source: LMDZ5/branches/LMDZ5_AR5/libf/phylmd/radlwsw.F90 @ 1634

Last change on this file since 1634 was 1279, checked in by Laurent Fairhead, 15 years ago

Merged LMDZ4-dev branch changes r1241:1278 into the trunk
Running trunk and LMDZ4-dev in LMDZOR configuration on local
machine (sequential) and SX8 (4-proc) yields identical results
(restart and restartphy are identical binarily)
Log history from r1241 to r1278 is available by switching to
source:LMDZ4/branches/LMDZ4-dev-20091210

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 17.7 KB
Line 
1module radlwsw_m
2
3  IMPLICIT NONE
4
5contains
6
7SUBROUTINE radlwsw( &
8   dist, rmu0, fract, &
9   paprs, pplay,tsol,alb1, alb2, &
10   t,q,wo,&
11   cldfra, cldemi, cldtaupd,&
12   ok_ade, ok_aie,&
13   tau_aero, piz_aero, cg_aero,&
14   cldtaupi, new_aod, &
15   qsat, flwc, fiwc, &
16   heat,heat0,cool,cool0,radsol,albpla,&
17   topsw,toplw,solsw,sollw,&
18   sollwdown,&
19   topsw0,toplw0,solsw0,sollw0,&
20   lwdn0, lwdn, lwup0, lwup,&
21   swdn0, swdn, swup0, swup,&
22   topswad_aero, solswad_aero,&
23   topswai_aero, solswai_aero, &
24   topswad0_aero, solswad0_aero,&
25   topsw_aero, topsw0_aero,&
26   solsw_aero, solsw0_aero, &
27   topswcf_aero, solswcf_aero)
28
29
30
31  USE DIMPHY
32  use assert_m, only: assert
33
34  !======================================================================
35  ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719
36  ! Objet: interface entre le modele et les rayonnements
37  ! Arguments:
38  ! dist-----input-R- distance astronomique terre-soleil
39  ! rmu0-----input-R- cosinus de l'angle zenithal
40  ! fract----input-R- duree d'ensoleillement normalisee
41  ! co2_ppm--input-R- concentration du gaz carbonique (en ppm)
42  ! paprs----input-R- pression a inter-couche (Pa)
43  ! pplay----input-R- pression au milieu de couche (Pa)
44  ! tsol-----input-R- temperature du sol (en K)
45  ! alb1-----input-R- albedo du sol(entre 0 et 1) dans l'interval visible
46  ! alb2-----input-R- albedo du sol(entre 0 et 1) dans l'interval proche infra-rouge   
47  ! t--------input-R- temperature (K)
48  ! q--------input-R- vapeur d'eau (en kg/kg)
49  ! cldfra---input-R- fraction nuageuse (entre 0 et 1)
50  ! cldtaupd---input-R- epaisseur optique des nuages dans le visible (present-day value)
51  ! cldemi---input-R- emissivite des nuages dans l'IR (entre 0 et 1)
52  ! ok_ade---input-L- apply the Aerosol Direct Effect or not?
53  ! ok_aie---input-L- apply the Aerosol Indirect Effect or not?
54  ! tau_ae, piz_ae, cg_ae-input-R- aerosol optical properties (calculated in aeropt.F)
55  ! cldtaupi-input-R- epaisseur optique des nuages dans le visible
56  !                   calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller
57  !                   droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd
58  !                   it is needed for the diagnostics of the aerosol indirect radiative forcing     
59  !
60  ! heat-----output-R- echauffement atmospherique (visible) (K/jour)
61  ! cool-----output-R- refroidissement dans l'IR (K/jour)
62  ! radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas)
63  ! albpla---output-R- albedo planetaire (entre 0 et 1)
64  ! topsw----output-R- flux solaire net au sommet de l'atm.
65  ! toplw----output-R- ray. IR montant au sommet de l'atmosphere
66  ! solsw----output-R- flux solaire net a la surface
67  ! sollw----output-R- ray. IR montant a la surface
68  ! solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir)
69  ! topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir)
70  ! solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind)
71  ! topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind)
72  !
73  ! ATTENTION: swai and swad have to be interpreted in the following manner:
74  ! ---------
75  ! ok_ade=F & ok_aie=F -both are zero
76  ! ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad
77  !                        indirect is zero
78  ! ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai
79  !                        direct is zero
80  ! ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai
81  !                        aerosol direct forcing is F_{AD} = topswai-topswad
82  !
83 
84  !======================================================================
85 
86  ! ====================================================================
87  ! Adapte au modele de chimie INCA par Celine Deandreis & Anne Cozic -- 2009
88  ! 1 = ZERO   
89  ! 2 = AER total   
90  ! 3 = NAT   
91  ! 4 = BC   
92  ! 5 = SO4   
93  ! 6 = POM   
94  ! 7 = DUST   
95  ! 8 = SS   
96  ! 9 = NO3   
97  !
98  ! ====================================================================
99  include "YOETHF.h"
100  include "YOMCST.h"
101  include "clesphys.h"
102  include "iniprint.h"
103
104! Input arguments
105  REAL,    INTENT(in)  :: dist
106  REAL,    INTENT(in)  :: rmu0(KLON), fract(KLON)
107  REAL,    INTENT(in)  :: paprs(KLON,KLEV+1), pplay(KLON,KLEV)
108  REAL,    INTENT(in)  :: alb1(KLON), alb2(KLON), tsol(KLON)
109  REAL,    INTENT(in)  :: t(KLON,KLEV), q(KLON,KLEV)
110
111  REAL, INTENT(in):: wo(:, :, :) ! dimension(KLON,KLEV, 1 or 2)
112  ! column-density of ozone in a layer, in kilo-Dobsons
113  ! "wo(:, :, 1)" is for the average day-night field,
114  ! "wo(:, :, 2)" is for daylight time.
115
116  LOGICAL, INTENT(in)  :: ok_ade, ok_aie                                 ! switches whether to use aerosol direct (indirect) effects or not
117  REAL,    INTENT(in)  :: cldfra(KLON,KLEV), cldemi(KLON,KLEV), cldtaupd(KLON,KLEV)
118  REAL,    INTENT(in)  :: tau_aero(KLON,KLEV,9,2)                        ! aerosol optical properties (see aeropt.F)
119  REAL,    INTENT(in)  :: piz_aero(KLON,KLEV,9,2)                        ! aerosol optical properties (see aeropt.F)
120  REAL,    INTENT(in)  :: cg_aero(KLON,KLEV,9,2)                         ! aerosol optical properties (see aeropt.F)
121  REAL,    INTENT(in)  :: cldtaupi(KLON,KLEV)                            ! cloud optical thickness for pre-industrial aerosol concentrations
122  LOGICAL, INTENT(in)  :: new_aod                                        ! flag pour retrouver les resultats exacts de l'AR4 dans le cas ou l'on ne travaille qu'avec les sulfates
123  REAL,    INTENT(in)  :: qsat(klon,klev) ! Variable pour iflag_rrtm=1
124  REAL,    INTENT(in)  :: flwc(klon,klev) ! Variable pour iflag_rrtm=1
125  REAL,    INTENT(in)  :: fiwc(klon,klev) ! Variable pour iflag_rrtm=1
126
127! Output arguments
128  REAL,    INTENT(out) :: heat(KLON,KLEV), cool(KLON,KLEV)
129  REAL,    INTENT(out) :: heat0(KLON,KLEV), cool0(KLON,KLEV)
130  REAL,    INTENT(out) :: radsol(KLON), topsw(KLON), toplw(KLON)
131  REAL,    INTENT(out) :: solsw(KLON), sollw(KLON), albpla(KLON)
132  REAL,    INTENT(out) :: topsw0(KLON), toplw0(KLON), solsw0(KLON), sollw0(KLON)
133  REAL,    INTENT(out) :: sollwdown(KLON)
134  REAL,    INTENT(out) :: swdn(KLON,kflev+1),swdn0(KLON,kflev+1)
135  REAL,    INTENT(out) :: swup(KLON,kflev+1),swup0(KLON,kflev+1)
136  REAL,    INTENT(out) :: lwdn(KLON,kflev+1),lwdn0(KLON,kflev+1)
137  REAL,    INTENT(out) :: lwup(KLON,kflev+1),lwup0(KLON,kflev+1)
138  REAL,    INTENT(out) :: topswad_aero(KLON), solswad_aero(KLON)         ! output: aerosol direct forcing at TOA and surface
139  REAL,    INTENT(out) :: topswai_aero(KLON), solswai_aero(KLON)         ! output: aerosol indirect forcing atTOA and surface
140  REAL, DIMENSION(klon), INTENT(out)    :: topswad0_aero
141  REAL, DIMENSION(klon), INTENT(out)    :: solswad0_aero
142  REAL, DIMENSION(kdlon,9), INTENT(out) :: topsw_aero
143  REAL, DIMENSION(kdlon,9), INTENT(out) :: topsw0_aero
144  REAL, DIMENSION(kdlon,9), INTENT(out) :: solsw_aero
145  REAL, DIMENSION(kdlon,9), INTENT(out) :: solsw0_aero
146  REAL, DIMENSION(kdlon,3), INTENT(out) :: topswcf_aero
147  REAL, DIMENSION(kdlon,3), INTENT(out) :: solswcf_aero
148
149! Local variables
150  REAL(KIND=8) ZFSUP(KDLON,KFLEV+1)
151  REAL(KIND=8) ZFSDN(KDLON,KFLEV+1)
152  REAL(KIND=8) ZFSUP0(KDLON,KFLEV+1)
153  REAL(KIND=8) ZFSDN0(KDLON,KFLEV+1)
154  REAL(KIND=8) ZFLUP(KDLON,KFLEV+1)
155  REAL(KIND=8) ZFLDN(KDLON,KFLEV+1)
156  REAL(KIND=8) ZFLUP0(KDLON,KFLEV+1)
157  REAL(KIND=8) ZFLDN0(KDLON,KFLEV+1)
158  REAL(KIND=8) zx_alpha1, zx_alpha2
159  INTEGER k, kk, i, j, iof, nb_gr
160  REAL(KIND=8) PSCT
161  REAL(KIND=8) PALBD(kdlon,2), PALBP(kdlon,2)
162  REAL(KIND=8) PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon)
163  REAL(KIND=8) PPSOL(kdlon), PDP(kdlon,KLEV)
164  REAL(KIND=8) PTL(kdlon,kflev+1), PPMB(kdlon,kflev+1)
165  REAL(KIND=8) PTAVE(kdlon,kflev)
166  REAL(KIND=8) PWV(kdlon,kflev), PQS(kdlon,kflev)
167
168  real(kind=8) POZON(kdlon, kflev, size(wo, 3)) ! mass fraction of ozone
169  ! "POZON(:, :, 1)" is for the average day-night field,
170  ! "POZON(:, :, 2)" is for daylight time.
171
172  REAL(KIND=8) PAER(kdlon,kflev,5)
173  REAL(KIND=8) PCLDLD(kdlon,kflev)
174  REAL(KIND=8) PCLDLU(kdlon,kflev)
175  REAL(KIND=8) PCLDSW(kdlon,kflev)
176  REAL(KIND=8) PTAU(kdlon,2,kflev)
177  REAL(KIND=8) POMEGA(kdlon,2,kflev)
178  REAL(KIND=8) PCG(kdlon,2,kflev)
179  REAL(KIND=8) zfract(kdlon), zrmu0(kdlon), zdist
180  REAL(KIND=8) zheat(kdlon,kflev), zcool(kdlon,kflev)
181  REAL(KIND=8) zheat0(kdlon,kflev), zcool0(kdlon,kflev)
182  REAL(KIND=8) ztopsw(kdlon), ztoplw(kdlon)
183  REAL(KIND=8) zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon)
184  REAL(KIND=8) zsollwdown(kdlon)
185  REAL(KIND=8) ztopsw0(kdlon), ztoplw0(kdlon)
186  REAL(KIND=8) zsolsw0(kdlon), zsollw0(kdlon)
187  REAL(KIND=8) zznormcp
188  REAL(KIND=8) tauaero(kdlon,kflev,9,2)                     ! aer opt properties
189  REAL(KIND=8) pizaero(kdlon,kflev,9,2)
190  REAL(KIND=8) cgaero(kdlon,kflev,9,2)
191  REAL(KIND=8) PTAUA(kdlon,2,kflev)                         ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use
192  REAL(KIND=8) POMEGAA(kdlon,2,kflev)                       ! dito for single scatt albedo
193  REAL(KIND=8) ztopswadaero(kdlon), zsolswadaero(kdlon)     ! Aerosol direct forcing at TOAand surface
194  REAL(KIND=8) ztopswad0aero(kdlon), zsolswad0aero(kdlon)   ! Aerosol direct forcing at TOAand surface
195  REAL(KIND=8) ztopswaiaero(kdlon), zsolswaiaero(kdlon)     ! dito, indirect
196  REAL(KIND=8) ztopsw_aero(kdlon,9), ztopsw0_aero(kdlon,9)
197  REAL(KIND=8) zsolsw_aero(kdlon,9), zsolsw0_aero(kdlon,9)
198  REAL(KIND=8) ztopswcf_aero(kdlon,3), zsolswcf_aero(kdlon,3)     
199  real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
200
201  call assert(size(wo, 1) == klon, size(wo, 2) == klev, "radlwsw wo")
202  ! initialisation
203  tauaero(:,:,:,:)=0.
204  pizaero(:,:,:,:)=0.
205  cgaero(:,:,:,:)=0.
206 
207  !
208  !-------------------------------------------
209  nb_gr = KLON / kdlon
210  IF (nb_gr*kdlon .NE. KLON) THEN
211      PRINT*, "kdlon mauvais:", KLON, kdlon, nb_gr
212      CALL abort
213  ENDIF
214  IF (kflev .NE. KLEV) THEN
215      PRINT*, "kflev differe de KLEV, kflev, KLEV"
216      CALL abort
217  ENDIF
218  !-------------------------------------------
219  DO k = 1, KLEV
220    DO i = 1, KLON
221      heat(i,k)=0.
222      cool(i,k)=0.
223      heat0(i,k)=0.
224      cool0(i,k)=0.
225    ENDDO
226  ENDDO
227  !
228  zdist = dist
229  !
230  PSCT = solaire/zdist/zdist
231  DO j = 1, nb_gr
232    iof = kdlon*(j-1)
233    DO i = 1, kdlon
234      zfract(i) = fract(iof+i)
235      zrmu0(i) = rmu0(iof+i)
236      PALBD(i,1) = alb1(iof+i)
237      PALBD(i,2) = alb2(iof+i)
238      PALBP(i,1) = alb1(iof+i)
239      PALBP(i,2) = alb2(iof+i)
240      PEMIS(i) = 1.0
241      PVIEW(i) = 1.66
242      PPSOL(i) = paprs(iof+i,1)
243      zx_alpha1 = (paprs(iof+i,1)-pplay(iof+i,2))/(pplay(iof+i,1)-pplay(iof+i,2))
244      zx_alpha2 = 1.0 - zx_alpha1
245      PTL(i,1) = t(iof+i,1) * zx_alpha1 + t(iof+i,2) * zx_alpha2
246      PTL(i,KLEV+1) = t(iof+i,KLEV)
247      PDT0(i) = tsol(iof+i) - PTL(i,1)
248    ENDDO
249    DO k = 2, kflev
250      DO i = 1, kdlon
251        PTL(i,k) = (t(iof+i,k)+t(iof+i,k-1))*0.5
252      ENDDO
253    ENDDO
254    DO k = 1, kflev
255      DO i = 1, kdlon
256        PDP(i,k) = paprs(iof+i,k)-paprs(iof+i,k+1)
257        PTAVE(i,k) = t(iof+i,k)
258        PWV(i,k) = MAX (q(iof+i,k), 1.0e-12)
259        PQS(i,k) = PWV(i,k)
260        POZON(i,k, :) = wo(iof+i, k, :) * RG * dobson_u * 1e3 &
261             / (paprs(iof+i, k) - paprs(iof+i, k+1))
262        PCLDLD(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k)
263        PCLDLU(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k)
264        PCLDSW(i,k) = cldfra(iof+i,k)
265        PTAU(i,1,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! 1e-12 serait instable
266        PTAU(i,2,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! pour 32-bit machines
267        POMEGA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i,1,k))
268        POMEGA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i,2,k))
269        PCG(i,1,k) = 0.865
270        PCG(i,2,k) = 0.910
271        !-
272        ! Introduced for aerosol indirect forcings.
273        ! The following values use the cloud optical thickness calculated from
274        ! present-day aerosol concentrations whereas the quantities without the
275        ! "A" at the end are for pre-industial (natural-only) aerosol concentrations
276        !
277        PTAUA(i,1,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! 1e-12 serait instable
278        PTAUA(i,2,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! pour 32-bit machines
279        POMEGAA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i,1,k))
280        POMEGAA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i,2,k))
281      ENDDO
282    ENDDO
283    !
284    DO k = 1, kflev+1
285      DO i = 1, kdlon
286        PPMB(i,k) = paprs(iof+i,k)/100.0
287      ENDDO
288    ENDDO
289    !
290    DO kk = 1, 5
291      DO k = 1, kflev
292        DO i = 1, kdlon
293          PAER(i,k,kk) = 1.0E-15
294        ENDDO
295      ENDDO
296    ENDDO
297    DO k = 1, kflev
298      DO i = 1, kdlon
299        tauaero(i,k,:,1)=tau_aero(iof+i,k,:,1)
300        pizaero(i,k,:,1)=piz_aero(iof+i,k,:,1)
301        cgaero(i,k,:,1) =cg_aero(iof+i,k,:,1)
302        tauaero(i,k,:,2)=tau_aero(iof+i,k,:,2)
303        pizaero(i,k,:,2)=piz_aero(iof+i,k,:,2)
304        cgaero(i,k,:,2) =cg_aero(iof+i,k,:,2)
305      ENDDO
306    ENDDO
307
308!
309!===== iflag_rrtm ================================================
310!     
311    IF (iflag_rrtm == 0) THEN
312       ! Old radiation scheme, used for AR4 runs
313       ! average day-night ozone for longwave
314       CALL LW_LMDAR4(&
315            PPMB, PDP,&
316            PPSOL,PDT0,PEMIS,&
317            PTL, PTAVE, PWV, POZON(:, :, 1), PAER,&
318            PCLDLD,PCLDLU,&
319            PVIEW,&
320            zcool, zcool0,&
321            ztoplw,zsollw,ztoplw0,zsollw0,&
322            zsollwdown,&
323            ZFLUP, ZFLDN, ZFLUP0,ZFLDN0)
324
325       ! daylight ozone, if we have it, for short wave
326       IF (.NOT. new_aod) THEN
327          ! use old version
328          CALL SW_LMDAR4(PSCT, zrmu0, zfract,&
329               PPMB, PDP, &
330               PPSOL, PALBD, PALBP,&
331               PTAVE, PWV, PQS, POZON(:, :, size(wo, 3)), PAER,&
332               PCLDSW, PTAU, POMEGA, PCG,&
333               zheat, zheat0,&
334               zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0,&
335               ZFSUP,ZFSDN,ZFSUP0,ZFSDN0,&
336               tau_aero(:,:,5,:), piz_aero(:,:,5,:), cg_aero(:,:,5,:),&
337               PTAUA, POMEGAA,&
338               ztopswadaero,zsolswadaero,&
339               ztopswaiaero,zsolswaiaero,&
340               ok_ade, ok_aie)
341         
342       ELSE ! new_aod=T         
343          CALL SW_AEROAR4(PSCT, zrmu0, zfract,&
344               PPMB, PDP,&
345               PPSOL, PALBD, PALBP,&
346               PTAVE, PWV, PQS, POZON(:, :, size(wo, 3)), PAER,&
347               PCLDSW, PTAU, POMEGA, PCG,&
348               zheat, zheat0,&
349               zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0,&
350               ZFSUP,ZFSDN,ZFSUP0,ZFSDN0,&
351               tauaero, pizaero, cgaero, &
352               PTAUA, POMEGAA,&
353               ztopswadaero,zsolswadaero,&
354               ztopswad0aero,zsolswad0aero,&
355               ztopswaiaero,zsolswaiaero, &
356               ztopsw_aero,ztopsw0_aero,&
357               zsolsw_aero,zsolsw0_aero,&
358               ztopswcf_aero,zsolswcf_aero, &
359               ok_ade, ok_aie)
360         
361       ENDIF
362
363    ELSE 
364!===== iflag_rrtm=1, on passe dans SW via RECMWFL ===============
365       WRITE(lunout,*) "Option iflag_rrtm=T ne fonctionne pas encore !!!"
366       CALL abort_gcm('radlwsw','iflag_rrtm=T not valid',1)
367
368    ENDIF ! iflag_rrtm
369!======================================================================
370
371    DO i = 1, kdlon
372      radsol(iof+i) = zsolsw(i) + zsollw(i)
373      topsw(iof+i) = ztopsw(i)
374      toplw(iof+i) = ztoplw(i)
375      solsw(iof+i) = zsolsw(i)
376      sollw(iof+i) = zsollw(i)
377      sollwdown(iof+i) = zsollwdown(i)
378      DO k = 1, kflev+1
379        lwdn0 ( iof+i,k)   = ZFLDN0 ( i,k)
380        lwdn  ( iof+i,k)   = ZFLDN  ( i,k)
381        lwup0 ( iof+i,k)   = ZFLUP0 ( i,k)
382        lwup  ( iof+i,k)   = ZFLUP  ( i,k)
383      ENDDO
384      topsw0(iof+i) = ztopsw0(i)
385      toplw0(iof+i) = ztoplw0(i)
386      solsw0(iof+i) = zsolsw0(i)
387      sollw0(iof+i) = zsollw0(i)
388      albpla(iof+i) = zalbpla(i)
389
390      DO k = 1, kflev+1
391        swdn0 ( iof+i,k)   = ZFSDN0 ( i,k)
392        swdn  ( iof+i,k)   = ZFSDN  ( i,k)
393        swup0 ( iof+i,k)   = ZFSUP0 ( i,k)
394        swup  ( iof+i,k)   = ZFSUP  ( i,k)
395      ENDDO
396    ENDDO
397    !-transform the aerosol forcings, if they have
398    ! to be calculated
399    IF (ok_ade) THEN
400        DO i = 1, kdlon
401          topswad_aero(iof+i) = ztopswadaero(i)
402          topswad0_aero(iof+i) = ztopswad0aero(i)
403          solswad_aero(iof+i) = zsolswadaero(i)
404          solswad0_aero(iof+i) = zsolswad0aero(i)
405! MS the following lines seem to be wrong, why is iof on right hand side???
406!          topsw_aero(iof+i,:) = ztopsw_aero(iof+i,:)
407!          topsw0_aero(iof+i,:) = ztopsw0_aero(iof+i,:)
408!          solsw_aero(iof+i,:) = zsolsw_aero(iof+i,:)
409!          solsw0_aero(iof+i,:) = zsolsw0_aero(iof+i,:)
410          topsw_aero(iof+i,:) = ztopsw_aero(i,:)
411          topsw0_aero(iof+i,:) = ztopsw0_aero(i,:)
412          solsw_aero(iof+i,:) = zsolsw_aero(i,:)
413          solsw0_aero(iof+i,:) = zsolsw0_aero(i,:)
414          topswcf_aero(iof+i,:) = ztopswcf_aero(i,:)
415          solswcf_aero(iof+i,:) = zsolswcf_aero(i,:)         
416        ENDDO
417    ELSE
418        DO i = 1, kdlon
419          topswad_aero(iof+i) = 0.0
420          solswad_aero(iof+i) = 0.0
421          topswad0_aero(iof+i) = 0.0
422          solswad0_aero(iof+i) = 0.0
423          topsw_aero(iof+i,:) = 0.
424          topsw0_aero(iof+i,:) =0.
425          solsw_aero(iof+i,:) = 0.
426          solsw0_aero(iof+i,:) = 0.
427        ENDDO
428    ENDIF
429    IF (ok_aie) THEN
430        DO i = 1, kdlon
431          topswai_aero(iof+i) = ztopswaiaero(i)
432          solswai_aero(iof+i) = zsolswaiaero(i)
433        ENDDO
434    ELSE
435        DO i = 1, kdlon
436          topswai_aero(iof+i) = 0.0
437          solswai_aero(iof+i) = 0.0
438        ENDDO
439    ENDIF
440    DO k = 1, kflev
441      DO i = 1, kdlon
442        !        scale factor to take into account the difference between
443        !        dry air and watter vapour scpecifi! heat capacity
444        zznormcp=1.0+RVTMP2*PWV(i,k)
445        heat(iof+i,k) = zheat(i,k)/zznormcp
446        cool(iof+i,k) = zcool(i,k)/zznormcp
447        heat0(iof+i,k) = zheat0(i,k)/zznormcp
448        cool0(iof+i,k) = zcool0(i,k)/zznormcp
449      ENDDO
450    ENDDO
451
452 ENDDO ! j = 1, nb_gr
453
454END SUBROUTINE radlwsw
455
456end module radlwsw_m
Note: See TracBrowser for help on using the repository browser.