[3331] | 1 | module eq_regions_mod |
---|
| 2 | ! |
---|
| 3 | ! Purpose. |
---|
| 4 | ! -------- |
---|
| 5 | ! eq_regions_mod provides the code to perform a high level |
---|
| 6 | ! partitioning of the surface of a sphere into regions of |
---|
| 7 | ! equal area and small diameter. |
---|
| 8 | ! the type. |
---|
| 9 | ! |
---|
| 10 | ! Background. |
---|
| 11 | ! ----------- |
---|
| 12 | ! This Fortran version of eq_regions is a much cut down version of the |
---|
| 13 | ! "Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox" of the |
---|
| 14 | ! same name developed by Paul Leopardi at the University of New South Wales. |
---|
| 15 | ! This version has been coded specifically for the case of partitioning the |
---|
| 16 | ! surface of a sphere or S^dim (where dim=2) as denoted in the original code. |
---|
| 17 | ! Only a subset of the original eq_regions package has been coded to determine |
---|
| 18 | ! the high level distribution of regions on a sphere, as the detailed |
---|
| 19 | ! distribution of grid points to each region is left to IFS software. |
---|
| 20 | ! This is required to take into account the spatial distribution of grid |
---|
| 21 | ! points in an IFS gaussian grid and provide an optimal (i.e. exact) |
---|
| 22 | ! distribution of grid points over regions. |
---|
| 23 | ! |
---|
| 24 | ! The following copyright notice for the eq_regions package is included from |
---|
| 25 | ! the original MatLab release. |
---|
| 26 | ! |
---|
| 27 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 28 | ! + Release 1.10 2005-06-26 + |
---|
| 29 | ! + + |
---|
| 30 | ! + Copyright (c) 2004, 2005, University of New South Wales + |
---|
| 31 | ! + + |
---|
| 32 | ! + Permission is hereby granted, free of charge, to any person obtaining + |
---|
| 33 | ! + a copy of this software and associated documentation files (the + |
---|
| 34 | ! + "Software"), to deal in the Software without restriction, including + |
---|
| 35 | ! + without limitation the rights to use, copy, modify, merge, publish, + |
---|
| 36 | ! + distribute, sublicense, and/or sell copies of the Software, and to + |
---|
| 37 | ! + permit persons to whom the Software is furnished to do so, subject to + |
---|
| 38 | ! + the following conditions: + |
---|
| 39 | ! + + |
---|
| 40 | ! + The above copyright notice and this permission notice shall be included + |
---|
| 41 | ! + in all copies or substantial portions of the Software. + |
---|
| 42 | ! + + |
---|
| 43 | ! + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + |
---|
| 44 | ! + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + |
---|
| 45 | ! + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + |
---|
| 46 | ! + IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + |
---|
| 47 | ! + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + |
---|
| 48 | ! + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + |
---|
| 49 | ! + SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + |
---|
| 50 | ! + + |
---|
| 51 | ! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
| 52 | ! |
---|
| 53 | ! Author. |
---|
| 54 | ! ------- |
---|
| 55 | ! George Mozdzynski *ECMWF* |
---|
| 56 | ! |
---|
| 57 | ! Modifications. |
---|
| 58 | ! -------------- |
---|
| 59 | ! Original : 2006-04-15 |
---|
| 60 | ! |
---|
| 61 | !-------------------------------------------------------------------------------- |
---|
| 62 | |
---|
| 63 | USE PARKIND1 ,ONLY : JPIM ,JPRB |
---|
| 64 | |
---|
| 65 | IMPLICIT NONE |
---|
| 66 | |
---|
| 67 | SAVE |
---|
| 68 | |
---|
| 69 | PRIVATE |
---|
| 70 | |
---|
| 71 | PUBLIC eq_regions,l_regions_debug,n_regions_ns,n_regions_ew,n_regions,my_region_ns,my_region_ew |
---|
| 72 | |
---|
| 73 | real(kind=jprb) pi |
---|
| 74 | logical :: l_regions_debug=.false. |
---|
| 75 | integer(kind=jpim) :: n_regions_ns |
---|
| 76 | integer(kind=jpim) :: n_regions_ew |
---|
| 77 | integer(kind=jpim) :: my_region_ns |
---|
| 78 | integer(kind=jpim) :: my_region_ew |
---|
| 79 | integer(kind=jpim),allocatable :: n_regions(:) |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | !$OMP THREADPRIVATE(l_regions_debug,my_region_ew,my_region_ns,n_regions_ew,n_regions_ns,pi,n_regions) |
---|
| 83 | |
---|
| 84 | CONTAINS |
---|
| 85 | |
---|
| 86 | subroutine eq_regions(N) |
---|
| 87 | ! |
---|
| 88 | ! eq_regions uses the zonal equal area sphere partitioning algorithm to partition |
---|
| 89 | ! the surface of a sphere into N regions of equal area and small diameter. |
---|
| 90 | ! |
---|
| 91 | integer(kind=jpim),intent(in) :: N |
---|
| 92 | integer(kind=jpim) :: n_collars,j |
---|
| 93 | real(kind=jprb),allocatable :: r_regions(:) |
---|
| 94 | real(kind=jprb) :: c_polar |
---|
| 95 | |
---|
| 96 | pi=2.0_jprb*asin(1.0_jprb) |
---|
| 97 | |
---|
| 98 | n_regions(:)=0 |
---|
| 99 | |
---|
| 100 | if( N == 1 )then |
---|
| 101 | |
---|
| 102 | ! |
---|
| 103 | ! We have only one region, which must be the whole sphere. |
---|
| 104 | ! |
---|
| 105 | n_regions(1)=1 |
---|
| 106 | n_regions_ns=1 |
---|
| 107 | |
---|
| 108 | else |
---|
| 109 | |
---|
| 110 | ! |
---|
| 111 | ! Given N, determine c_polar |
---|
| 112 | ! the colatitude of the North polar spherical cap. |
---|
| 113 | ! |
---|
| 114 | c_polar = polar_colat(N) |
---|
| 115 | ! |
---|
| 116 | ! Given N, determine the ideal angle for spherical collars. |
---|
| 117 | ! Based on N, this ideal angle, and c_polar, |
---|
| 118 | ! determine n_collars, the number of collars between the polar caps. |
---|
| 119 | ! |
---|
| 120 | n_collars = num_collars(N,c_polar,ideal_collar_angle(N)) |
---|
| 121 | n_regions_ns=n_collars+2 |
---|
| 122 | ! |
---|
| 123 | ! Given N, c_polar and n_collars, determine r_regions, |
---|
| 124 | ! a list of the ideal real number of regions in each collar, |
---|
| 125 | ! plus the polar caps. |
---|
| 126 | ! The number of elements is n_collars+2. |
---|
| 127 | ! r_regions[1] is 1. |
---|
| 128 | ! r_regions[n_collars+2] is 1. |
---|
| 129 | ! The sum of r_regions is N. |
---|
| 130 | allocate(r_regions(n_collars+2)) |
---|
| 131 | call ideal_region_list(N,c_polar,n_collars,r_regions) |
---|
| 132 | ! |
---|
| 133 | ! Given N and r_regions, determine n_regions, a list of the natural number |
---|
| 134 | ! of regions in each collar and the polar caps. |
---|
| 135 | ! This list is as close as possible to r_regions. |
---|
| 136 | ! The number of elements is n_collars+2. |
---|
| 137 | ! n_regions[1] is 1. |
---|
| 138 | ! n_regions[n_collars+2] is 1. |
---|
| 139 | ! The sum of n_regions is N. |
---|
| 140 | ! |
---|
| 141 | call round_to_naturals(N,n_collars,r_regions) |
---|
| 142 | deallocate(r_regions) |
---|
| 143 | if( N /= sum(n_regions(:)) )then |
---|
| 144 | write(*,'("eq_regions: N=",I10," sum(n_regions(:))=",I10)')N,sum(n_regions(:)) |
---|
| 145 | call abor1('eq_regions: N /= sum(n_regions)') |
---|
| 146 | endif |
---|
| 147 | |
---|
| 148 | endif |
---|
| 149 | |
---|
| 150 | if( l_regions_debug )then |
---|
| 151 | write(*,'("eq_regions: N=",I6," n_regions_ns=",I4)') N,n_regions_ns |
---|
| 152 | do j=1,n_regions_ns |
---|
| 153 | write(*,'("eq_regions: n_regions(",I4,")=",I4)') j,n_regions(j) |
---|
| 154 | enddo |
---|
| 155 | endif |
---|
| 156 | n_regions_ew=maxval(n_regions(:)) |
---|
| 157 | |
---|
| 158 | return |
---|
| 159 | end subroutine eq_regions |
---|
| 160 | |
---|
| 161 | function num_collars(N,c_polar,a_ideal) result(num_c) |
---|
| 162 | ! |
---|
| 163 | !NUM_COLLARS The number of collars between the polar caps |
---|
| 164 | ! |
---|
| 165 | ! Given N, an ideal angle, and c_polar, |
---|
| 166 | ! determine n_collars, the number of collars between the polar caps. |
---|
| 167 | ! |
---|
| 168 | integer(kind=jpim),intent(in) :: N |
---|
| 169 | real(kind=jprb),intent(in) :: a_ideal,c_polar |
---|
| 170 | integer(kind=jpim) :: num_c |
---|
| 171 | logical enough |
---|
| 172 | enough = (N > 2) .and. (a_ideal > 0) |
---|
| 173 | if( enough )then |
---|
| 174 | num_c = max(1,nint((pi-2.*c_polar)/a_ideal)) |
---|
| 175 | else |
---|
| 176 | num_c = 0 |
---|
| 177 | endif |
---|
| 178 | return |
---|
| 179 | end function num_collars |
---|
| 180 | |
---|
| 181 | subroutine ideal_region_list(N,c_polar,n_collars,r_regions) |
---|
| 182 | ! |
---|
| 183 | !IDEAL_REGION_LIST The ideal real number of regions in each zone |
---|
| 184 | ! |
---|
| 185 | ! List the ideal real number of regions in each collar, plus the polar caps. |
---|
| 186 | ! |
---|
| 187 | ! Given N, c_polar and n_collars, determine r_regions, a list of the ideal real |
---|
| 188 | ! number of regions in each collar, plus the polar caps. |
---|
| 189 | ! The number of elements is n_collars+2. |
---|
| 190 | ! r_regions[1] is 1. |
---|
| 191 | ! r_regions[n_collars+2] is 1. |
---|
| 192 | ! The sum of r_regions is N. |
---|
| 193 | ! |
---|
| 194 | integer(kind=jpim),intent(in) :: N,n_collars |
---|
| 195 | real(kind=jprb),intent(in) :: c_polar |
---|
| 196 | real(kind=jprb),intent(out) :: r_regions(n_collars+2) |
---|
| 197 | integer(kind=jpim) :: collar_n |
---|
| 198 | real(kind=jprb) :: ideal_region_area,ideal_collar_area |
---|
| 199 | real(kind=jprb) :: a_fitting |
---|
| 200 | r_regions(:)=0.0_jprb |
---|
| 201 | r_regions(1) = 1.0_jprb |
---|
| 202 | if( n_collars > 0 )then |
---|
| 203 | ! |
---|
| 204 | ! Based on n_collars and c_polar, determine a_fitting, |
---|
| 205 | ! the collar angle such that n_collars collars fit between the polar caps. |
---|
| 206 | ! |
---|
| 207 | a_fitting = (pi-2.0_jprb*c_polar)/float(n_collars) |
---|
| 208 | ideal_region_area = area_of_ideal_region(N) |
---|
| 209 | do collar_n=1,n_collars |
---|
| 210 | ideal_collar_area = area_of_collar(c_polar+(collar_n-1)*a_fitting, & |
---|
| 211 | & c_polar+collar_n*a_fitting) |
---|
| 212 | r_regions(1+collar_n) = ideal_collar_area / ideal_region_area |
---|
| 213 | enddo |
---|
| 214 | endif |
---|
| 215 | r_regions(2+n_collars) = 1. |
---|
| 216 | return |
---|
| 217 | end subroutine ideal_region_list |
---|
| 218 | |
---|
| 219 | function ideal_collar_angle(N) result(ideal) |
---|
| 220 | ! |
---|
| 221 | ! IDEAL_COLLAR_ANGLE The ideal angle for spherical collars of an EQ partition |
---|
| 222 | ! |
---|
| 223 | ! IDEAL_COLLAR_ANGLE(N) sets ANGLE to the ideal angle for the |
---|
| 224 | ! spherical collars of an EQ partition of the unit sphere S^2 into N regions. |
---|
| 225 | ! |
---|
| 226 | integer(kind=jpim),intent(in) :: N |
---|
| 227 | real(kind=jprb) :: ideal |
---|
| 228 | ideal = area_of_ideal_region(N)**(0.5_jprb) |
---|
| 229 | return |
---|
| 230 | end function ideal_collar_angle |
---|
| 231 | |
---|
| 232 | subroutine round_to_naturals(N,n_collars,r_regions) |
---|
| 233 | ! |
---|
| 234 | ! ROUND_TO_NATURALS Round off a given list of numbers of regions |
---|
| 235 | ! |
---|
| 236 | ! Given N and r_regions, determine n_regions, a list of the natural number |
---|
| 237 | ! of regions in each collar and the polar caps. |
---|
| 238 | ! This list is as close as possible to r_regions, using rounding. |
---|
| 239 | ! The number of elements is n_collars+2. |
---|
| 240 | ! n_regions[1] is 1. |
---|
| 241 | ! n_regions[n_collars+2] is 1. |
---|
| 242 | ! The sum of n_regions is N. |
---|
| 243 | ! |
---|
| 244 | integer(kind=jpim),intent(in) :: N,n_collars |
---|
| 245 | real(kind=jprb),intent(in) :: r_regions(n_collars+2) |
---|
| 246 | integer(kind=jpim) :: zone_n |
---|
| 247 | real(kind=jprb) :: discrepancy |
---|
| 248 | n_regions(1:n_collars+2) = r_regions(:) |
---|
| 249 | discrepancy = 0.0_jprb |
---|
| 250 | do zone_n = 1,n_collars+2 |
---|
| 251 | n_regions(zone_n) = nint(r_regions(zone_n)+discrepancy); |
---|
| 252 | discrepancy = discrepancy+r_regions(zone_n)-float(n_regions(zone_n)); |
---|
| 253 | enddo |
---|
| 254 | return |
---|
| 255 | end subroutine round_to_naturals |
---|
| 256 | |
---|
| 257 | function polar_colat(N) result(polar_c) |
---|
| 258 | ! |
---|
| 259 | ! Given N, determine the colatitude of the North polar spherical cap. |
---|
| 260 | ! |
---|
| 261 | integer(kind=jpim),intent(in) :: N |
---|
| 262 | real(kind=jprb) :: area |
---|
| 263 | real(kind=jprb) :: polar_c |
---|
| 264 | if( N == 1 ) polar_c=pi |
---|
| 265 | if( N == 2 ) polar_c=pi/2.0_jprb |
---|
| 266 | if( N > 2 )then |
---|
| 267 | area=area_of_ideal_region(N) |
---|
| 268 | polar_c=sradius_of_cap(area) |
---|
| 269 | endif |
---|
| 270 | return |
---|
| 271 | end function polar_colat |
---|
| 272 | |
---|
| 273 | function area_of_ideal_region(N) result(area) |
---|
| 274 | ! |
---|
| 275 | ! AREA_OF_IDEAL_REGION(N) sets AREA to be the area of one of N equal |
---|
| 276 | ! area regions on S^2, that is 1/N times AREA_OF_SPHERE. |
---|
| 277 | ! |
---|
| 278 | integer(kind=jpim),intent(in) :: N |
---|
| 279 | real(kind=jprb) :: area_of_sphere |
---|
| 280 | real(kind=jprb) :: area |
---|
| 281 | area_of_sphere = (2.0_jprb*pi**1.5_jprb/gamma(1.5_jprb)) |
---|
| 282 | area = area_of_sphere/float(N) |
---|
| 283 | return |
---|
| 284 | end function area_of_ideal_region |
---|
| 285 | |
---|
| 286 | function sradius_of_cap(area) result(sradius) |
---|
| 287 | ! |
---|
| 288 | ! SRADIUS_OF_CAP(AREA) returns the spherical radius of |
---|
| 289 | ! an S^2 spherical cap of area AREA. |
---|
| 290 | ! |
---|
| 291 | real(kind=jprb),intent(in) :: area |
---|
| 292 | real(kind=jprb) :: sradius |
---|
| 293 | sradius = 2.0_jprb*asin(sqrt(area/pi)/2.0_jprb) |
---|
| 294 | return |
---|
| 295 | end function sradius_of_cap |
---|
| 296 | |
---|
| 297 | function area_of_collar(a_top, a_bot) result(area) |
---|
| 298 | ! |
---|
| 299 | ! AREA_OF_COLLAR Area of spherical collar |
---|
| 300 | ! |
---|
| 301 | ! AREA_OF_COLLAR(A_TOP, A_BOT) sets AREA to be the area of an S^2 spherical |
---|
| 302 | ! collar specified by A_TOP, A_BOT, where A_TOP is top (smaller) spherical radius, |
---|
| 303 | ! A_BOT is bottom (larger) spherical radius. |
---|
| 304 | ! |
---|
| 305 | real(kind=jprb),intent(in) :: a_top,a_bot |
---|
| 306 | real(kind=jprb) area |
---|
| 307 | area = area_of_cap(a_bot) - area_of_cap(a_top) |
---|
| 308 | return |
---|
| 309 | end function area_of_collar |
---|
| 310 | |
---|
| 311 | function area_of_cap(s_cap) result(area) |
---|
| 312 | ! |
---|
| 313 | ! AREA_OF_CAP Area of spherical cap |
---|
| 314 | ! |
---|
| 315 | ! AREA_OF_CAP(S_CAP) sets AREA to be the area of an S^2 spherical |
---|
| 316 | ! cap of spherical radius S_CAP. |
---|
| 317 | ! |
---|
| 318 | real(kind=jprb),intent(in) :: s_cap |
---|
| 319 | real(kind=jprb) area |
---|
| 320 | area = 4.0_jprb*pi * sin(s_cap/2.0_jprb)**2 |
---|
| 321 | return |
---|
| 322 | end function area_of_cap |
---|
| 323 | |
---|
| 324 | function gamma(x) result(gamma_res) |
---|
| 325 | real(kind=jprb),intent(in) :: x |
---|
| 326 | real(kind=jprb) :: gamma_res |
---|
| 327 | real(kind=jprb) :: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13 |
---|
| 328 | real(kind=jprb) :: w,y |
---|
| 329 | integer(kind=jpim) :: k,n |
---|
| 330 | parameter (& |
---|
| 331 | & p0 = 0.999999999999999990e+00_jprb,& |
---|
| 332 | & p1 = -0.422784335098466784e+00_jprb,& |
---|
| 333 | & p2 = -0.233093736421782878e+00_jprb,& |
---|
| 334 | & p3 = 0.191091101387638410e+00_jprb,& |
---|
| 335 | & p4 = -0.024552490005641278e+00_jprb,& |
---|
| 336 | & p5 = -0.017645244547851414e+00_jprb,& |
---|
| 337 | & p6 = 0.008023273027855346e+00_jprb) |
---|
| 338 | parameter (& |
---|
| 339 | & p7 = -0.000804329819255744e+00_jprb,& |
---|
| 340 | & p8 = -0.000360837876648255e+00_jprb,& |
---|
| 341 | & p9 = 0.000145596568617526e+00_jprb,& |
---|
| 342 | & p10 = -0.000017545539395205e+00_jprb,& |
---|
| 343 | & p11 = -0.000002591225267689e+00_jprb,& |
---|
| 344 | & p12 = 0.000001337767384067e+00_jprb,& |
---|
| 345 | & p13 = -0.000000199542863674e+00_jprb) |
---|
| 346 | n = nint(x - 2) |
---|
| 347 | w = x - (n + 2) |
---|
| 348 | y = ((((((((((((p13 * w + p12) * w + p11) * w + p10) *& |
---|
| 349 | & w + p9) * w + p8) * w + p7) * w + p6) * w + p5) *& |
---|
| 350 | & w + p4) * w + p3) * w + p2) * w + p1) * w + p0 |
---|
| 351 | if (n .gt. 0) then |
---|
| 352 | w = x - 1 |
---|
| 353 | do k = 2, n |
---|
| 354 | w = w * (x - k) |
---|
| 355 | end do |
---|
| 356 | else |
---|
| 357 | w = 1 |
---|
| 358 | do k = 0, -n - 1 |
---|
| 359 | y = y * (x + k) |
---|
| 360 | end do |
---|
| 361 | end if |
---|
| 362 | gamma_res = w / y |
---|
| 363 | return |
---|
| 364 | end function gamma |
---|
| 365 | |
---|
| 366 | end module eq_regions_mod |
---|