:
386
387    DO i = 1, knon
388      IF (unsout(i)) THEN
389        pblk(i) = fak2(i)*zh(i)*zzh(i)
390        cgs(i, k) = fak3(i)/(pblh(i)*wm(i))
391        cgh(i, k) = khfs(i)*cgs(i, k)
392        pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak
393        cgq(i, k) = kqfs(i)*cgs(i, k)
394      END IF
395    END DO
396
397    ! For all unstable layers, set diffusivities
398
399    DO i = 1, knon
400      IF (unslev(i)) THEN
401        pcfm(i, k) = pblk(i)
402        pcfh(i, k) = pblk(i)/pr(i)
403      END IF
404    END DO
405  END DO ! end of level loop
406
407  RETURN
408END SUBROUTINE nonlocal
Note: See TracBrowser for help on using the repository browser.