[1992] | 1 | |
---|
[524] | 2 | ! $Header$ |
---|
| 3 | |
---|
[1992] | 4 | SUBROUTINE conflx(dtime, pres_h, pres_f, t, q, con_t, con_q, pqhfl, w, d_t, & |
---|
| 5 | d_q, rain, snow, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, kcbot, kctop, & |
---|
| 6 | kdtop, pmflxr, pmflxs) |
---|
[524] | 7 | |
---|
[1992] | 8 | USE dimphy |
---|
| 9 | IMPLICIT NONE |
---|
| 10 | ! ====================================================================== |
---|
| 11 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19941014 |
---|
| 12 | ! Objet: Schema flux de masse pour la convection |
---|
| 13 | ! (schema de Tiedtke avec qqs modifications mineures) |
---|
| 14 | ! Dec.97: Prise en compte des modifications introduites par |
---|
| 15 | ! Olivier Boucher et Alexandre Armengaud pour melange |
---|
| 16 | ! et lessivage des traceurs passifs. |
---|
| 17 | ! ====================================================================== |
---|
| 18 | include "YOMCST.h" |
---|
| 19 | include "YOETHF.h" |
---|
| 20 | ! Entree: |
---|
| 21 | REAL dtime ! pas d'integration (s) |
---|
| 22 | REAL pres_h(klon, klev+1) ! pression half-level (Pa) |
---|
| 23 | REAL pres_f(klon, klev) ! pression full-level (Pa) |
---|
| 24 | REAL t(klon, klev) ! temperature (K) |
---|
| 25 | REAL q(klon, klev) ! humidite specifique (g/g) |
---|
| 26 | REAL w(klon, klev) ! vitesse verticale (Pa/s) |
---|
| 27 | REAL con_t(klon, klev) ! convergence de temperature (K/s) |
---|
| 28 | REAL con_q(klon, klev) ! convergence de l'eau vapeur (g/g/s) |
---|
| 29 | REAL pqhfl(klon) ! evaporation (negative vers haut) mm/s |
---|
| 30 | ! Sortie: |
---|
| 31 | REAL d_t(klon, klev) ! incrementation de temperature |
---|
| 32 | REAL d_q(klon, klev) ! incrementation d'humidite |
---|
| 33 | REAL pmfu(klon, klev) ! flux masse (kg/m2/s) panache ascendant |
---|
| 34 | REAL pmfd(klon, klev) ! flux masse (kg/m2/s) panache descendant |
---|
| 35 | REAL pen_u(klon, klev) |
---|
| 36 | REAL pen_d(klon, klev) |
---|
| 37 | REAL pde_u(klon, klev) |
---|
| 38 | REAL pde_d(klon, klev) |
---|
| 39 | REAL rain(klon) ! pluie (mm/s) |
---|
| 40 | REAL snow(klon) ! neige (mm/s) |
---|
| 41 | REAL pmflxr(klon, klev+1) |
---|
| 42 | REAL pmflxs(klon, klev+1) |
---|
| 43 | INTEGER kcbot(klon) ! niveau du bas de la convection |
---|
| 44 | INTEGER kctop(klon) ! niveau du haut de la convection |
---|
| 45 | INTEGER kdtop(klon) ! niveau du haut des downdrafts |
---|
| 46 | ! Local: |
---|
| 47 | REAL pt(klon, klev) |
---|
| 48 | REAL pq(klon, klev) |
---|
| 49 | REAL pqs(klon, klev) |
---|
| 50 | REAL pvervel(klon, klev) |
---|
| 51 | LOGICAL land(klon) |
---|
| 52 | |
---|
| 53 | REAL d_t_bis(klon, klev) |
---|
| 54 | REAL d_q_bis(klon, klev) |
---|
| 55 | REAL paprs(klon, klev+1) |
---|
| 56 | REAL paprsf(klon, klev) |
---|
| 57 | REAL zgeom(klon, klev) |
---|
| 58 | REAL zcvgq(klon, klev) |
---|
| 59 | REAL zcvgt(klon, klev) |
---|
| 60 | ! AA |
---|
| 61 | REAL zmfu(klon, klev) |
---|
| 62 | REAL zmfd(klon, klev) |
---|
| 63 | REAL zen_u(klon, klev) |
---|
| 64 | REAL zen_d(klon, klev) |
---|
| 65 | REAL zde_u(klon, klev) |
---|
| 66 | REAL zde_d(klon, klev) |
---|
| 67 | REAL zmflxr(klon, klev+1) |
---|
| 68 | REAL zmflxs(klon, klev+1) |
---|
| 69 | ! AA |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | INTEGER i, k |
---|
| 73 | REAL zdelta, zqsat |
---|
| 74 | |
---|
| 75 | include "FCTTRE.h" |
---|
| 76 | |
---|
| 77 | ! initialiser les variables de sortie (pour securite) |
---|
| 78 | DO i = 1, klon |
---|
| 79 | rain(i) = 0.0 |
---|
| 80 | snow(i) = 0.0 |
---|
| 81 | kcbot(i) = 0 |
---|
| 82 | kctop(i) = 0 |
---|
| 83 | kdtop(i) = 0 |
---|
| 84 | END DO |
---|
| 85 | DO k = 1, klev |
---|
| 86 | DO i = 1, klon |
---|
| 87 | d_t(i, k) = 0.0 |
---|
| 88 | d_q(i, k) = 0.0 |
---|
| 89 | pmfu(i, k) = 0.0 |
---|
| 90 | pmfd(i, k) = 0.0 |
---|
| 91 | pen_u(i, k) = 0.0 |
---|
| 92 | pde_u(i, k) = 0.0 |
---|
| 93 | pen_d(i, k) = 0.0 |
---|
| 94 | pde_d(i, k) = 0.0 |
---|
| 95 | zmfu(i, k) = 0.0 |
---|
| 96 | zmfd(i, k) = 0.0 |
---|
| 97 | zen_u(i, k) = 0.0 |
---|
| 98 | zde_u(i, k) = 0.0 |
---|
| 99 | zen_d(i, k) = 0.0 |
---|
| 100 | zde_d(i, k) = 0.0 |
---|
| 101 | END DO |
---|
| 102 | END DO |
---|
| 103 | DO k = 1, klev + 1 |
---|
| 104 | DO i = 1, klon |
---|
| 105 | zmflxr(i, k) = 0.0 |
---|
| 106 | zmflxs(i, k) = 0.0 |
---|
| 107 | END DO |
---|
| 108 | END DO |
---|
| 109 | |
---|
| 110 | ! calculer la nature du sol (pour l'instant, ocean partout) |
---|
| 111 | DO i = 1, klon |
---|
| 112 | land(i) = .FALSE. |
---|
| 113 | END DO |
---|
| 114 | |
---|
| 115 | ! preparer les variables d'entree (attention: l'ordre des niveaux |
---|
| 116 | ! verticaux augmente du haut vers le bas) |
---|
| 117 | DO k = 1, klev |
---|
| 118 | DO i = 1, klon |
---|
| 119 | pt(i, k) = t(i, klev-k+1) |
---|
| 120 | pq(i, k) = q(i, klev-k+1) |
---|
| 121 | paprsf(i, k) = pres_f(i, klev-k+1) |
---|
| 122 | paprs(i, k) = pres_h(i, klev+1-k+1) |
---|
| 123 | pvervel(i, k) = w(i, klev+1-k) |
---|
| 124 | zcvgt(i, k) = con_t(i, klev-k+1) |
---|
| 125 | zcvgq(i, k) = con_q(i, klev-k+1) |
---|
| 126 | |
---|
| 127 | zdelta = max(0., sign(1.,rtt-pt(i,k))) |
---|
| 128 | zqsat = r2es*foeew(pt(i,k), zdelta)/paprsf(i, k) |
---|
| 129 | zqsat = min(0.5, zqsat) |
---|
| 130 | zqsat = zqsat/(1.-retv*zqsat) |
---|
| 131 | pqs(i, k) = zqsat |
---|
| 132 | END DO |
---|
| 133 | END DO |
---|
| 134 | DO i = 1, klon |
---|
| 135 | paprs(i, klev+1) = pres_h(i, 1) |
---|
| 136 | zgeom(i, klev) = rd*pt(i, klev)/(0.5*(paprs(i,klev+1)+paprsf(i, & |
---|
| 137 | klev)))*(paprs(i,klev+1)-paprsf(i,klev)) |
---|
| 138 | END DO |
---|
| 139 | DO k = klev - 1, 1, -1 |
---|
| 140 | DO i = 1, klon |
---|
| 141 | zgeom(i, k) = zgeom(i, k+1) + rd*0.5*(pt(i,k+1)+pt(i,k))/paprs(i, k+1)* & |
---|
| 142 | (paprsf(i,k+1)-paprsf(i,k)) |
---|
| 143 | END DO |
---|
| 144 | END DO |
---|
| 145 | |
---|
| 146 | ! appeler la routine principale |
---|
| 147 | |
---|
| 148 | CALL flxmain(dtime, pt, pq, pqs, pqhfl, paprsf, paprs, zgeom, land, zcvgt, & |
---|
| 149 | zcvgq, pvervel, rain, snow, kcbot, kctop, kdtop, zmfu, zmfd, zen_u, & |
---|
| 150 | zde_u, zen_d, zde_d, d_t_bis, d_q_bis, zmflxr, zmflxs) |
---|
| 151 | |
---|
| 152 | ! AA-------------------------------------------------------- |
---|
| 153 | ! AA rem : De la meme facon que l'on effectue le reindicage |
---|
| 154 | ! AA pour la temperature t et le champ q |
---|
| 155 | ! AA on reindice les flux necessaires a la convection |
---|
| 156 | ! AA des traceurs |
---|
| 157 | ! AA-------------------------------------------------------- |
---|
| 158 | DO k = 1, klev |
---|
| 159 | DO i = 1, klon |
---|
| 160 | d_q(i, klev+1-k) = dtime*d_q_bis(i, k) |
---|
| 161 | d_t(i, klev+1-k) = dtime*d_t_bis(i, k) |
---|
| 162 | END DO |
---|
| 163 | END DO |
---|
| 164 | |
---|
| 165 | DO i = 1, klon |
---|
| 166 | pmfu(i, 1) = 0. |
---|
| 167 | pmfd(i, 1) = 0. |
---|
| 168 | pen_d(i, 1) = 0. |
---|
| 169 | pde_d(i, 1) = 0. |
---|
| 170 | END DO |
---|
| 171 | |
---|
| 172 | DO k = 2, klev |
---|
| 173 | DO i = 1, klon |
---|
| 174 | pmfu(i, klev+2-k) = zmfu(i, k) |
---|
| 175 | pmfd(i, klev+2-k) = zmfd(i, k) |
---|
| 176 | END DO |
---|
| 177 | END DO |
---|
| 178 | |
---|
| 179 | DO k = 1, klev |
---|
| 180 | DO i = 1, klon |
---|
| 181 | pen_u(i, klev+1-k) = zen_u(i, k) |
---|
| 182 | pde_u(i, klev+1-k) = zde_u(i, k) |
---|
| 183 | END DO |
---|
| 184 | END DO |
---|
| 185 | |
---|
| 186 | DO k = 1, klev - 1 |
---|
| 187 | DO i = 1, klon |
---|
| 188 | pen_d(i, klev+1-k) = -zen_d(i, k+1) |
---|
| 189 | pde_d(i, klev+1-k) = -zde_d(i, k+1) |
---|
| 190 | END DO |
---|
| 191 | END DO |
---|
| 192 | |
---|
| 193 | DO k = 1, klev + 1 |
---|
| 194 | DO i = 1, klon |
---|
| 195 | pmflxr(i, klev+2-k) = zmflxr(i, k) |
---|
| 196 | pmflxs(i, klev+2-k) = zmflxs(i, k) |
---|
| 197 | END DO |
---|
| 198 | END DO |
---|
| 199 | |
---|
| 200 | RETURN |
---|
| 201 | END SUBROUTINE conflx |
---|
| 202 | ! -------------------------------------------------------------------- |
---|
| 203 | SUBROUTINE flxmain(pdtime, pten, pqen, pqsen, pqhfl, pap, paph, pgeo, ldland, & |
---|
| 204 | ptte, pqte, pvervel, prsfc, pssfc, kcbot, kctop, kdtop, & ! * |
---|
| 205 | ! ldcum, ktype, |
---|
| 206 | pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, dt_con, dq_con, pmflxr, pmflxs) |
---|
| 207 | USE dimphy |
---|
| 208 | IMPLICIT NONE |
---|
| 209 | ! ------------------------------------------------------------------ |
---|
| 210 | include "YOMCST.h" |
---|
| 211 | include "YOETHF.h" |
---|
| 212 | include "YOECUMF.h" |
---|
| 213 | ! ---------------------------------------------------------------- |
---|
| 214 | REAL pten(klon, klev), pqen(klon, klev), pqsen(klon, klev) |
---|
| 215 | REAL ptte(klon, klev) |
---|
| 216 | REAL pqte(klon, klev) |
---|
| 217 | REAL pvervel(klon, klev) |
---|
| 218 | REAL pgeo(klon, klev), pap(klon, klev), paph(klon, klev+1) |
---|
| 219 | REAL pqhfl(klon) |
---|
| 220 | |
---|
| 221 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 222 | REAL plude(klon, klev) |
---|
| 223 | REAL pmfu(klon, klev) |
---|
| 224 | REAL prsfc(klon), pssfc(klon) |
---|
| 225 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
| 226 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 227 | |
---|
| 228 | REAL ztenh(klon, klev), zqenh(klon, klev), zqsenh(klon, klev) |
---|
| 229 | REAL zgeoh(klon, klev) |
---|
| 230 | REAL zmfub(klon), zmfub1(klon) |
---|
| 231 | REAL zmfus(klon, klev), zmfuq(klon, klev), zmful(klon, klev) |
---|
| 232 | REAL zdmfup(klon, klev), zdpmel(klon, klev) |
---|
| 233 | REAL zentr(klon), zhcbase(klon) |
---|
| 234 | REAL zdqpbl(klon), zdqcv(klon), zdhpbl(klon) |
---|
| 235 | REAL zrfl(klon) |
---|
| 236 | REAL pmflxr(klon, klev+1) |
---|
| 237 | REAL pmflxs(klon, klev+1) |
---|
| 238 | INTEGER ilab(klon, klev), ictop0(klon) |
---|
| 239 | LOGICAL llo1 |
---|
| 240 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
| 241 | REAL zmfmax, zdh |
---|
| 242 | REAL pdtime, zqumqe, zdqmin, zalvdcp, zhsat, zzz |
---|
| 243 | REAL zhhat, zpbmpt, zgam, zeps, zfac |
---|
| 244 | INTEGER i, k, ikb, itopm2, kcum |
---|
| 245 | |
---|
| 246 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
| 247 | REAL pen_d(klon, klev), pde_d(klon, klev) |
---|
| 248 | |
---|
| 249 | REAL ptd(klon, klev), pqd(klon, klev), pmfd(klon, klev) |
---|
| 250 | REAL zmfds(klon, klev), zmfdq(klon, klev), zdmfdp(klon, klev) |
---|
| 251 | INTEGER kdtop(klon) |
---|
| 252 | LOGICAL lddraf(klon) |
---|
| 253 | ! --------------------------------------------------------------------- |
---|
| 254 | LOGICAL firstcal |
---|
| 255 | SAVE firstcal |
---|
| 256 | DATA firstcal/.TRUE./ |
---|
| 257 | !$OMP THREADPRIVATE(firstcal) |
---|
| 258 | ! --------------------------------------------------------------------- |
---|
| 259 | IF (firstcal) THEN |
---|
| 260 | CALL flxsetup |
---|
| 261 | firstcal = .FALSE. |
---|
| 262 | END IF |
---|
| 263 | ! --------------------------------------------------------------------- |
---|
| 264 | DO i = 1, klon |
---|
| 265 | ldcum(i) = .FALSE. |
---|
| 266 | END DO |
---|
| 267 | DO k = 1, klev |
---|
| 268 | DO i = 1, klon |
---|
| 269 | dt_con(i, k) = 0.0 |
---|
| 270 | dq_con(i, k) = 0.0 |
---|
| 271 | END DO |
---|
| 272 | END DO |
---|
| 273 | ! ---------------------------------------------------------------------- |
---|
| 274 | ! initialiser les variables et faire l'interpolation verticale |
---|
| 275 | ! ---------------------------------------------------------------------- |
---|
| 276 | CALL flxini(pten, pqen, pqsen, pgeo, paph, zgeoh, ztenh, zqenh, zqsenh, & |
---|
| 277 | ptu, pqu, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, pmfu, zmfus, zmfuq, & |
---|
| 278 | zdmfup, zdpmel, plu, plude, ilab, pen_u, pde_u, pen_d, pde_d) |
---|
| 279 | ! --------------------------------------------------------------------- |
---|
| 280 | ! determiner les valeurs au niveau de base de la tour convective |
---|
| 281 | ! --------------------------------------------------------------------- |
---|
| 282 | CALL flxbase(ztenh, zqenh, zgeoh, paph, ptu, pqu, plu, ldcum, kcbot, ilab) |
---|
| 283 | ! --------------------------------------------------------------------- |
---|
| 284 | ! calculer la convergence totale de l'humidite et celle en provenance |
---|
| 285 | ! de la couche limite, plus precisement, la convergence integree entre |
---|
| 286 | ! le sol et la base de la convection. Cette derniere convergence est |
---|
| 287 | ! comparee avec l'evaporation obtenue dans la couche limite pour |
---|
| 288 | ! determiner le type de la convection |
---|
| 289 | ! --------------------------------------------------------------------- |
---|
| 290 | k = 1 |
---|
| 291 | DO i = 1, klon |
---|
| 292 | zdqcv(i) = pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 293 | zdhpbl(i) = 0.0 |
---|
| 294 | zdqpbl(i) = 0.0 |
---|
| 295 | END DO |
---|
| 296 | |
---|
| 297 | DO k = 2, klev |
---|
| 298 | DO i = 1, klon |
---|
| 299 | zdqcv(i) = zdqcv(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 300 | IF (k>=kcbot(i)) THEN |
---|
| 301 | zdqpbl(i) = zdqpbl(i) + pqte(i, k)*(paph(i,k+1)-paph(i,k)) |
---|
| 302 | zdhpbl(i) = zdhpbl(i) + (rcpd*ptte(i,k)+rlvtt*pqte(i,k))*(paph(i,k+1) & |
---|
| 303 | -paph(i,k)) |
---|
| 304 | END IF |
---|
| 305 | END DO |
---|
| 306 | END DO |
---|
| 307 | |
---|
| 308 | DO i = 1, klon |
---|
| 309 | ktype(i) = 2 |
---|
| 310 | IF (zdqcv(i)>max(0.,-1.5*pqhfl(i)*rg)) ktype(i) = 1 |
---|
| 311 | ! cc if (zdqcv(i).GT.MAX(0.,-1.1*pqhfl(i)*RG)) ktype(i) = 1 |
---|
| 312 | END DO |
---|
| 313 | |
---|
| 314 | ! --------------------------------------------------------------------- |
---|
| 315 | ! determiner le flux de masse entrant a travers la base. |
---|
| 316 | ! on ignore, pour l'instant, l'effet du panache descendant |
---|
| 317 | ! --------------------------------------------------------------------- |
---|
| 318 | DO i = 1, klon |
---|
| 319 | ikb = kcbot(i) |
---|
| 320 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zqenh(i, ikb) |
---|
| 321 | zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
---|
| 322 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i)) THEN |
---|
| 323 | zmfub(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
---|
| 324 | ELSE |
---|
| 325 | zmfub(i) = 0.01 |
---|
| 326 | ldcum(i) = .FALSE. |
---|
| 327 | END IF |
---|
| 328 | IF (ktype(i)==2) THEN |
---|
| 329 | zdh = rcpd*(ptu(i,ikb)-ztenh(i,ikb)) + rlvtt*zqumqe |
---|
| 330 | zdh = rg*max(zdh, 1.0E5*zdqmin) |
---|
| 331 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub(i) = zdhpbl(i)/zdh |
---|
| 332 | END IF |
---|
| 333 | zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
---|
| 334 | zmfub(i) = min(zmfub(i), zmfmax) |
---|
| 335 | zentr(i) = entrscv |
---|
| 336 | IF (ktype(i)==1) zentr(i) = entrpen |
---|
| 337 | END DO |
---|
| 338 | ! ----------------------------------------------------------------------- |
---|
| 339 | ! DETERMINE CLOUD ASCENT FOR ENTRAINING PLUME |
---|
| 340 | ! ----------------------------------------------------------------------- |
---|
| 341 | ! (A) calculer d'abord la hauteur "theorique" de la tour convective sans |
---|
| 342 | ! considerer l'entrainement ni le detrainement du panache, sachant |
---|
| 343 | ! ces derniers peuvent abaisser la hauteur theorique. |
---|
| 344 | |
---|
| 345 | DO i = 1, klon |
---|
| 346 | ikb = kcbot(i) |
---|
| 347 | zhcbase(i) = rcpd*ptu(i, ikb) + zgeoh(i, ikb) + rlvtt*pqu(i, ikb) |
---|
| 348 | ictop0(i) = kcbot(i) - 1 |
---|
| 349 | END DO |
---|
| 350 | |
---|
| 351 | zalvdcp = rlvtt/rcpd |
---|
| 352 | DO k = klev - 1, 3, -1 |
---|
| 353 | DO i = 1, klon |
---|
| 354 | zhsat = rcpd*ztenh(i, k) + zgeoh(i, k) + rlvtt*zqsenh(i, k) |
---|
| 355 | zgam = r5les*zalvdcp*zqsenh(i, k)/((1.-retv*zqsenh(i,k))*(ztenh(i, & |
---|
| 356 | k)-r4les)**2) |
---|
| 357 | zzz = rcpd*ztenh(i, k)*0.608 |
---|
| 358 | zhhat = zhsat - (zzz+zgam*zzz)/(1.+zgam*zzz/rlvtt)*max(zqsenh(i,k)- & |
---|
| 359 | zqenh(i,k), 0.) |
---|
| 360 | IF (k<ictop0(i) .AND. zhcbase(i)>zhhat) ictop0(i) = k |
---|
| 361 | END DO |
---|
| 362 | END DO |
---|
| 363 | |
---|
| 364 | ! (B) calculer le panache ascendant |
---|
| 365 | |
---|
| 366 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
| 367 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
| 368 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
| 369 | kcum, pen_u, pde_u) |
---|
| 370 | IF (kcum==0) GO TO 1000 |
---|
| 371 | |
---|
| 372 | ! verifier l'epaisseur de la convection et changer eventuellement |
---|
| 373 | ! le taux d'entrainement/detrainement |
---|
| 374 | |
---|
| 375 | DO i = 1, klon |
---|
| 376 | zpbmpt = paph(i, kcbot(i)) - paph(i, kctop(i)) |
---|
| 377 | IF (ldcum(i) .AND. ktype(i)==1 .AND. zpbmpt<2.E4) ktype(i) = 2 |
---|
| 378 | IF (ldcum(i)) ictop0(i) = kctop(i) |
---|
| 379 | IF (ktype(i)==2) zentr(i) = entrscv |
---|
| 380 | END DO |
---|
| 381 | |
---|
| 382 | IF (lmfdd) THEN ! si l'on considere le panache descendant |
---|
| 383 | |
---|
| 384 | ! calculer la precipitation issue du panache ascendant pour |
---|
| 385 | ! determiner l'existence du panache descendant dans la convection |
---|
| 386 | DO i = 1, klon |
---|
| 387 | zrfl(i) = zdmfup(i, 1) |
---|
| 388 | END DO |
---|
| 389 | DO k = 2, klev |
---|
[524] | 390 | DO i = 1, klon |
---|
[1992] | 391 | zrfl(i) = zrfl(i) + zdmfup(i, k) |
---|
| 392 | END DO |
---|
| 393 | END DO |
---|
[524] | 394 | |
---|
[1992] | 395 | ! determiner le LFS (level of free sinking: niveau de plonge libre) |
---|
| 396 | CALL flxdlfs(ztenh, zqenh, zgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
| 397 | zmfub, zrfl, ptd, pqd, pmfd, zmfds, zmfdq, zdmfdp, kdtop, lddraf) |
---|
| 398 | |
---|
| 399 | ! calculer le panache descendant |
---|
| 400 | CALL flxddraf(ztenh, zqenh, zgeoh, paph, zrfl, ptd, pqd, pmfd, zmfds, & |
---|
| 401 | zmfdq, zdmfdp, lddraf, pen_d, pde_d) |
---|
| 402 | |
---|
| 403 | ! calculer de nouveau le flux de masse entrant a travers la base |
---|
| 404 | ! de la convection, sachant qu'il a ete modifie par le panache |
---|
| 405 | ! descendant |
---|
| 406 | DO i = 1, klon |
---|
[524] | 407 | IF (lddraf(i)) THEN |
---|
[1992] | 408 | ikb = kcbot(i) |
---|
| 409 | llo1 = pmfd(i, ikb) < 0. |
---|
| 410 | zeps = 0. |
---|
| 411 | IF (llo1) zeps = cmfdeps |
---|
| 412 | zqumqe = pqu(i, ikb) + plu(i, ikb) - zeps*pqd(i, ikb) - & |
---|
| 413 | (1.-zeps)*zqenh(i, ikb) |
---|
| 414 | zdqmin = max(0.01*zqenh(i,ikb), 1.E-10) |
---|
| 415 | zmfmax = (paph(i,ikb)-paph(i,ikb-1))/(rg*pdtime) |
---|
| 416 | IF (zdqpbl(i)>0. .AND. zqumqe>zdqmin .AND. ldcum(i) .AND. & |
---|
| 417 | zmfub(i)<zmfmax) THEN |
---|
| 418 | zmfub1(i) = zdqpbl(i)/(rg*max(zqumqe,zdqmin)) |
---|
| 419 | ELSE |
---|
| 420 | zmfub1(i) = zmfub(i) |
---|
| 421 | END IF |
---|
| 422 | IF (ktype(i)==2) THEN |
---|
| 423 | zdh = rcpd*(ptu(i,ikb)-zeps*ptd(i,ikb)-(1.-zeps)*ztenh(i,ikb)) + & |
---|
| 424 | rlvtt*zqumqe |
---|
| 425 | zdh = rg*max(zdh, 1.0E5*zdqmin) |
---|
| 426 | IF (zdhpbl(i)>0. .AND. ldcum(i)) zmfub1(i) = zdhpbl(i)/zdh |
---|
| 427 | END IF |
---|
| 428 | IF (.NOT. ((ktype(i)==1 .OR. ktype(i)==2) .AND. abs(zmfub1(i)-zmfub(i & |
---|
| 429 | ))<0.2*zmfub(i))) zmfub1(i) = zmfub(i) |
---|
| 430 | END IF |
---|
| 431 | END DO |
---|
| 432 | DO k = 1, klev |
---|
[524] | 433 | DO i = 1, klon |
---|
[1992] | 434 | IF (lddraf(i)) THEN |
---|
| 435 | zfac = zmfub1(i)/max(zmfub(i), 1.E-10) |
---|
| 436 | pmfd(i, k) = pmfd(i, k)*zfac |
---|
| 437 | zmfds(i, k) = zmfds(i, k)*zfac |
---|
| 438 | zmfdq(i, k) = zmfdq(i, k)*zfac |
---|
| 439 | zdmfdp(i, k) = zdmfdp(i, k)*zfac |
---|
| 440 | pen_d(i, k) = pen_d(i, k)*zfac |
---|
| 441 | pde_d(i, k) = pde_d(i, k)*zfac |
---|
| 442 | END IF |
---|
| 443 | END DO |
---|
| 444 | END DO |
---|
| 445 | DO i = 1, klon |
---|
| 446 | IF (lddraf(i)) zmfub(i) = zmfub1(i) |
---|
| 447 | END DO |
---|
| 448 | |
---|
| 449 | END IF ! fin de test sur lmfdd |
---|
| 450 | |
---|
| 451 | ! ----------------------------------------------------------------------- |
---|
| 452 | ! calculer de nouveau le panache ascendant |
---|
| 453 | ! ----------------------------------------------------------------------- |
---|
| 454 | CALL flxasc(pdtime, ztenh, zqenh, pten, pqen, pqsen, pgeo, zgeoh, pap, & |
---|
| 455 | paph, pqte, pvervel, ldland, ldcum, ktype, ilab, ptu, pqu, plu, pmfu, & |
---|
| 456 | zmfub, zentr, zmfus, zmfuq, zmful, plude, zdmfup, kcbot, kctop, ictop0, & |
---|
| 457 | kcum, pen_u, pde_u) |
---|
| 458 | |
---|
| 459 | ! ----------------------------------------------------------------------- |
---|
| 460 | ! determiner les flux convectifs en forme finale, ainsi que |
---|
| 461 | ! la quantite des precipitations |
---|
| 462 | ! ----------------------------------------------------------------------- |
---|
| 463 | CALL flxflux(pdtime, pqen, pqsen, ztenh, zqenh, pap, paph, ldland, zgeoh, & |
---|
| 464 | kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, zmfus, zmfds, & |
---|
| 465 | zmfuq, zmfdq, zmful, plude, zdmfup, zdmfdp, pten, prsfc, pssfc, zdpmel, & |
---|
| 466 | itopm2, pmflxr, pmflxs) |
---|
| 467 | |
---|
| 468 | ! ---------------------------------------------------------------------- |
---|
| 469 | ! calculer les tendances pour T et Q |
---|
| 470 | ! ---------------------------------------------------------------------- |
---|
| 471 | CALL flxdtdq(pdtime, itopm2, paph, ldcum, pten, zmfus, zmfds, zmfuq, zmfdq, & |
---|
| 472 | zmful, zdmfup, zdmfdp, zdpmel, dt_con, dq_con) |
---|
| 473 | |
---|
| 474 | 1000 CONTINUE |
---|
| 475 | RETURN |
---|
| 476 | END SUBROUTINE flxmain |
---|
| 477 | SUBROUTINE flxini(pten, pqen, pqsen, pgeo, paph, pgeoh, ptenh, pqenh, pqsenh, & |
---|
| 478 | ptu, pqu, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, pmfu, pmfus, pmfuq, & |
---|
| 479 | pdmfup, pdpmel, plu, plude, klab, pen_u, pde_u, pen_d, pde_d) |
---|
| 480 | USE dimphy |
---|
| 481 | IMPLICIT NONE |
---|
| 482 | ! ---------------------------------------------------------------------- |
---|
| 483 | ! THIS ROUTINE INTERPOLATES LARGE-SCALE FIELDS OF T,Q ETC. |
---|
| 484 | ! TO HALF LEVELS (I.E. GRID FOR MASSFLUX SCHEME), |
---|
| 485 | ! AND INITIALIZES VALUES FOR UPDRAFTS |
---|
| 486 | ! ---------------------------------------------------------------------- |
---|
| 487 | include "YOMCST.h" |
---|
| 488 | include "YOETHF.h" |
---|
| 489 | |
---|
| 490 | REAL pten(klon, klev) ! temperature (environnement) |
---|
| 491 | REAL pqen(klon, klev) ! humidite (environnement) |
---|
| 492 | REAL pqsen(klon, klev) ! humidite saturante (environnement) |
---|
| 493 | REAL pgeo(klon, klev) ! geopotentiel (g * metre) |
---|
| 494 | REAL pgeoh(klon, klev) ! geopotentiel aux demi-niveaux |
---|
| 495 | REAL paph(klon, klev+1) ! pression aux demi-niveaux |
---|
| 496 | REAL ptenh(klon, klev) ! temperature aux demi-niveaux |
---|
| 497 | REAL pqenh(klon, klev) ! humidite aux demi-niveaux |
---|
| 498 | REAL pqsenh(klon, klev) ! humidite saturante aux demi-niveaux |
---|
| 499 | |
---|
| 500 | REAL ptu(klon, klev) ! temperature du panache ascendant (p-a) |
---|
| 501 | REAL pqu(klon, klev) ! humidite du p-a |
---|
| 502 | REAL plu(klon, klev) ! eau liquide du p-a |
---|
| 503 | REAL pmfu(klon, klev) ! flux de masse du p-a |
---|
| 504 | REAL pmfus(klon, klev) ! flux de l'energie seche dans le p-a |
---|
| 505 | REAL pmfuq(klon, klev) ! flux de l'humidite dans le p-a |
---|
| 506 | REAL pdmfup(klon, klev) ! quantite de l'eau precipitee dans p-a |
---|
| 507 | REAL plude(klon, klev) ! quantite de l'eau liquide jetee du |
---|
| 508 | ! p-a a l'environnement |
---|
| 509 | REAL pdpmel(klon, klev) ! quantite de neige fondue |
---|
| 510 | |
---|
| 511 | REAL ptd(klon, klev) ! temperature du panache descendant (p-d) |
---|
| 512 | REAL pqd(klon, klev) ! humidite du p-d |
---|
| 513 | REAL pmfd(klon, klev) ! flux de masse du p-d |
---|
| 514 | REAL pmfds(klon, klev) ! flux de l'energie seche dans le p-d |
---|
| 515 | REAL pmfdq(klon, klev) ! flux de l'humidite dans le p-d |
---|
| 516 | REAL pdmfdp(klon, klev) ! quantite de precipitation dans p-d |
---|
| 517 | |
---|
| 518 | REAL pen_u(klon, klev) ! quantite de masse entrainee pour p-a |
---|
| 519 | REAL pde_u(klon, klev) ! quantite de masse detrainee pour p-a |
---|
| 520 | REAL pen_d(klon, klev) ! quantite de masse entrainee pour p-d |
---|
| 521 | REAL pde_d(klon, klev) ! quantite de masse detrainee pour p-d |
---|
| 522 | |
---|
| 523 | INTEGER klab(klon, klev) |
---|
| 524 | LOGICAL llflag(klon) |
---|
| 525 | INTEGER k, i, icall |
---|
| 526 | REAL zzs |
---|
| 527 | ! ---------------------------------------------------------------------- |
---|
| 528 | ! SPECIFY LARGE SCALE PARAMETERS AT HALF LEVELS |
---|
| 529 | ! ADJUST TEMPERATURE FIELDS IF STATICLY UNSTABLE |
---|
| 530 | ! ---------------------------------------------------------------------- |
---|
| 531 | DO k = 2, klev |
---|
| 532 | |
---|
| 533 | DO i = 1, klon |
---|
| 534 | pgeoh(i, k) = pgeo(i, k) + (pgeo(i,k-1)-pgeo(i,k))*0.5 |
---|
| 535 | ptenh(i, k) = (max(rcpd*pten(i,k-1)+pgeo(i,k-1),rcpd*pten(i,k)+pgeo(i, & |
---|
| 536 | k))-pgeoh(i,k))/rcpd |
---|
| 537 | pqsenh(i, k) = pqsen(i, k-1) |
---|
| 538 | llflag(i) = .TRUE. |
---|
| 539 | END DO |
---|
| 540 | |
---|
| 541 | icall = 0 |
---|
| 542 | CALL flxadjtq(paph(1,k), ptenh(1,k), pqsenh(1,k), llflag, icall) |
---|
| 543 | |
---|
| 544 | DO i = 1, klon |
---|
| 545 | pqenh(i, k) = min(pqen(i,k-1), pqsen(i,k-1)) + & |
---|
| 546 | (pqsenh(i,k)-pqsen(i,k-1)) |
---|
| 547 | pqenh(i, k) = max(pqenh(i,k), 0.) |
---|
| 548 | END DO |
---|
| 549 | |
---|
| 550 | END DO |
---|
| 551 | |
---|
| 552 | DO i = 1, klon |
---|
| 553 | ptenh(i, klev) = (rcpd*pten(i,klev)+pgeo(i,klev)-pgeoh(i,klev))/rcpd |
---|
| 554 | pqenh(i, klev) = pqen(i, klev) |
---|
| 555 | ptenh(i, 1) = pten(i, 1) |
---|
| 556 | pqenh(i, 1) = pqen(i, 1) |
---|
| 557 | pgeoh(i, 1) = pgeo(i, 1) |
---|
| 558 | END DO |
---|
| 559 | |
---|
| 560 | DO k = klev - 1, 2, -1 |
---|
| 561 | DO i = 1, klon |
---|
| 562 | zzs = max(rcpd*ptenh(i,k)+pgeoh(i,k), rcpd*ptenh(i,k+1)+pgeoh(i,k+1)) |
---|
| 563 | ptenh(i, k) = (zzs-pgeoh(i,k))/rcpd |
---|
| 564 | END DO |
---|
| 565 | END DO |
---|
| 566 | |
---|
| 567 | ! ----------------------------------------------------------------------- |
---|
| 568 | ! INITIALIZE VALUES FOR UPDRAFTS AND DOWNDRAFTS |
---|
| 569 | ! ----------------------------------------------------------------------- |
---|
| 570 | DO k = 1, klev |
---|
| 571 | DO i = 1, klon |
---|
| 572 | ptu(i, k) = ptenh(i, k) |
---|
| 573 | pqu(i, k) = pqenh(i, k) |
---|
| 574 | plu(i, k) = 0. |
---|
| 575 | pmfu(i, k) = 0. |
---|
| 576 | pmfus(i, k) = 0. |
---|
| 577 | pmfuq(i, k) = 0. |
---|
| 578 | pdmfup(i, k) = 0. |
---|
| 579 | pdpmel(i, k) = 0. |
---|
| 580 | plude(i, k) = 0. |
---|
| 581 | |
---|
| 582 | klab(i, k) = 0 |
---|
| 583 | |
---|
| 584 | ptd(i, k) = ptenh(i, k) |
---|
| 585 | pqd(i, k) = pqenh(i, k) |
---|
| 586 | pmfd(i, k) = 0.0 |
---|
| 587 | pmfds(i, k) = 0.0 |
---|
| 588 | pmfdq(i, k) = 0.0 |
---|
| 589 | pdmfdp(i, k) = 0.0 |
---|
| 590 | |
---|
| 591 | pen_u(i, k) = 0.0 |
---|
| 592 | pde_u(i, k) = 0.0 |
---|
| 593 | pen_d(i, k) = 0.0 |
---|
| 594 | pde_d(i, k) = 0.0 |
---|
| 595 | END DO |
---|
| 596 | END DO |
---|
| 597 | |
---|
| 598 | RETURN |
---|
| 599 | END SUBROUTINE flxini |
---|
| 600 | SUBROUTINE flxbase(ptenh, pqenh, pgeoh, paph, ptu, pqu, plu, ldcum, kcbot, & |
---|
| 601 | klab) |
---|
| 602 | USE dimphy |
---|
| 603 | IMPLICIT NONE |
---|
| 604 | ! ---------------------------------------------------------------------- |
---|
| 605 | ! THIS ROUTINE CALCULATES CLOUD BASE VALUES (T AND Q) |
---|
| 606 | |
---|
| 607 | ! INPUT ARE ENVIRONM. VALUES OF T,Q,P,PHI AT HALF LEVELS. |
---|
| 608 | ! IT RETURNS CLOUD BASE VALUES AND FLAGS AS FOLLOWS; |
---|
| 609 | ! klab=1 FOR SUBCLOUD LEVELS |
---|
| 610 | ! klab=2 FOR CONDENSATION LEVEL |
---|
| 611 | |
---|
| 612 | ! LIFT SURFACE AIR DRY-ADIABATICALLY TO CLOUD BASE |
---|
| 613 | ! (NON ENTRAINING PLUME,I.E.CONSTANT MASSFLUX) |
---|
| 614 | ! ---------------------------------------------------------------------- |
---|
| 615 | include "YOMCST.h" |
---|
| 616 | include "YOETHF.h" |
---|
| 617 | ! ---------------------------------------------------------------- |
---|
| 618 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
| 619 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 620 | |
---|
| 621 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 622 | INTEGER klab(klon, klev), kcbot(klon) |
---|
| 623 | |
---|
| 624 | LOGICAL llflag(klon), ldcum(klon) |
---|
| 625 | INTEGER i, k, icall, is |
---|
| 626 | REAL zbuo, zqold(klon) |
---|
| 627 | ! ---------------------------------------------------------------------- |
---|
| 628 | ! INITIALIZE VALUES AT LIFTING LEVEL |
---|
| 629 | ! ---------------------------------------------------------------------- |
---|
| 630 | DO i = 1, klon |
---|
| 631 | klab(i, klev) = 1 |
---|
| 632 | kcbot(i) = klev - 1 |
---|
| 633 | ldcum(i) = .FALSE. |
---|
| 634 | END DO |
---|
| 635 | ! ---------------------------------------------------------------------- |
---|
| 636 | ! DO ASCENT IN SUBCLOUD LAYER, |
---|
| 637 | ! CHECK FOR EXISTENCE OF CONDENSATION LEVEL, |
---|
| 638 | ! ADJUST T,Q AND L ACCORDINGLY |
---|
| 639 | ! CHECK FOR BUOYANCY AND SET FLAGS |
---|
| 640 | ! ---------------------------------------------------------------------- |
---|
| 641 | DO k = klev - 1, 2, -1 |
---|
| 642 | |
---|
| 643 | is = 0 |
---|
| 644 | DO i = 1, klon |
---|
| 645 | IF (klab(i,k+1)==1) is = is + 1 |
---|
| 646 | llflag(i) = .FALSE. |
---|
| 647 | IF (klab(i,k+1)==1) llflag(i) = .TRUE. |
---|
| 648 | END DO |
---|
| 649 | IF (is==0) GO TO 290 |
---|
| 650 | |
---|
| 651 | DO i = 1, klon |
---|
| 652 | IF (llflag(i)) THEN |
---|
| 653 | pqu(i, k) = pqu(i, k+1) |
---|
| 654 | ptu(i, k) = ptu(i, k+1) + (pgeoh(i,k+1)-pgeoh(i,k))/rcpd |
---|
| 655 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 656 | ) + 0.5 |
---|
| 657 | IF (zbuo>0.) klab(i, k) = 1 |
---|
| 658 | zqold(i) = pqu(i, k) |
---|
| 659 | END IF |
---|
| 660 | END DO |
---|
| 661 | |
---|
| 662 | icall = 1 |
---|
| 663 | CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
---|
| 664 | |
---|
| 665 | DO i = 1, klon |
---|
| 666 | IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
---|
| 667 | klab(i, k) = 2 |
---|
| 668 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
| 669 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 670 | ) + 0.5 |
---|
| 671 | IF (zbuo>0.) kcbot(i) = k |
---|
| 672 | IF (zbuo>0.) ldcum(i) = .TRUE. |
---|
| 673 | END IF |
---|
| 674 | END DO |
---|
| 675 | |
---|
| 676 | 290 END DO |
---|
| 677 | |
---|
| 678 | RETURN |
---|
| 679 | END SUBROUTINE flxbase |
---|
| 680 | SUBROUTINE flxasc(pdtime, ptenh, pqenh, pten, pqen, pqsen, pgeo, pgeoh, pap, & |
---|
| 681 | paph, pqte, pvervel, ldland, ldcum, ktype, klab, ptu, pqu, plu, pmfu, & |
---|
| 682 | pmfub, pentr, pmfus, pmfuq, pmful, plude, pdmfup, kcbot, kctop, kctop0, & |
---|
| 683 | kcum, pen_u, pde_u) |
---|
| 684 | USE dimphy |
---|
| 685 | IMPLICIT NONE |
---|
| 686 | ! ---------------------------------------------------------------------- |
---|
| 687 | ! THIS ROUTINE DOES THE CALCULATIONS FOR CLOUD ASCENTS |
---|
| 688 | ! FOR CUMULUS PARAMETERIZATION |
---|
| 689 | ! ---------------------------------------------------------------------- |
---|
| 690 | include "YOMCST.h" |
---|
| 691 | include "YOETHF.h" |
---|
| 692 | include "YOECUMF.h" |
---|
| 693 | |
---|
| 694 | REAL pdtime |
---|
| 695 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
| 696 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
| 697 | REAL pgeo(klon, klev), pgeoh(klon, klev) |
---|
| 698 | REAL pap(klon, klev), paph(klon, klev+1) |
---|
| 699 | REAL pqte(klon, klev) |
---|
| 700 | REAL pvervel(klon, klev) ! vitesse verticale en Pa/s |
---|
| 701 | |
---|
| 702 | REAL pmfub(klon), pentr(klon) |
---|
| 703 | REAL ptu(klon, klev), pqu(klon, klev), plu(klon, klev) |
---|
| 704 | REAL plude(klon, klev) |
---|
| 705 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
| 706 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
| 707 | REAL pdmfup(klon, klev) |
---|
| 708 | INTEGER ktype(klon), klab(klon, klev), kcbot(klon), kctop(klon) |
---|
| 709 | INTEGER kctop0(klon) |
---|
| 710 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 711 | |
---|
| 712 | REAL pen_u(klon, klev), pde_u(klon, klev) |
---|
| 713 | REAL zqold(klon) |
---|
| 714 | REAL zdland(klon) |
---|
| 715 | LOGICAL llflag(klon) |
---|
| 716 | INTEGER k, i, is, icall, kcum |
---|
| 717 | REAL ztglace, zdphi, zqeen, zseen, zscde, zqude |
---|
| 718 | REAL zmfusk, zmfuqk, zmfulk, zbuo, zdnoprc, zprcon, zlnew |
---|
| 719 | |
---|
| 720 | REAL zpbot(klon), zptop(klon), zrho(klon) |
---|
| 721 | REAL zdprho, zentr, zpmid, zmftest, zmfmax |
---|
| 722 | LOGICAL llo1, llo2 |
---|
| 723 | |
---|
| 724 | REAL zwmax(klon), zzzmb |
---|
| 725 | INTEGER klwmin(klon) ! level of maximum vertical velocity |
---|
| 726 | REAL fact |
---|
| 727 | ! ---------------------------------------------------------------------- |
---|
| 728 | ztglace = rtt - 13. |
---|
| 729 | |
---|
| 730 | ! Chercher le niveau ou la vitesse verticale est maximale: |
---|
| 731 | DO i = 1, klon |
---|
| 732 | klwmin(i) = klev |
---|
| 733 | zwmax(i) = 0.0 |
---|
| 734 | END DO |
---|
| 735 | DO k = klev, 3, -1 |
---|
| 736 | DO i = 1, klon |
---|
| 737 | IF (pvervel(i,k)<zwmax(i)) THEN |
---|
| 738 | zwmax(i) = pvervel(i, k) |
---|
| 739 | klwmin(i) = k |
---|
| 740 | END IF |
---|
| 741 | END DO |
---|
| 742 | END DO |
---|
| 743 | ! ---------------------------------------------------------------------- |
---|
| 744 | ! SET DEFAULT VALUES |
---|
| 745 | ! ---------------------------------------------------------------------- |
---|
| 746 | DO i = 1, klon |
---|
| 747 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
| 748 | END DO |
---|
| 749 | |
---|
| 750 | DO k = 1, klev |
---|
| 751 | DO i = 1, klon |
---|
| 752 | plu(i, k) = 0. |
---|
| 753 | pmfu(i, k) = 0. |
---|
| 754 | pmfus(i, k) = 0. |
---|
| 755 | pmfuq(i, k) = 0. |
---|
| 756 | pmful(i, k) = 0. |
---|
| 757 | plude(i, k) = 0. |
---|
| 758 | pdmfup(i, k) = 0. |
---|
| 759 | IF (.NOT. ldcum(i) .OR. ktype(i)==3) klab(i, k) = 0 |
---|
| 760 | IF (.NOT. ldcum(i) .AND. paph(i,k)<4.E4) kctop0(i) = k |
---|
| 761 | END DO |
---|
| 762 | END DO |
---|
| 763 | |
---|
| 764 | DO i = 1, klon |
---|
| 765 | IF (ldland(i)) THEN |
---|
| 766 | zdland(i) = 3.0E4 |
---|
| 767 | zdphi = pgeoh(i, kctop0(i)) - pgeoh(i, kcbot(i)) |
---|
| 768 | IF (ptu(i,kctop0(i))>=ztglace) zdland(i) = zdphi |
---|
| 769 | zdland(i) = max(3.0E4, zdland(i)) |
---|
| 770 | zdland(i) = min(5.0E4, zdland(i)) |
---|
| 771 | END IF |
---|
| 772 | END DO |
---|
| 773 | |
---|
| 774 | ! Initialiser les valeurs au niveau d'ascendance |
---|
| 775 | |
---|
| 776 | DO i = 1, klon |
---|
| 777 | kctop(i) = klev - 1 |
---|
| 778 | IF (.NOT. ldcum(i)) THEN |
---|
| 779 | kcbot(i) = klev - 1 |
---|
| 780 | pmfub(i) = 0. |
---|
| 781 | pqu(i, klev) = 0. |
---|
| 782 | END IF |
---|
| 783 | pmfu(i, klev) = pmfub(i) |
---|
| 784 | pmfus(i, klev) = pmfub(i)*(rcpd*ptu(i,klev)+pgeoh(i,klev)) |
---|
| 785 | pmfuq(i, klev) = pmfub(i)*pqu(i, klev) |
---|
| 786 | END DO |
---|
| 787 | |
---|
| 788 | DO i = 1, klon |
---|
| 789 | ldcum(i) = .FALSE. |
---|
| 790 | END DO |
---|
| 791 | ! ---------------------------------------------------------------------- |
---|
| 792 | ! DO ASCENT: SUBCLOUD LAYER (klab=1) ,CLOUDS (klab=2) |
---|
| 793 | ! BY DOING FIRST DRY-ADIABATIC ASCENT AND THEN |
---|
| 794 | ! BY ADJUSTING T,Q AND L ACCORDINGLY IN *flxadjtq*, |
---|
| 795 | ! THEN CHECK FOR BUOYANCY AND SET FLAGS ACCORDINGLY |
---|
| 796 | ! ---------------------------------------------------------------------- |
---|
| 797 | DO k = klev - 1, 3, -1 |
---|
| 798 | |
---|
| 799 | IF (lmfmid .AND. k<klev-1) THEN |
---|
[524] | 800 | DO i = 1, klon |
---|
[1992] | 801 | IF (.NOT. ldcum(i) .AND. klab(i,k+1)==0 .AND. & |
---|
| 802 | pqen(i,k)>0.9*pqsen(i,k) .AND. pap(i,k)/paph(i,klev+1)>0.4) THEN |
---|
| 803 | ptu(i, k+1) = pten(i, k) + (pgeo(i,k)-pgeoh(i,k+1))/rcpd |
---|
| 804 | pqu(i, k+1) = pqen(i, k) |
---|
| 805 | plu(i, k+1) = 0.0 |
---|
| 806 | zzzmb = max(cmfcmin, -pvervel(i,k)/rg) |
---|
| 807 | zmfmax = (paph(i,k)-paph(i,k-1))/(rg*pdtime) |
---|
| 808 | pmfub(i) = min(zzzmb, zmfmax) |
---|
| 809 | pmfu(i, k+1) = pmfub(i) |
---|
| 810 | pmfus(i, k+1) = pmfub(i)*(rcpd*ptu(i,k+1)+pgeoh(i,k+1)) |
---|
| 811 | pmfuq(i, k+1) = pmfub(i)*pqu(i, k+1) |
---|
| 812 | pmful(i, k+1) = 0.0 |
---|
| 813 | pdmfup(i, k+1) = 0.0 |
---|
| 814 | kcbot(i) = k |
---|
| 815 | klab(i, k+1) = 1 |
---|
| 816 | ktype(i) = 3 |
---|
| 817 | pentr(i) = entrmid |
---|
| 818 | END IF |
---|
| 819 | END DO |
---|
| 820 | END IF |
---|
| 821 | |
---|
| 822 | is = 0 |
---|
| 823 | DO i = 1, klon |
---|
| 824 | is = is + klab(i, k+1) |
---|
| 825 | IF (klab(i,k+1)==0) klab(i, k) = 0 |
---|
| 826 | llflag(i) = .FALSE. |
---|
| 827 | IF (klab(i,k+1)>0) llflag(i) = .TRUE. |
---|
| 828 | END DO |
---|
| 829 | IF (is==0) GO TO 480 |
---|
| 830 | |
---|
| 831 | ! calculer le taux d'entrainement et de detrainement |
---|
| 832 | |
---|
| 833 | DO i = 1, klon |
---|
| 834 | pen_u(i, k) = 0.0 |
---|
| 835 | pde_u(i, k) = 0.0 |
---|
| 836 | zrho(i) = paph(i, k+1)/(rd*ptenh(i,k+1)) |
---|
| 837 | zpbot(i) = paph(i, kcbot(i)) |
---|
| 838 | zptop(i) = paph(i, kctop0(i)) |
---|
| 839 | END DO |
---|
| 840 | |
---|
| 841 | DO i = 1, klon |
---|
| 842 | IF (ldcum(i)) THEN |
---|
| 843 | zdprho = (paph(i,k+1)-paph(i,k))/(rg*zrho(i)) |
---|
| 844 | zentr = pentr(i)*pmfu(i, k+1)*zdprho |
---|
| 845 | llo1 = k < kcbot(i) |
---|
| 846 | IF (llo1) pde_u(i, k) = zentr |
---|
| 847 | zpmid = 0.5*(zpbot(i)+zptop(i)) |
---|
| 848 | llo2 = llo1 .AND. ktype(i) == 2 .AND. (zpbot(i)-paph(i,k)<0.2E5 .OR. & |
---|
| 849 | paph(i,k)>zpmid) |
---|
| 850 | IF (llo2) pen_u(i, k) = zentr |
---|
| 851 | llo2 = llo1 .AND. (ktype(i)==1 .OR. ktype(i)==3) .AND. & |
---|
| 852 | (k>=max(klwmin(i),kctop0(i)+2) .OR. pap(i,k)>zpmid) |
---|
| 853 | IF (llo2) pen_u(i, k) = zentr |
---|
| 854 | llo1 = pen_u(i, k) > 0. .AND. (ktype(i)==1 .OR. ktype(i)==2) |
---|
| 855 | IF (llo1) THEN |
---|
| 856 | fact = 1. + 3.*(1.-min(1.,(zpbot(i)-pap(i,k))/1.5E4)) |
---|
| 857 | zentr = zentr*fact |
---|
| 858 | pen_u(i, k) = pen_u(i, k)*fact |
---|
| 859 | pde_u(i, k) = pde_u(i, k)*fact |
---|
| 860 | END IF |
---|
| 861 | IF (llo2 .AND. pqenh(i,k+1)>1.E-5) pen_u(i, k) = zentr + & |
---|
| 862 | max(pqte(i,k), 0.)/pqenh(i, k+1)*zrho(i)*zdprho |
---|
| 863 | END IF |
---|
| 864 | END DO |
---|
| 865 | |
---|
| 866 | ! ---------------------------------------------------------------------- |
---|
| 867 | ! DO ADIABATIC ASCENT FOR ENTRAINING/DETRAINING PLUME |
---|
| 868 | ! ---------------------------------------------------------------------- |
---|
| 869 | |
---|
| 870 | DO i = 1, klon |
---|
[524] | 871 | IF (llflag(i)) THEN |
---|
[1992] | 872 | IF (k<kcbot(i)) THEN |
---|
| 873 | zmftest = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
---|
| 874 | zmfmax = min(zmftest, (paph(i,k)-paph(i,k-1))/(rg*pdtime)) |
---|
| 875 | pen_u(i, k) = max(pen_u(i,k)-max(0.0,zmftest-zmfmax), 0.0) |
---|
| 876 | END IF |
---|
| 877 | pde_u(i, k) = min(pde_u(i,k), 0.75*pmfu(i,k+1)) |
---|
| 878 | ! calculer le flux de masse du niveau k a partir de celui du k+1 |
---|
| 879 | pmfu(i, k) = pmfu(i, k+1) + pen_u(i, k) - pde_u(i, k) |
---|
| 880 | ! calculer les valeurs Su, Qu et l du niveau k dans le panache |
---|
| 881 | ! montant |
---|
| 882 | zqeen = pqenh(i, k+1)*pen_u(i, k) |
---|
| 883 | zseen = (rcpd*ptenh(i,k+1)+pgeoh(i,k+1))*pen_u(i, k) |
---|
| 884 | zscde = (rcpd*ptu(i,k+1)+pgeoh(i,k+1))*pde_u(i, k) |
---|
| 885 | zqude = pqu(i, k+1)*pde_u(i, k) |
---|
| 886 | plude(i, k) = plu(i, k+1)*pde_u(i, k) |
---|
| 887 | zmfusk = pmfus(i, k+1) + zseen - zscde |
---|
| 888 | zmfuqk = pmfuq(i, k+1) + zqeen - zqude |
---|
| 889 | zmfulk = pmful(i, k+1) - plude(i, k) |
---|
| 890 | plu(i, k) = zmfulk*(1./max(cmfcmin,pmfu(i,k))) |
---|
| 891 | pqu(i, k) = zmfuqk*(1./max(cmfcmin,pmfu(i,k))) |
---|
| 892 | ptu(i, k) = (zmfusk*(1./max(cmfcmin,pmfu(i,k)))-pgeoh(i,k))/rcpd |
---|
| 893 | ptu(i, k) = max(100., ptu(i,k)) |
---|
| 894 | ptu(i, k) = min(400., ptu(i,k)) |
---|
| 895 | zqold(i) = pqu(i, k) |
---|
[524] | 896 | ELSE |
---|
[1992] | 897 | zqold(i) = 0.0 |
---|
| 898 | END IF |
---|
| 899 | END DO |
---|
| 900 | |
---|
| 901 | ! ---------------------------------------------------------------------- |
---|
| 902 | ! DO CORRECTIONS FOR MOIST ASCENT BY ADJUSTING T,Q AND L |
---|
| 903 | ! ---------------------------------------------------------------------- |
---|
| 904 | |
---|
| 905 | icall = 1 |
---|
| 906 | CALL flxadjtq(paph(1,k), ptu(1,k), pqu(1,k), llflag, icall) |
---|
| 907 | |
---|
| 908 | DO i = 1, klon |
---|
| 909 | IF (llflag(i) .AND. pqu(i,k)/=zqold(i)) THEN |
---|
| 910 | klab(i, k) = 2 |
---|
| 911 | plu(i, k) = plu(i, k) + zqold(i) - pqu(i, k) |
---|
| 912 | zbuo = ptu(i, k)*(1.+retv*pqu(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 913 | ) |
---|
| 914 | IF (klab(i,k+1)==1) zbuo = zbuo + 0.5 |
---|
| 915 | IF (zbuo>0. .AND. pmfu(i,k)>=0.1*pmfub(i)) THEN |
---|
| 916 | kctop(i) = k |
---|
| 917 | ldcum(i) = .TRUE. |
---|
| 918 | zdnoprc = 1.5E4 |
---|
| 919 | IF (ldland(i)) zdnoprc = zdland(i) |
---|
| 920 | zprcon = cprcon |
---|
| 921 | IF ((zpbot(i)-paph(i,k))<zdnoprc) zprcon = 0.0 |
---|
| 922 | zlnew = plu(i, k)/(1.+zprcon*(pgeoh(i,k)-pgeoh(i,k+1))) |
---|
| 923 | pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
---|
| 924 | plu(i, k) = zlnew |
---|
| 925 | ELSE |
---|
| 926 | klab(i, k) = 0 |
---|
| 927 | pmfu(i, k) = 0. |
---|
| 928 | END IF |
---|
| 929 | END IF |
---|
| 930 | END DO |
---|
| 931 | DO i = 1, klon |
---|
[524] | 932 | IF (llflag(i)) THEN |
---|
[1992] | 933 | pmful(i, k) = plu(i, k)*pmfu(i, k) |
---|
| 934 | pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
---|
| 935 | pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
---|
| 936 | END IF |
---|
| 937 | END DO |
---|
| 938 | |
---|
| 939 | 480 END DO |
---|
| 940 | ! ---------------------------------------------------------------------- |
---|
| 941 | ! DETERMINE CONVECTIVE FLUXES ABOVE NON-BUOYANCY LEVEL |
---|
| 942 | ! (NOTE: CLOUD VARIABLES LIKE T,Q AND L ARE NOT |
---|
| 943 | ! AFFECTED BY DETRAINMENT AND ARE ALREADY KNOWN |
---|
| 944 | ! FROM PREVIOUS CALCULATIONS ABOVE) |
---|
| 945 | ! ---------------------------------------------------------------------- |
---|
| 946 | DO i = 1, klon |
---|
| 947 | IF (kctop(i)==klev-1) ldcum(i) = .FALSE. |
---|
| 948 | kcbot(i) = max(kcbot(i), kctop(i)) |
---|
| 949 | END DO |
---|
| 950 | |
---|
| 951 | ldcum(1) = ldcum(1) |
---|
| 952 | |
---|
| 953 | is = 0 |
---|
| 954 | DO i = 1, klon |
---|
| 955 | IF (ldcum(i)) is = is + 1 |
---|
| 956 | END DO |
---|
| 957 | kcum = is |
---|
| 958 | IF (is==0) GO TO 800 |
---|
| 959 | |
---|
| 960 | DO i = 1, klon |
---|
| 961 | IF (ldcum(i)) THEN |
---|
| 962 | k = kctop(i) - 1 |
---|
| 963 | pde_u(i, k) = (1.-cmfctop)*pmfu(i, k+1) |
---|
| 964 | plude(i, k) = pde_u(i, k)*plu(i, k+1) |
---|
| 965 | pmfu(i, k) = pmfu(i, k+1) - pde_u(i, k) |
---|
| 966 | zlnew = plu(i, k) |
---|
| 967 | pdmfup(i, k) = max(0., (plu(i,k)-zlnew)*pmfu(i,k)) |
---|
| 968 | plu(i, k) = zlnew |
---|
| 969 | pmfus(i, k) = (rcpd*ptu(i,k)+pgeoh(i,k))*pmfu(i, k) |
---|
| 970 | pmfuq(i, k) = pqu(i, k)*pmfu(i, k) |
---|
| 971 | pmful(i, k) = plu(i, k)*pmfu(i, k) |
---|
| 972 | plude(i, k-1) = pmful(i, k) |
---|
| 973 | END IF |
---|
| 974 | END DO |
---|
| 975 | |
---|
| 976 | 800 CONTINUE |
---|
| 977 | RETURN |
---|
| 978 | END SUBROUTINE flxasc |
---|
| 979 | SUBROUTINE flxflux(pdtime, pqen, pqsen, ptenh, pqenh, pap, paph, ldland, & |
---|
| 980 | pgeoh, kcbot, kctop, lddraf, kdtop, ktype, ldcum, pmfu, pmfd, pmfus, & |
---|
| 981 | pmfds, pmfuq, pmfdq, pmful, plude, pdmfup, pdmfdp, pten, prfl, psfl, & |
---|
| 982 | pdpmel, ktopm2, pmflxr, pmflxs) |
---|
| 983 | USE dimphy |
---|
[2408] | 984 | USE print_control_mod, ONLY: prt_level |
---|
[1992] | 985 | IMPLICIT NONE |
---|
| 986 | ! ---------------------------------------------------------------------- |
---|
| 987 | ! THIS ROUTINE DOES THE FINAL CALCULATION OF CONVECTIVE |
---|
| 988 | ! FLUXES IN THE CLOUD LAYER AND IN THE SUBCLOUD LAYER |
---|
| 989 | ! ---------------------------------------------------------------------- |
---|
| 990 | include "YOMCST.h" |
---|
| 991 | include "YOETHF.h" |
---|
| 992 | include "YOECUMF.h" |
---|
| 993 | |
---|
| 994 | REAL cevapcu(klon, klev) |
---|
| 995 | ! ----------------------------------------------------------------- |
---|
| 996 | REAL pqen(klon, klev), pqenh(klon, klev), pqsen(klon, klev) |
---|
| 997 | REAL pten(klon, klev), ptenh(klon, klev) |
---|
| 998 | REAL paph(klon, klev+1), pgeoh(klon, klev) |
---|
| 999 | |
---|
| 1000 | REAL pap(klon, klev) |
---|
| 1001 | REAL ztmsmlt, zdelta, zqsat |
---|
| 1002 | |
---|
| 1003 | REAL pmfu(klon, klev), pmfus(klon, klev) |
---|
| 1004 | REAL pmfd(klon, klev), pmfds(klon, klev) |
---|
| 1005 | REAL pmfuq(klon, klev), pmful(klon, klev) |
---|
| 1006 | REAL pmfdq(klon, klev) |
---|
| 1007 | REAL plude(klon, klev) |
---|
| 1008 | REAL pdmfup(klon, klev), pdpmel(klon, klev) |
---|
| 1009 | ! jq The variable maxpdmfdp(klon) has been introduced by Olivier Boucher |
---|
| 1010 | ! jq 14/11/00 to fix the problem with the negative precipitation. |
---|
| 1011 | REAL pdmfdp(klon, klev), maxpdmfdp(klon, klev) |
---|
| 1012 | REAL prfl(klon), psfl(klon) |
---|
| 1013 | REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) |
---|
| 1014 | INTEGER kcbot(klon), kctop(klon), ktype(klon) |
---|
| 1015 | LOGICAL ldland(klon), ldcum(klon) |
---|
| 1016 | INTEGER k, kp, i |
---|
| 1017 | REAL zcons1, zcons2, zcucov, ztmelp2 |
---|
| 1018 | REAL pdtime, zdp, zzp, zfac, zsnmlt, zrfl, zrnew |
---|
| 1019 | REAL zrmin, zrfln, zdrfl |
---|
| 1020 | REAL zpds, zpdr, zdenom |
---|
| 1021 | INTEGER ktopm2, itop, ikb |
---|
| 1022 | |
---|
| 1023 | LOGICAL lddraf(klon) |
---|
| 1024 | INTEGER kdtop(klon) |
---|
| 1025 | |
---|
| 1026 | include "FCTTRE.h" |
---|
| 1027 | |
---|
| 1028 | DO k = 1, klev |
---|
| 1029 | DO i = 1, klon |
---|
| 1030 | cevapcu(i, k) = 1.93E-6*261.*sqrt(1.E3/(38.3*0.293)*sqrt(0.5*(paph(i,k) & |
---|
| 1031 | +paph(i,k+1))/paph(i,klev+1)))*0.5/rg |
---|
| 1032 | END DO |
---|
| 1033 | END DO |
---|
| 1034 | |
---|
| 1035 | ! SPECIFY CONSTANTS |
---|
| 1036 | |
---|
| 1037 | zcons1 = rcpd/(rlmlt*rg*pdtime) |
---|
| 1038 | zcons2 = 1./(rg*pdtime) |
---|
| 1039 | zcucov = 0.05 |
---|
| 1040 | ztmelp2 = rtt + 2. |
---|
| 1041 | |
---|
| 1042 | ! DETERMINE FINAL CONVECTIVE FLUXES |
---|
| 1043 | |
---|
| 1044 | itop = klev |
---|
| 1045 | DO i = 1, klon |
---|
| 1046 | itop = min(itop, kctop(i)) |
---|
| 1047 | IF (.NOT. ldcum(i) .OR. kdtop(i)<kctop(i)) lddraf(i) = .FALSE. |
---|
| 1048 | IF (.NOT. ldcum(i)) ktype(i) = 0 |
---|
| 1049 | END DO |
---|
| 1050 | |
---|
| 1051 | ktopm2 = itop - 2 |
---|
| 1052 | DO k = ktopm2, klev |
---|
| 1053 | DO i = 1, klon |
---|
| 1054 | IF (ldcum(i) .AND. k>=kctop(i)-1) THEN |
---|
| 1055 | pmfus(i, k) = pmfus(i, k) - pmfu(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
---|
| 1056 | pmfuq(i, k) = pmfuq(i, k) - pmfu(i, k)*pqenh(i, k) |
---|
| 1057 | zdp = 1.5E4 |
---|
| 1058 | IF (ldland(i)) zdp = 3.E4 |
---|
| 1059 | |
---|
| 1060 | ! l'eau liquide detrainee est precipitee quand certaines |
---|
| 1061 | ! conditions sont reunies (sinon, elle est consideree |
---|
| 1062 | ! evaporee dans l'environnement) |
---|
| 1063 | |
---|
| 1064 | IF (paph(i,kcbot(i))-paph(i,kctop(i))>=zdp .AND. pqen(i,k-1)>0.8* & |
---|
| 1065 | pqsen(i,k-1)) pdmfup(i, k-1) = pdmfup(i, k-1) + plude(i, k-1) |
---|
| 1066 | |
---|
| 1067 | IF (lddraf(i) .AND. k>=kdtop(i)) THEN |
---|
| 1068 | pmfds(i, k) = pmfds(i, k) - pmfd(i, k)*(rcpd*ptenh(i,k)+pgeoh(i,k)) |
---|
| 1069 | pmfdq(i, k) = pmfdq(i, k) - pmfd(i, k)*pqenh(i, k) |
---|
| 1070 | ELSE |
---|
| 1071 | pmfd(i, k) = 0. |
---|
| 1072 | pmfds(i, k) = 0. |
---|
| 1073 | pmfdq(i, k) = 0. |
---|
| 1074 | pdmfdp(i, k-1) = 0. |
---|
| 1075 | END IF |
---|
[524] | 1076 | ELSE |
---|
[1992] | 1077 | pmfu(i, k) = 0. |
---|
| 1078 | pmfus(i, k) = 0. |
---|
| 1079 | pmfuq(i, k) = 0. |
---|
| 1080 | pmful(i, k) = 0. |
---|
| 1081 | pdmfup(i, k-1) = 0. |
---|
| 1082 | plude(i, k-1) = 0. |
---|
| 1083 | pmfd(i, k) = 0. |
---|
| 1084 | pmfds(i, k) = 0. |
---|
| 1085 | pmfdq(i, k) = 0. |
---|
| 1086 | pdmfdp(i, k-1) = 0. |
---|
| 1087 | END IF |
---|
| 1088 | END DO |
---|
| 1089 | END DO |
---|
| 1090 | |
---|
| 1091 | DO k = ktopm2, klev |
---|
| 1092 | DO i = 1, klon |
---|
| 1093 | IF (ldcum(i) .AND. k>kcbot(i)) THEN |
---|
| 1094 | ikb = kcbot(i) |
---|
| 1095 | zzp = ((paph(i,klev+1)-paph(i,k))/(paph(i,klev+1)-paph(i,ikb))) |
---|
| 1096 | IF (ktype(i)==3) zzp = zzp**2 |
---|
| 1097 | pmfu(i, k) = pmfu(i, ikb)*zzp |
---|
| 1098 | pmfus(i, k) = pmfus(i, ikb)*zzp |
---|
| 1099 | pmfuq(i, k) = pmfuq(i, ikb)*zzp |
---|
| 1100 | pmful(i, k) = pmful(i, ikb)*zzp |
---|
| 1101 | END IF |
---|
| 1102 | END DO |
---|
| 1103 | END DO |
---|
| 1104 | |
---|
| 1105 | ! CALCULATE RAIN/SNOW FALL RATES |
---|
| 1106 | ! CALCULATE MELTING OF SNOW |
---|
| 1107 | ! CALCULATE EVAPORATION OF PRECIP |
---|
| 1108 | |
---|
| 1109 | DO k = 1, klev + 1 |
---|
| 1110 | DO i = 1, klon |
---|
| 1111 | pmflxr(i, k) = 0.0 |
---|
| 1112 | pmflxs(i, k) = 0.0 |
---|
| 1113 | END DO |
---|
| 1114 | END DO |
---|
| 1115 | DO k = ktopm2, klev |
---|
| 1116 | DO i = 1, klon |
---|
[524] | 1117 | IF (ldcum(i)) THEN |
---|
[1992] | 1118 | IF (pmflxs(i,k)>0.0 .AND. pten(i,k)>ztmelp2) THEN |
---|
| 1119 | zfac = zcons1*(paph(i,k+1)-paph(i,k)) |
---|
| 1120 | zsnmlt = min(pmflxs(i,k), zfac*(pten(i,k)-ztmelp2)) |
---|
| 1121 | pdpmel(i, k) = zsnmlt |
---|
| 1122 | ztmsmlt = pten(i, k) - zsnmlt/zfac |
---|
| 1123 | zdelta = max(0., sign(1.,rtt-ztmsmlt)) |
---|
| 1124 | zqsat = r2es*foeew(ztmsmlt, zdelta)/pap(i, k) |
---|
| 1125 | zqsat = min(0.5, zqsat) |
---|
| 1126 | zqsat = zqsat/(1.-retv*zqsat) |
---|
| 1127 | pqsen(i, k) = zqsat |
---|
| 1128 | END IF |
---|
| 1129 | IF (pten(i,k)>rtt) THEN |
---|
| 1130 | pmflxr(i, k+1) = pmflxr(i, k) + pdmfup(i, k) + pdmfdp(i, k) + & |
---|
| 1131 | pdpmel(i, k) |
---|
| 1132 | pmflxs(i, k+1) = pmflxs(i, k) - pdpmel(i, k) |
---|
| 1133 | ELSE |
---|
| 1134 | pmflxs(i, k+1) = pmflxs(i, k) + pdmfup(i, k) + pdmfdp(i, k) |
---|
| 1135 | pmflxr(i, k+1) = pmflxr(i, k) |
---|
| 1136 | END IF |
---|
| 1137 | ! si la precipitation est negative, on ajuste le plux du |
---|
| 1138 | ! panache descendant pour eliminer la negativite |
---|
| 1139 | IF ((pmflxr(i,k+1)+pmflxs(i,k+1))<0.0) THEN |
---|
| 1140 | pdmfdp(i, k) = -pmflxr(i, k) - pmflxs(i, k) - pdmfup(i, k) |
---|
| 1141 | pmflxr(i, k+1) = 0.0 |
---|
| 1142 | pmflxs(i, k+1) = 0.0 |
---|
| 1143 | pdpmel(i, k) = 0.0 |
---|
| 1144 | END IF |
---|
| 1145 | END IF |
---|
| 1146 | END DO |
---|
| 1147 | END DO |
---|
| 1148 | |
---|
| 1149 | ! jq The new variable is initialized here. |
---|
| 1150 | ! jq It contains the humidity which is fed to the downdraft |
---|
| 1151 | ! jq by evaporation of precipitation in the column below the base |
---|
| 1152 | ! jq of convection. |
---|
| 1153 | ! jq |
---|
| 1154 | ! jq In the former version, this term has been subtracted from precip |
---|
| 1155 | ! jq as well as the evaporation. |
---|
| 1156 | ! jq |
---|
| 1157 | DO k = 1, klev |
---|
| 1158 | DO i = 1, klon |
---|
| 1159 | maxpdmfdp(i, k) = 0.0 |
---|
| 1160 | END DO |
---|
| 1161 | END DO |
---|
| 1162 | DO k = 1, klev |
---|
| 1163 | DO kp = k, klev |
---|
[524] | 1164 | DO i = 1, klon |
---|
[1992] | 1165 | maxpdmfdp(i, k) = maxpdmfdp(i, k) + pdmfdp(i, kp) |
---|
| 1166 | END DO |
---|
| 1167 | END DO |
---|
| 1168 | END DO |
---|
| 1169 | ! jq End of initialization |
---|
| 1170 | |
---|
| 1171 | DO k = ktopm2, klev |
---|
| 1172 | DO i = 1, klon |
---|
| 1173 | IF (ldcum(i) .AND. k>=kcbot(i)) THEN |
---|
| 1174 | zrfl = pmflxr(i, k) + pmflxs(i, k) |
---|
| 1175 | IF (zrfl>1.0E-20) THEN |
---|
| 1176 | zrnew = (max(0.,sqrt(zrfl/zcucov)-cevapcu(i, & |
---|
| 1177 | k)*(paph(i,k+1)-paph(i,k))*max(0.,pqsen(i,k)-pqen(i,k))))**2* & |
---|
| 1178 | zcucov |
---|
| 1179 | zrmin = zrfl - zcucov*max(0., 0.8*pqsen(i,k)-pqen(i,k))*zcons2*( & |
---|
| 1180 | paph(i,k+1)-paph(i,k)) |
---|
| 1181 | zrnew = max(zrnew, zrmin) |
---|
| 1182 | zrfln = max(zrnew, 0.) |
---|
| 1183 | zdrfl = min(0., zrfln-zrfl) |
---|
| 1184 | ! jq At least the amount of precipiation needed to feed the |
---|
| 1185 | ! downdraft |
---|
| 1186 | ! jq with humidity below the base of convection has to be left and |
---|
| 1187 | ! can't |
---|
| 1188 | ! jq be evaporated (surely the evaporation can't be positive): |
---|
| 1189 | zdrfl = max(zdrfl, min(-pmflxr(i,k)-pmflxs(i,k)-maxpdmfdp(i, & |
---|
| 1190 | k),0.0)) |
---|
| 1191 | ! jq End of insertion |
---|
| 1192 | |
---|
| 1193 | zdenom = 1.0/max(1.0E-20, pmflxr(i,k)+pmflxs(i,k)) |
---|
| 1194 | IF (pten(i,k)>rtt) THEN |
---|
| 1195 | zpdr = pdmfdp(i, k) |
---|
| 1196 | zpds = 0.0 |
---|
| 1197 | ELSE |
---|
| 1198 | zpdr = 0.0 |
---|
| 1199 | zpds = pdmfdp(i, k) |
---|
| 1200 | END IF |
---|
| 1201 | pmflxr(i, k+1) = pmflxr(i, k) + zpdr + pdpmel(i, k) + & |
---|
| 1202 | zdrfl*pmflxr(i, k)*zdenom |
---|
| 1203 | pmflxs(i, k+1) = pmflxs(i, k) + zpds - pdpmel(i, k) + & |
---|
| 1204 | zdrfl*pmflxs(i, k)*zdenom |
---|
| 1205 | pdmfup(i, k) = pdmfup(i, k) + zdrfl |
---|
| 1206 | ELSE |
---|
| 1207 | pmflxr(i, k+1) = 0.0 |
---|
| 1208 | pmflxs(i, k+1) = 0.0 |
---|
| 1209 | pdmfdp(i, k) = 0.0 |
---|
| 1210 | pdpmel(i, k) = 0.0 |
---|
| 1211 | END IF |
---|
| 1212 | IF (pmflxr(i,k)+pmflxs(i,k)<-1.E-26 .AND. prt_level>=1) WRITE (*, *) & |
---|
| 1213 | 'precip. < 1e-16 ', pmflxr(i, k) + pmflxs(i, k) |
---|
| 1214 | END IF |
---|
| 1215 | END DO |
---|
| 1216 | END DO |
---|
| 1217 | |
---|
| 1218 | DO i = 1, klon |
---|
| 1219 | prfl(i) = pmflxr(i, klev+1) |
---|
| 1220 | psfl(i) = pmflxs(i, klev+1) |
---|
| 1221 | END DO |
---|
| 1222 | |
---|
| 1223 | RETURN |
---|
| 1224 | END SUBROUTINE flxflux |
---|
| 1225 | SUBROUTINE flxdtdq(pdtime, ktopm2, paph, ldcum, pten, pmfus, pmfds, pmfuq, & |
---|
| 1226 | pmfdq, pmful, pdmfup, pdmfdp, pdpmel, dt_con, dq_con) |
---|
| 1227 | USE dimphy |
---|
| 1228 | IMPLICIT NONE |
---|
| 1229 | ! ---------------------------------------------------------------------- |
---|
| 1230 | ! calculer les tendances T et Q |
---|
| 1231 | ! ---------------------------------------------------------------------- |
---|
| 1232 | include "YOMCST.h" |
---|
| 1233 | include "YOETHF.h" |
---|
| 1234 | include "YOECUMF.h" |
---|
| 1235 | ! ----------------------------------------------------------------- |
---|
| 1236 | LOGICAL llo1 |
---|
| 1237 | |
---|
| 1238 | REAL pten(klon, klev), paph(klon, klev+1) |
---|
| 1239 | REAL pmfus(klon, klev), pmfuq(klon, klev), pmful(klon, klev) |
---|
| 1240 | REAL pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1241 | REAL pdmfup(klon, klev) |
---|
| 1242 | REAL pdmfdp(klon, klev) |
---|
| 1243 | REAL pdpmel(klon, klev) |
---|
| 1244 | LOGICAL ldcum(klon) |
---|
| 1245 | REAL dt_con(klon, klev), dq_con(klon, klev) |
---|
| 1246 | |
---|
| 1247 | INTEGER ktopm2 |
---|
| 1248 | REAL pdtime |
---|
| 1249 | |
---|
| 1250 | INTEGER i, k |
---|
| 1251 | REAL zalv, zdtdt, zdqdt |
---|
| 1252 | |
---|
| 1253 | DO k = ktopm2, klev - 1 |
---|
| 1254 | DO i = 1, klon |
---|
[524] | 1255 | IF (ldcum(i)) THEN |
---|
[1992] | 1256 | llo1 = (pten(i,k)-rtt) > 0. |
---|
| 1257 | zalv = rlstt |
---|
| 1258 | IF (llo1) zalv = rlvtt |
---|
| 1259 | zdtdt = rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k+1)-pmfus(i,k)+ & |
---|
| 1260 | pmfds(i,k+1)-pmfds(i,k)-rlmlt*pdpmel(i,k)-zalv*(pmful(i, & |
---|
| 1261 | k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k))) |
---|
| 1262 | dt_con(i, k) = zdtdt |
---|
| 1263 | zdqdt = rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k+1)-pmfuq(i,k)+pmfdq(i,k & |
---|
| 1264 | +1)-pmfdq(i,k)+pmful(i,k+1)-pmful(i,k)-pdmfup(i,k)-pdmfdp(i,k)) |
---|
| 1265 | dq_con(i, k) = zdqdt |
---|
| 1266 | END IF |
---|
| 1267 | END DO |
---|
| 1268 | END DO |
---|
| 1269 | |
---|
| 1270 | k = klev |
---|
| 1271 | DO i = 1, klon |
---|
| 1272 | IF (ldcum(i)) THEN |
---|
| 1273 | llo1 = (pten(i,k)-rtt) > 0. |
---|
| 1274 | zalv = rlstt |
---|
| 1275 | IF (llo1) zalv = rlvtt |
---|
| 1276 | zdtdt = -rg/(paph(i,k+1)-paph(i,k))/rcpd*(pmfus(i,k)+pmfds(i,k)+rlmlt* & |
---|
| 1277 | pdpmel(i,k)-zalv*(pmful(i,k)+pdmfup(i,k)+pdmfdp(i,k))) |
---|
| 1278 | dt_con(i, k) = zdtdt |
---|
| 1279 | zdqdt = -rg/(paph(i,k+1)-paph(i,k))*(pmfuq(i,k)+pmfdq(i,k)+pmful(i,k)+ & |
---|
| 1280 | pdmfup(i,k)+pdmfdp(i,k)) |
---|
| 1281 | dq_con(i, k) = zdqdt |
---|
| 1282 | END IF |
---|
| 1283 | END DO |
---|
| 1284 | |
---|
| 1285 | RETURN |
---|
| 1286 | END SUBROUTINE flxdtdq |
---|
| 1287 | SUBROUTINE flxdlfs(ptenh, pqenh, pgeoh, paph, ptu, pqu, ldcum, kcbot, kctop, & |
---|
| 1288 | pmfub, prfl, ptd, pqd, pmfd, pmfds, pmfdq, pdmfdp, kdtop, lddraf) |
---|
| 1289 | USE dimphy |
---|
| 1290 | IMPLICIT NONE |
---|
| 1291 | |
---|
| 1292 | ! ---------------------------------------------------------------------- |
---|
| 1293 | ! THIS ROUTINE CALCULATES LEVEL OF FREE SINKING FOR |
---|
| 1294 | ! CUMULUS DOWNDRAFTS AND SPECIFIES T,Q,U AND V VALUES |
---|
| 1295 | |
---|
| 1296 | ! TO PRODUCE LFS-VALUES FOR CUMULUS DOWNDRAFTS |
---|
| 1297 | ! FOR MASSFLUX CUMULUS PARAMETERIZATION |
---|
| 1298 | |
---|
| 1299 | ! INPUT ARE ENVIRONMENTAL VALUES OF T,Q,U,V,P,PHI |
---|
| 1300 | ! AND UPDRAFT VALUES T,Q,U AND V AND ALSO |
---|
| 1301 | ! CLOUD BASE MASSFLUX AND CU-PRECIPITATION RATE. |
---|
| 1302 | ! IT RETURNS T,Q,U AND V VALUES AND MASSFLUX AT LFS. |
---|
| 1303 | |
---|
| 1304 | ! CHECK FOR NEGATIVE BUOYANCY OF AIR OF EQUAL PARTS OF |
---|
| 1305 | ! MOIST ENVIRONMENTAL AIR AND CLOUD AIR. |
---|
| 1306 | ! ---------------------------------------------------------------------- |
---|
| 1307 | include "YOMCST.h" |
---|
| 1308 | include "YOETHF.h" |
---|
| 1309 | include "YOECUMF.h" |
---|
| 1310 | |
---|
| 1311 | REAL ptenh(klon, klev) |
---|
| 1312 | REAL pqenh(klon, klev) |
---|
| 1313 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 1314 | REAL ptu(klon, klev), pqu(klon, klev) |
---|
| 1315 | REAL pmfub(klon) |
---|
| 1316 | REAL prfl(klon) |
---|
| 1317 | |
---|
| 1318 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
| 1319 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1320 | REAL pdmfdp(klon, klev) |
---|
| 1321 | INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
---|
| 1322 | LOGICAL ldcum(klon), lddraf(klon) |
---|
| 1323 | |
---|
| 1324 | REAL ztenwb(klon, klev), zqenwb(klon, klev), zcond(klon) |
---|
| 1325 | REAL zttest, zqtest, zbuo, zmftop |
---|
| 1326 | LOGICAL llo2(klon) |
---|
| 1327 | INTEGER i, k, is, icall |
---|
| 1328 | ! ---------------------------------------------------------------------- |
---|
| 1329 | DO i = 1, klon |
---|
| 1330 | lddraf(i) = .FALSE. |
---|
| 1331 | kdtop(i) = klev + 1 |
---|
| 1332 | END DO |
---|
| 1333 | |
---|
| 1334 | ! ---------------------------------------------------------------------- |
---|
| 1335 | ! DETERMINE LEVEL OF FREE SINKING BY |
---|
| 1336 | ! DOING A SCAN FROM TOP TO BASE OF CUMULUS CLOUDS |
---|
| 1337 | |
---|
| 1338 | ! FOR EVERY POINT AND PROCEED AS FOLLOWS: |
---|
| 1339 | ! (1) DETEMINE WET BULB ENVIRONMENTAL T AND Q |
---|
| 1340 | ! (2) DO MIXING WITH CUMULUS CLOUD AIR |
---|
| 1341 | ! (3) CHECK FOR NEGATIVE BUOYANCY |
---|
| 1342 | |
---|
| 1343 | ! THE ASSUMPTION IS THAT AIR OF DOWNDRAFTS IS MIXTURE |
---|
| 1344 | ! OF 50% CLOUD AIR + 50% ENVIRONMENTAL AIR AT WET BULB |
---|
| 1345 | ! TEMPERATURE (I.E. WHICH BECAME SATURATED DUE TO |
---|
| 1346 | ! EVAPORATION OF RAIN AND CLOUD WATER) |
---|
| 1347 | ! ---------------------------------------------------------------------- |
---|
| 1348 | |
---|
| 1349 | DO k = 3, klev - 3 |
---|
| 1350 | |
---|
| 1351 | is = 0 |
---|
| 1352 | DO i = 1, klon |
---|
| 1353 | ztenwb(i, k) = ptenh(i, k) |
---|
| 1354 | zqenwb(i, k) = pqenh(i, k) |
---|
| 1355 | llo2(i) = ldcum(i) .AND. prfl(i) > 0. .AND. .NOT. lddraf(i) .AND. & |
---|
| 1356 | (k<kcbot(i) .AND. k>kctop(i)) |
---|
| 1357 | IF (llo2(i)) is = is + 1 |
---|
| 1358 | END DO |
---|
| 1359 | IF (is==0) GO TO 290 |
---|
| 1360 | |
---|
| 1361 | icall = 2 |
---|
| 1362 | CALL flxadjtq(paph(1,k), ztenwb(1,k), zqenwb(1,k), llo2, icall) |
---|
| 1363 | |
---|
| 1364 | ! ---------------------------------------------------------------------- |
---|
| 1365 | ! DO MIXING OF CUMULUS AND ENVIRONMENTAL AIR |
---|
| 1366 | ! AND CHECK FOR NEGATIVE BUOYANCY. |
---|
| 1367 | ! THEN SET VALUES FOR DOWNDRAFT AT LFS. |
---|
| 1368 | ! ---------------------------------------------------------------------- |
---|
| 1369 | DO i = 1, klon |
---|
[524] | 1370 | IF (llo2(i)) THEN |
---|
[1992] | 1371 | zttest = 0.5*(ptu(i,k)+ztenwb(i,k)) |
---|
| 1372 | zqtest = 0.5*(pqu(i,k)+zqenwb(i,k)) |
---|
| 1373 | zbuo = zttest*(1.+retv*zqtest) - ptenh(i, k)*(1.+retv*pqenh(i,k)) |
---|
| 1374 | zcond(i) = pqenh(i, k) - zqenwb(i, k) |
---|
| 1375 | zmftop = -cmfdeps*pmfub(i) |
---|
| 1376 | IF (zbuo<0. .AND. prfl(i)>10.*zmftop*zcond(i)) THEN |
---|
| 1377 | kdtop(i) = k |
---|
| 1378 | lddraf(i) = .TRUE. |
---|
| 1379 | ptd(i, k) = zttest |
---|
| 1380 | pqd(i, k) = zqtest |
---|
| 1381 | pmfd(i, k) = zmftop |
---|
| 1382 | pmfds(i, k) = pmfd(i, k)*(rcpd*ptd(i,k)+pgeoh(i,k)) |
---|
| 1383 | pmfdq(i, k) = pmfd(i, k)*pqd(i, k) |
---|
| 1384 | pdmfdp(i, k-1) = -0.5*pmfd(i, k)*zcond(i) |
---|
| 1385 | prfl(i) = prfl(i) + pdmfdp(i, k-1) |
---|
| 1386 | END IF |
---|
| 1387 | END IF |
---|
| 1388 | END DO |
---|
| 1389 | |
---|
| 1390 | 290 END DO |
---|
| 1391 | |
---|
| 1392 | RETURN |
---|
| 1393 | END SUBROUTINE flxdlfs |
---|
| 1394 | SUBROUTINE flxddraf(ptenh, pqenh, pgeoh, paph, prfl, ptd, pqd, pmfd, pmfds, & |
---|
| 1395 | pmfdq, pdmfdp, lddraf, pen_d, pde_d) |
---|
| 1396 | USE dimphy |
---|
| 1397 | IMPLICIT NONE |
---|
| 1398 | |
---|
| 1399 | ! ---------------------------------------------------------------------- |
---|
| 1400 | ! THIS ROUTINE CALCULATES CUMULUS DOWNDRAFT DESCENT |
---|
| 1401 | |
---|
| 1402 | ! TO PRODUCE THE VERTICAL PROFILES FOR CUMULUS DOWNDRAFTS |
---|
| 1403 | ! (I.E. T,Q,U AND V AND FLUXES) |
---|
| 1404 | |
---|
| 1405 | ! INPUT IS T,Q,P,PHI,U,V AT HALF LEVELS. |
---|
| 1406 | ! IT RETURNS FLUXES OF S,Q AND EVAPORATION RATE |
---|
| 1407 | ! AND U,V AT LEVELS WHERE DOWNDRAFT OCCURS |
---|
| 1408 | |
---|
| 1409 | ! CALCULATE MOIST DESCENT FOR ENTRAINING/DETRAINING PLUME BY |
---|
| 1410 | ! A) MOVING AIR DRY-ADIABATICALLY TO NEXT LEVEL BELOW AND |
---|
| 1411 | ! B) CORRECTING FOR EVAPORATION TO OBTAIN SATURATED STATE. |
---|
| 1412 | |
---|
| 1413 | ! ---------------------------------------------------------------------- |
---|
| 1414 | include "YOMCST.h" |
---|
| 1415 | include "YOETHF.h" |
---|
| 1416 | include "YOECUMF.h" |
---|
| 1417 | |
---|
| 1418 | REAL ptenh(klon, klev), pqenh(klon, klev) |
---|
| 1419 | REAL pgeoh(klon, klev), paph(klon, klev+1) |
---|
| 1420 | |
---|
| 1421 | REAL ptd(klon, klev), pqd(klon, klev) |
---|
| 1422 | REAL pmfd(klon, klev), pmfds(klon, klev), pmfdq(klon, klev) |
---|
| 1423 | REAL pdmfdp(klon, klev) |
---|
| 1424 | REAL prfl(klon) |
---|
| 1425 | LOGICAL lddraf(klon) |
---|
| 1426 | |
---|
| 1427 | REAL pen_d(klon, klev), pde_d(klon, klev), zcond(klon) |
---|
| 1428 | LOGICAL llo2(klon), llo1 |
---|
| 1429 | INTEGER i, k, is, icall, itopde |
---|
| 1430 | REAL zentr, zseen, zqeen, zsdde, zqdde, zmfdsk, zmfdqk, zdmfdp |
---|
| 1431 | REAL zbuo |
---|
| 1432 | ! ---------------------------------------------------------------------- |
---|
| 1433 | ! CALCULATE MOIST DESCENT FOR CUMULUS DOWNDRAFT BY |
---|
| 1434 | ! (A) CALCULATING ENTRAINMENT RATES, ASSUMING |
---|
| 1435 | ! LINEAR DECREASE OF MASSFLUX IN PBL |
---|
| 1436 | ! (B) DOING MOIST DESCENT - EVAPORATIVE COOLING |
---|
| 1437 | ! AND MOISTENING IS CALCULATED IN *flxadjtq* |
---|
| 1438 | ! (C) CHECKING FOR NEGATIVE BUOYANCY AND |
---|
| 1439 | ! SPECIFYING FINAL T,Q,U,V AND DOWNWARD FLUXES |
---|
| 1440 | |
---|
| 1441 | DO k = 3, klev |
---|
| 1442 | |
---|
| 1443 | is = 0 |
---|
| 1444 | DO i = 1, klon |
---|
| 1445 | llo2(i) = lddraf(i) .AND. pmfd(i, k-1) < 0. |
---|
| 1446 | IF (llo2(i)) is = is + 1 |
---|
| 1447 | END DO |
---|
| 1448 | IF (is==0) GO TO 180 |
---|
| 1449 | |
---|
| 1450 | DO i = 1, klon |
---|
[524] | 1451 | IF (llo2(i)) THEN |
---|
[1992] | 1452 | zentr = entrdd*pmfd(i, k-1)*rd*ptenh(i, k-1)/(rg*paph(i,k-1))* & |
---|
| 1453 | (paph(i,k)-paph(i,k-1)) |
---|
| 1454 | pen_d(i, k) = zentr |
---|
| 1455 | pde_d(i, k) = zentr |
---|
| 1456 | END IF |
---|
| 1457 | END DO |
---|
| 1458 | |
---|
| 1459 | itopde = klev - 2 |
---|
| 1460 | IF (k>itopde) THEN |
---|
[524] | 1461 | DO i = 1, klon |
---|
[1992] | 1462 | IF (llo2(i)) THEN |
---|
| 1463 | pen_d(i, k) = 0. |
---|
| 1464 | pde_d(i, k) = pmfd(i, itopde)*(paph(i,k)-paph(i,k-1))/ & |
---|
| 1465 | (paph(i,klev+1)-paph(i,itopde)) |
---|
| 1466 | END IF |
---|
| 1467 | END DO |
---|
| 1468 | END IF |
---|
| 1469 | |
---|
| 1470 | DO i = 1, klon |
---|
[524] | 1471 | IF (llo2(i)) THEN |
---|
[1992] | 1472 | pmfd(i, k) = pmfd(i, k-1) + pen_d(i, k) - pde_d(i, k) |
---|
| 1473 | zseen = (rcpd*ptenh(i,k-1)+pgeoh(i,k-1))*pen_d(i, k) |
---|
| 1474 | zqeen = pqenh(i, k-1)*pen_d(i, k) |
---|
| 1475 | zsdde = (rcpd*ptd(i,k-1)+pgeoh(i,k-1))*pde_d(i, k) |
---|
| 1476 | zqdde = pqd(i, k-1)*pde_d(i, k) |
---|
| 1477 | zmfdsk = pmfds(i, k-1) + zseen - zsdde |
---|
| 1478 | zmfdqk = pmfdq(i, k-1) + zqeen - zqdde |
---|
| 1479 | pqd(i, k) = zmfdqk*(1./min(-cmfcmin,pmfd(i,k))) |
---|
| 1480 | ptd(i, k) = (zmfdsk*(1./min(-cmfcmin,pmfd(i,k)))-pgeoh(i,k))/rcpd |
---|
| 1481 | ptd(i, k) = min(400., ptd(i,k)) |
---|
| 1482 | ptd(i, k) = max(100., ptd(i,k)) |
---|
| 1483 | zcond(i) = pqd(i, k) |
---|
| 1484 | END IF |
---|
| 1485 | END DO |
---|
| 1486 | |
---|
| 1487 | icall = 2 |
---|
| 1488 | CALL flxadjtq(paph(1,k), ptd(1,k), pqd(1,k), llo2, icall) |
---|
| 1489 | |
---|
| 1490 | DO i = 1, klon |
---|
[524] | 1491 | IF (llo2(i)) THEN |
---|
[1992] | 1492 | zcond(i) = zcond(i) - pqd(i, k) |
---|
| 1493 | zbuo = ptd(i, k)*(1.+retv*pqd(i,k)) - ptenh(i, k)*(1.+retv*pqenh(i,k) & |
---|
| 1494 | ) |
---|
| 1495 | llo1 = zbuo < 0. .AND. (prfl(i)-pmfd(i,k)*zcond(i)>0.) |
---|
| 1496 | IF (.NOT. llo1) pmfd(i, k) = 0.0 |
---|
| 1497 | pmfds(i, k) = (rcpd*ptd(i,k)+pgeoh(i,k))*pmfd(i, k) |
---|
| 1498 | pmfdq(i, k) = pqd(i, k)*pmfd(i, k) |
---|
| 1499 | zdmfdp = -pmfd(i, k)*zcond(i) |
---|
| 1500 | pdmfdp(i, k-1) = zdmfdp |
---|
| 1501 | prfl(i) = prfl(i) + zdmfdp |
---|
| 1502 | END IF |
---|
| 1503 | END DO |
---|
[524] | 1504 | |
---|
[1992] | 1505 | 180 END DO |
---|
| 1506 | RETURN |
---|
| 1507 | END SUBROUTINE flxddraf |
---|
| 1508 | SUBROUTINE flxadjtq(pp, pt, pq, ldflag, kcall) |
---|
| 1509 | USE dimphy |
---|
| 1510 | IMPLICIT NONE |
---|
| 1511 | ! ====================================================================== |
---|
| 1512 | ! Objet: ajustement entre T et Q |
---|
| 1513 | ! ====================================================================== |
---|
| 1514 | ! NOTE: INPUT PARAMETER kcall DEFINES CALCULATION AS |
---|
| 1515 | ! kcall=0 ENV. T AND QS IN*CUINI* |
---|
| 1516 | ! kcall=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
---|
| 1517 | ! kcall=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
---|
[524] | 1518 | |
---|
[1992] | 1519 | include "YOMCST.h" |
---|
| 1520 | |
---|
| 1521 | REAL pt(klon), pq(klon), pp(klon) |
---|
| 1522 | LOGICAL ldflag(klon) |
---|
| 1523 | INTEGER kcall |
---|
| 1524 | |
---|
| 1525 | REAL zcond(klon), zcond1 |
---|
| 1526 | REAL z5alvcp, z5alscp, zalvdcp, zalsdcp |
---|
| 1527 | REAL zdelta, zcvm5, zldcp, zqsat, zcor |
---|
| 1528 | INTEGER is, i |
---|
| 1529 | include "YOETHF.h" |
---|
| 1530 | include "FCTTRE.h" |
---|
| 1531 | |
---|
| 1532 | z5alvcp = r5les*rlvtt/rcpd |
---|
| 1533 | z5alscp = r5ies*rlstt/rcpd |
---|
| 1534 | zalvdcp = rlvtt/rcpd |
---|
| 1535 | zalsdcp = rlstt/rcpd |
---|
| 1536 | |
---|
| 1537 | |
---|
| 1538 | DO i = 1, klon |
---|
| 1539 | zcond(i) = 0.0 |
---|
| 1540 | END DO |
---|
| 1541 | |
---|
| 1542 | DO i = 1, klon |
---|
| 1543 | IF (ldflag(i)) THEN |
---|
| 1544 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1545 | zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
---|
| 1546 | zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
---|
| 1547 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1548 | zqsat = min(0.5, zqsat) |
---|
| 1549 | zcor = 1./(1.-retv*zqsat) |
---|
| 1550 | zqsat = zqsat*zcor |
---|
| 1551 | zcond(i) = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
---|
| 1552 | IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
---|
| 1553 | IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
---|
| 1554 | pt(i) = pt(i) + zldcp*zcond(i) |
---|
| 1555 | pq(i) = pq(i) - zcond(i) |
---|
| 1556 | END IF |
---|
| 1557 | END DO |
---|
| 1558 | |
---|
| 1559 | is = 0 |
---|
| 1560 | DO i = 1, klon |
---|
| 1561 | IF (zcond(i)/=0.) is = is + 1 |
---|
| 1562 | END DO |
---|
| 1563 | IF (is==0) GO TO 230 |
---|
| 1564 | |
---|
| 1565 | DO i = 1, klon |
---|
| 1566 | IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
---|
| 1567 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1568 | zcvm5 = z5alvcp*(1.-zdelta) + zdelta*z5alscp |
---|
| 1569 | zldcp = zalvdcp*(1.-zdelta) + zdelta*zalsdcp |
---|
| 1570 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1571 | zqsat = min(0.5, zqsat) |
---|
| 1572 | zcor = 1./(1.-retv*zqsat) |
---|
| 1573 | zqsat = zqsat*zcor |
---|
| 1574 | zcond1 = (pq(i)-zqsat)/(1.+foede(pt(i),zdelta,zcvm5,zqsat,zcor)) |
---|
| 1575 | pt(i) = pt(i) + zldcp*zcond1 |
---|
| 1576 | pq(i) = pq(i) - zcond1 |
---|
| 1577 | END IF |
---|
| 1578 | END DO |
---|
| 1579 | |
---|
| 1580 | 230 CONTINUE |
---|
| 1581 | RETURN |
---|
| 1582 | END SUBROUTINE flxadjtq |
---|
| 1583 | SUBROUTINE flxsetup |
---|
| 1584 | IMPLICIT NONE |
---|
| 1585 | |
---|
| 1586 | ! THIS ROUTINE DEFINES DISPOSABLE PARAMETERS FOR MASSFLUX SCHEME |
---|
| 1587 | |
---|
| 1588 | include "YOECUMF.h" |
---|
| 1589 | |
---|
| 1590 | entrpen = 1.0E-4 ! ENTRAINMENT RATE FOR PENETRATIVE CONVECTION |
---|
| 1591 | entrscv = 3.0E-4 ! ENTRAINMENT RATE FOR SHALLOW CONVECTION |
---|
| 1592 | entrmid = 1.0E-4 ! ENTRAINMENT RATE FOR MIDLEVEL CONVECTION |
---|
| 1593 | entrdd = 2.0E-4 ! ENTRAINMENT RATE FOR DOWNDRAFTS |
---|
| 1594 | cmfctop = 0.33 ! RELATIVE CLOUD MASSFLUX AT LEVEL ABOVE NONBUO LEVEL |
---|
| 1595 | cmfcmax = 1.0 ! MAXIMUM MASSFLUX VALUE ALLOWED FOR UPDRAFTS ETC |
---|
| 1596 | cmfcmin = 1.E-10 ! MINIMUM MASSFLUX VALUE (FOR SAFETY) |
---|
| 1597 | cmfdeps = 0.3 ! FRACTIONAL MASSFLUX FOR DOWNDRAFTS AT LFS |
---|
| 1598 | cprcon = 2.0E-4 ! CONVERSION FROM CLOUD WATER TO RAIN |
---|
| 1599 | rhcdd = 1. ! RELATIVE SATURATION IN DOWNDRAFRS (NO LONGER USED) |
---|
| 1600 | ! (FORMULATION IMPLIES SATURATION) |
---|
| 1601 | lmfpen = .TRUE. |
---|
| 1602 | lmfscv = .TRUE. |
---|
| 1603 | lmfmid = .TRUE. |
---|
| 1604 | lmfdd = .TRUE. |
---|
| 1605 | lmfdudv = .TRUE. |
---|
| 1606 | |
---|
| 1607 | RETURN |
---|
| 1608 | END SUBROUTINE flxsetup |
---|