[3331] | 1 | |
---|
| 2 | |
---|
| 3 | SUBROUTINE cv3p2_closure(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, & |
---|
| 4 | tvp, buoy, supmax, ok_inhib, ale, alp, omega,sig, w0, ptop2, cape, cin, m, & |
---|
| 5 | iflag, coef, plim1, plim2, asupmax, supmax0, asupmaxmin, cbmflast, plfc, & |
---|
| 6 | wbeff) |
---|
| 7 | |
---|
| 8 | |
---|
| 9 | ! ************************************************************** |
---|
| 10 | ! * |
---|
| 11 | ! CV3P2_CLOSURE * |
---|
| 12 | ! Ale & Alp Closure of Convect3 * |
---|
| 13 | ! * |
---|
| 14 | ! written by : Kerry Emanuel * |
---|
| 15 | ! vectorization: S. Bony * |
---|
| 16 | ! modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
| 17 | ! Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
| 18 | ! ************************************************************** |
---|
| 19 | |
---|
| 20 | USE print_control_mod, ONLY: prt_level, lunout |
---|
| 21 | IMPLICIT NONE |
---|
| 22 | |
---|
| 23 | include "cvthermo.h" |
---|
| 24 | include "cv3param.h" |
---|
| 25 | include "YOMCST2.h" |
---|
| 26 | include "YOMCST.h" |
---|
| 27 | include "conema3.h" |
---|
| 28 | |
---|
| 29 | ! input: |
---|
| 30 | INTEGER, INTENT (IN) :: ncum, nd, nloc |
---|
| 31 | INTEGER, DIMENSION (nloc), INTENT (IN) :: icb, inb |
---|
| 32 | REAL, DIMENSION (nloc), INTENT (IN) :: pbase, plcl |
---|
| 33 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: p |
---|
| 34 | REAL, DIMENSION (nloc, nd+1), INTENT (IN) :: ph |
---|
| 35 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: tv, tvp, buoy |
---|
| 36 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: supmax |
---|
| 37 | LOGICAL, INTENT (IN) :: ok_inhib ! enable convection inhibition by dryness |
---|
| 38 | REAL, DIMENSION (nloc), INTENT (IN) :: ale, alp |
---|
| 39 | REAL, DIMENSION (nloc, nd), INTENT (IN) :: omega |
---|
| 40 | |
---|
| 41 | ! input/output: |
---|
| 42 | REAL, DIMENSION (nloc, nd), INTENT (INOUT) :: sig, w0 |
---|
| 43 | REAL, DIMENSION (nloc), INTENT (INOUT) :: ptop2 |
---|
| 44 | |
---|
| 45 | ! output: |
---|
| 46 | REAL, DIMENSION (nloc), INTENT (OUT) :: cape, cin |
---|
| 47 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: m |
---|
| 48 | REAL, DIMENSION (nloc), INTENT (OUT) :: plim1, plim2 |
---|
| 49 | REAL, DIMENSION (nloc, nd), INTENT (OUT) :: asupmax |
---|
| 50 | REAL, DIMENSION (nloc), INTENT (OUT) :: supmax0 |
---|
| 51 | REAL, DIMENSION (nloc), INTENT (OUT) :: asupmaxmin |
---|
| 52 | REAL, DIMENSION (nloc), INTENT (OUT) :: cbmflast, plfc |
---|
| 53 | REAL, DIMENSION (nloc), INTENT (OUT) :: wbeff |
---|
| 54 | INTEGER, DIMENSION (nloc), INTENT (OUT) :: iflag |
---|
| 55 | |
---|
| 56 | ! local variables: |
---|
| 57 | INTEGER :: il, i, j, k, icbmax |
---|
| 58 | INTEGER, DIMENSION (nloc) :: i0, klfc |
---|
| 59 | REAL :: deltap, fac, w, amu |
---|
| 60 | REAL, DIMENSION (nloc, nd) :: rhodp ! Factor such that m=rhodp*sig*w |
---|
| 61 | REAL :: dz |
---|
| 62 | REAL :: pbmxup |
---|
| 63 | REAL, DIMENSION (nloc, nd) :: dtmin, sigold |
---|
| 64 | REAL, DIMENSION (nloc, nd) :: coefmix |
---|
| 65 | REAL, DIMENSION (nloc) :: dtminmax |
---|
| 66 | REAL, DIMENSION (nloc) :: pzero, ptop2old |
---|
| 67 | REAL, DIMENSION (nloc) :: cina, cinb |
---|
| 68 | INTEGER, DIMENSION (nloc) :: ibeg |
---|
| 69 | INTEGER, DIMENSION (nloc) :: nsupmax |
---|
| 70 | REAL :: supcrit |
---|
| 71 | REAL, DIMENSION (nloc, nd) :: temp |
---|
| 72 | REAL, DIMENSION (nloc) :: p1, pmin |
---|
| 73 | REAL, DIMENSION (nloc) :: asupmax0 |
---|
| 74 | LOGICAL, DIMENSION (nloc) :: ok |
---|
| 75 | REAL, DIMENSION (nloc, nd) :: siglim, wlim, mlim |
---|
| 76 | REAL, DIMENSION (nloc) :: wb2 |
---|
| 77 | REAL, DIMENSION (nloc) :: cbmf0 ! initial cloud base mass flux |
---|
| 78 | REAL, DIMENSION (nloc) :: cbmflim ! cbmf given by Cape closure |
---|
| 79 | REAL, DIMENSION (nloc) :: cbmfalp ! cbmf given by Alp closure |
---|
| 80 | REAL, DIMENSION (nloc) :: cbmfalpb ! bounded cbmf given by Alp closure |
---|
| 81 | REAL, DIMENSION (nloc) :: cbmfmax ! upper bound on cbmf |
---|
| 82 | REAL, DIMENSION (nloc) :: coef |
---|
| 83 | REAL, DIMENSION (nloc) :: xp, xq, xr, discr, b3, b4 |
---|
| 84 | REAL, DIMENSION (nloc) :: theta, bb |
---|
| 85 | REAL :: term1, term2, term3 |
---|
| 86 | REAL, DIMENSION (nloc) :: alp2 ! Alp with offset |
---|
| 87 | |
---|
| 88 | !CR: variables for new erosion of adiabiatic ascent |
---|
| 89 | REAL, DIMENSION (nloc, nd) :: mad, me, betalim, beta_coef |
---|
| 90 | REAL, DIMENSION (nloc, nd) :: med, md |
---|
| 91 | !jyg< |
---|
| 92 | ! coef_peel is now in the common cv3_param |
---|
| 93 | !! REAL :: coef_peel |
---|
| 94 | !! PARAMETER (coef_peel=0.25) |
---|
| 95 | !>jyg |
---|
| 96 | |
---|
| 97 | REAL :: sigmax |
---|
| 98 | PARAMETER (sigmax=0.1) |
---|
| 99 | !! PARAMETER (sigmax=10.) |
---|
| 100 | |
---|
| 101 | CHARACTER (LEN=20) :: modname = 'cv3p2_closure' |
---|
| 102 | CHARACTER (LEN=80) :: abort_message |
---|
| 103 | |
---|
| 104 | INTEGER,SAVE :: igout=1 |
---|
| 105 | !$OMP THREADPRIVATE(igout) |
---|
| 106 | |
---|
| 107 | IF (prt_level>=20) print *,' -> cv3p2_closure, Ale ',ale(igout) |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | ! ------------------------------------------------------- |
---|
| 111 | ! -- Initialization |
---|
| 112 | ! ------------------------------------------------------- |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | DO il = 1, ncum |
---|
| 116 | alp2(il) = max(alp(il), 1.E-5) |
---|
| 117 | ! IM |
---|
| 118 | alp2(il) = max(alp(il), 1.E-12) |
---|
| 119 | END DO |
---|
| 120 | |
---|
| 121 | pbmxup = 50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
| 122 | ! exist (if any) |
---|
| 123 | |
---|
| 124 | IF (prt_level>=20) PRINT *, 'cv3p2_closure nloc ncum nd icb inb nl', nloc, & |
---|
| 125 | ncum, nd, icb(nloc), inb(nloc), nl |
---|
| 126 | DO k = 1, nl |
---|
| 127 | DO il = 1, ncum |
---|
| 128 | rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 129 | END DO |
---|
| 130 | END DO |
---|
| 131 | |
---|
| 132 | !CR+jyg: initializations (up to nd) for erosion of adiabatic ascent and of m and wlim |
---|
| 133 | DO k = 1,nd |
---|
| 134 | DO il = 1, ncum |
---|
| 135 | mad(il,k)=0. |
---|
| 136 | me(il,k)=0. |
---|
| 137 | betalim(il,k)=1. |
---|
| 138 | wlim(il,k)=0. |
---|
| 139 | m(il, k) = 0.0 |
---|
| 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | |
---|
| 143 | ! ------------------------------------------------------- |
---|
| 144 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 145 | ! ------------------------------------------------------- |
---|
| 146 | |
---|
| 147 | ! update sig and w0 above LNB: |
---|
| 148 | |
---|
| 149 | DO k = 1, nl - 1 |
---|
| 150 | DO il = 1, ncum |
---|
| 151 | IF ((inb(il)<(nl-1)) .AND. (k>=(inb(il)+1))) THEN |
---|
| 152 | sig(il, k) = beta*sig(il, k) + 2.*alpha*buoy(il, inb(il))*abs(buoy(il,inb(il))) |
---|
| 153 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 154 | w0(il, k) = beta*w0(il, k) |
---|
| 155 | END IF |
---|
| 156 | END DO |
---|
| 157 | END DO |
---|
| 158 | |
---|
| 159 | ! if(prt.level.GE.20) print*,'cv3p2_closure apres 100' |
---|
| 160 | ! compute icbmax: |
---|
| 161 | |
---|
| 162 | icbmax = 2 |
---|
| 163 | DO il = 1, ncum |
---|
| 164 | icbmax = max(icbmax, icb(il)) |
---|
| 165 | END DO |
---|
| 166 | ! if(prt.level.GE.20) print*,'cv3p2_closure apres 200' |
---|
| 167 | |
---|
| 168 | ! update sig and w0 below cloud base: |
---|
| 169 | |
---|
| 170 | DO k = 1, icbmax |
---|
| 171 | DO il = 1, ncum |
---|
| 172 | IF (k<=icb(il)) THEN |
---|
| 173 | sig(il, k) = beta*sig(il, k) - 2.*alpha*buoy(il, icb(il))*buoy(il,icb(il)) |
---|
| 174 | sig(il, k) = amax1(sig(il,k), 0.0) |
---|
| 175 | w0(il, k) = beta*w0(il, k) |
---|
| 176 | END IF |
---|
| 177 | END DO |
---|
| 178 | END DO |
---|
| 179 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 300' |
---|
| 180 | |
---|
| 181 | ! ------------------------------------------------------------- |
---|
| 182 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 183 | ! -- and after 10 time steps of no convection |
---|
| 184 | ! ------------------------------------------------------------- |
---|
| 185 | |
---|
| 186 | !jyg< |
---|
| 187 | IF (ok_convstop) THEN |
---|
| 188 | DO k = 1, nl - 1 |
---|
| 189 | DO il = 1, ncum |
---|
| 190 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>noconv_stop) THEN |
---|
| 191 | sig(il, k) = 0.0 |
---|
| 192 | w0(il, k) = 0.0 |
---|
| 193 | END IF |
---|
| 194 | END DO |
---|
| 195 | END DO |
---|
| 196 | ELSE |
---|
| 197 | DO k = 1, nl - 1 |
---|
| 198 | DO il = 1, ncum |
---|
| 199 | IF (sig(il,nd)<1.5 .OR. sig(il,nd)>12.0) THEN |
---|
| 200 | sig(il, k) = 0.0 |
---|
| 201 | w0(il, k) = 0.0 |
---|
| 202 | END IF |
---|
| 203 | END DO |
---|
| 204 | END DO |
---|
| 205 | ENDIF ! (ok_convstop) |
---|
| 206 | !>jyg |
---|
| 207 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 400' |
---|
| 208 | |
---|
| 209 | ! ------------------------------------------------------- |
---|
| 210 | ! -- Compute initial cloud base mass flux (Cbmf0) |
---|
| 211 | ! ------------------------------------------------------- |
---|
| 212 | DO il = 1, ncum |
---|
| 213 | cbmf0(il) = 0.0 |
---|
| 214 | END DO |
---|
| 215 | |
---|
| 216 | DO k = 1, nl |
---|
| 217 | DO il = 1, ncum |
---|
| 218 | IF (k>=icb(il) .AND. k<=inb(il) & |
---|
| 219 | .AND. icb(il)+1<=inb(il)) THEN |
---|
| 220 | cbmf0(il) = cbmf0(il) + sig(il, k)*w0(il,k)*rhodp(il,k) |
---|
| 221 | END IF |
---|
| 222 | END DO |
---|
| 223 | END DO |
---|
| 224 | |
---|
| 225 | ! ------------------------------------------------------------- |
---|
| 226 | ! jyg1 |
---|
| 227 | ! -- Calculate adiabatic ascent top pressure (ptop) |
---|
| 228 | ! ------------------------------------------------------------- |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | ! c 1. Start at first level where precipitations form |
---|
| 232 | DO il = 1, ncum |
---|
| 233 | pzero(il) = plcl(il) - pbcrit |
---|
| 234 | END DO |
---|
| 235 | |
---|
| 236 | ! c 2. Add offset |
---|
| 237 | DO il = 1, ncum |
---|
| 238 | pzero(il) = pzero(il) - pbmxup |
---|
| 239 | END DO |
---|
| 240 | DO il = 1, ncum |
---|
| 241 | ptop2old(il) = ptop2(il) |
---|
| 242 | END DO |
---|
| 243 | |
---|
| 244 | DO il = 1, ncum |
---|
| 245 | ! CR:c est quoi ce 300?? |
---|
| 246 | p1(il) = pzero(il) - 300. |
---|
| 247 | END DO |
---|
| 248 | |
---|
| 249 | ! compute asupmax=abs(supmax) up to lnm+1 |
---|
| 250 | |
---|
| 251 | DO il = 1, ncum |
---|
| 252 | ok(il) = .TRUE. |
---|
| 253 | nsupmax(il) = inb(il) |
---|
| 254 | END DO |
---|
| 255 | |
---|
| 256 | DO i = 1, nl |
---|
| 257 | DO il = 1, ncum |
---|
| 258 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 259 | IF (p(il,i)<=pzero(il) .AND. supmax(il,i)<0 .AND. ok(il)) THEN |
---|
| 260 | nsupmax(il) = i |
---|
| 261 | ok(il) = .FALSE. |
---|
| 262 | END IF ! end IF (P(i) ... ) |
---|
| 263 | END IF ! end IF (icb+1 le i le inb) |
---|
| 264 | END DO |
---|
| 265 | END DO |
---|
| 266 | |
---|
| 267 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 2.' |
---|
| 268 | DO i = 1, nl |
---|
| 269 | DO il = 1, ncum |
---|
| 270 | asupmax(il, i) = abs(supmax(il,i)) |
---|
| 271 | END DO |
---|
| 272 | END DO |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | DO il = 1, ncum |
---|
| 276 | asupmaxmin(il) = 10. |
---|
| 277 | pmin(il) = 100. |
---|
| 278 | ! IM ?? |
---|
| 279 | asupmax0(il) = 0. |
---|
| 280 | END DO |
---|
| 281 | |
---|
| 282 | ! c 3. Compute in which level is Pzero |
---|
| 283 | |
---|
| 284 | ! IM bug i0 = 18 |
---|
| 285 | DO il = 1, ncum |
---|
| 286 | i0(il) = nl |
---|
| 287 | END DO |
---|
| 288 | |
---|
| 289 | DO i = 1, nl |
---|
| 290 | DO il = 1, ncum |
---|
| 291 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 292 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 293 | IF (pzero(il)>p(il,i) .AND. pzero(il)<p(il,i-1)) THEN |
---|
| 294 | i0(il) = i |
---|
| 295 | END IF |
---|
| 296 | END IF |
---|
| 297 | END IF |
---|
| 298 | END DO |
---|
| 299 | END DO |
---|
| 300 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 3.' |
---|
| 301 | |
---|
| 302 | ! c 4. Compute asupmax at Pzero |
---|
| 303 | |
---|
| 304 | DO i = 1, nl |
---|
| 305 | DO il = 1, ncum |
---|
| 306 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 307 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 308 | asupmax0(il) = ((pzero(il)-p(il,i0(il)-1))*asupmax(il,i0(il))- & |
---|
| 309 | (pzero(il)-p(il,i0(il)))*asupmax(il,i0(il)-1))/(p(il,i0(il))-p(il,i0(il)-1)) |
---|
| 310 | END IF |
---|
| 311 | END IF |
---|
| 312 | END DO |
---|
| 313 | END DO |
---|
| 314 | |
---|
| 315 | |
---|
| 316 | DO i = 1, nl |
---|
| 317 | DO il = 1, ncum |
---|
| 318 | IF (p(il,i)==pzero(il)) THEN |
---|
| 319 | asupmax(i, il) = asupmax0(il) |
---|
| 320 | END IF |
---|
| 321 | END DO |
---|
| 322 | END DO |
---|
| 323 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 4.' |
---|
| 324 | |
---|
| 325 | ! c 5. Compute asupmaxmin, minimum of asupmax |
---|
| 326 | |
---|
| 327 | DO i = 1, nl |
---|
| 328 | DO il = 1, ncum |
---|
| 329 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 330 | IF (p(il,i)<=pzero(il) .AND. p(il,i)>=p1(il)) THEN |
---|
| 331 | IF (asupmax(il,i)<asupmaxmin(il)) THEN |
---|
| 332 | asupmaxmin(il) = asupmax(il, i) |
---|
| 333 | pmin(il) = p(il, i) |
---|
| 334 | END IF |
---|
| 335 | END IF |
---|
| 336 | END IF |
---|
| 337 | END DO |
---|
| 338 | END DO |
---|
| 339 | |
---|
| 340 | DO il = 1, ncum |
---|
| 341 | ! IM |
---|
| 342 | IF (prt_level>=20) THEN |
---|
| 343 | PRINT *, 'cv3p2_closure il asupmax0 asupmaxmin', il, asupmax0(il), & |
---|
| 344 | asupmaxmin(il), pzero(il), pmin(il) |
---|
| 345 | END IF |
---|
| 346 | IF (asupmax0(il)<asupmaxmin(il)) THEN |
---|
| 347 | asupmaxmin(il) = asupmax0(il) |
---|
| 348 | pmin(il) = pzero(il) |
---|
| 349 | END IF |
---|
| 350 | END DO |
---|
| 351 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 5.' |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | ! Compute Supmax at Pzero |
---|
| 355 | |
---|
| 356 | DO i = 1, nl |
---|
| 357 | DO il = 1, ncum |
---|
| 358 | IF (i>icb(il) .AND. i<=inb(il)) THEN |
---|
| 359 | IF (p(il,i)<=pzero(il)) THEN |
---|
| 360 | supmax0(il) = ((p(il,i)-pzero(il))*asupmax(il,i-1)- & |
---|
| 361 | (p(il,i-1)-pzero(il))*asupmax(il,i))/(p(il,i)-p(il,i-1)) |
---|
| 362 | GO TO 425 |
---|
| 363 | END IF ! end IF (P(i) ... ) |
---|
| 364 | END IF ! end IF (icb+1 le i le inb) |
---|
| 365 | END DO |
---|
| 366 | END DO |
---|
| 367 | |
---|
| 368 | 425 CONTINUE |
---|
| 369 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 425.' |
---|
| 370 | |
---|
| 371 | ! c 6. Calculate ptop2 |
---|
| 372 | |
---|
| 373 | DO il = 1, ncum |
---|
| 374 | IF (asupmaxmin(il)<supcrit1) THEN |
---|
| 375 | ptop2(il) = pmin(il) |
---|
| 376 | END IF |
---|
| 377 | |
---|
| 378 | IF (asupmaxmin(il)>supcrit1 .AND. asupmaxmin(il)<supcrit2) THEN |
---|
| 379 | ptop2(il) = ptop2old(il) |
---|
| 380 | END IF |
---|
| 381 | |
---|
| 382 | IF (asupmaxmin(il)>supcrit2) THEN |
---|
| 383 | ptop2(il) = ph(il, inb(il)) |
---|
| 384 | END IF |
---|
| 385 | END DO |
---|
| 386 | |
---|
| 387 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 6.' |
---|
| 388 | |
---|
| 389 | ! c 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | IF (ok_inhib) THEN |
---|
| 393 | |
---|
| 394 | DO i = 1, nl |
---|
| 395 | DO il = 1, ncum |
---|
| 396 | IF (i<=nl) THEN |
---|
| 397 | coefmix(il, i) = (min(ptop2(il),ph(il,i))-ph(il,i))/(ph(il,i+1)-ph(il,i)) |
---|
| 398 | coefmix(il, i) = min(coefmix(il,i), 1.) |
---|
| 399 | END IF |
---|
| 400 | END DO |
---|
| 401 | END DO |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | |
---|
| 408 | DO i = 1, nl |
---|
| 409 | DO il = 1, ncum |
---|
| 410 | IF (i<=nl) THEN |
---|
| 411 | coefmix(il, i) = 1. |
---|
| 412 | END IF |
---|
| 413 | END DO |
---|
| 414 | END DO |
---|
| 415 | |
---|
| 416 | END IF ! ok_inhib |
---|
| 417 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 7.' |
---|
| 418 | ! ------------------------------------------------------------------- |
---|
| 419 | ! ------------------------------------------------------------------- |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | ! jyg2 |
---|
| 423 | |
---|
| 424 | ! ========================================================================== |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | ! ------------------------------------------------------------- |
---|
| 428 | ! -- Calculate convective inhibition (CIN) |
---|
| 429 | ! ------------------------------------------------------------- |
---|
| 430 | |
---|
| 431 | ! do i=1,nloc |
---|
| 432 | ! print*,'avant cine p',pbase(i),plcl(i) |
---|
| 433 | ! enddo |
---|
| 434 | ! do j=1,nd |
---|
| 435 | ! do i=1,nloc |
---|
| 436 | ! print*,'avant cine t',tv(i),tvp(i) |
---|
| 437 | ! enddo |
---|
| 438 | ! enddo |
---|
| 439 | CALL cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, cina, & |
---|
| 440 | cinb, plfc) |
---|
| 441 | |
---|
| 442 | DO il = 1, ncum |
---|
| 443 | cin(il) = cina(il) + cinb(il) |
---|
| 444 | END DO |
---|
| 445 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_cine: cina, cinb, cin ', & |
---|
| 446 | cina(igout), cinb(igout), cin(igout) |
---|
| 447 | ! ------------------------------------------------------------- |
---|
| 448 | ! --Update buoyancies to account for Ale |
---|
| 449 | ! ------------------------------------------------------------- |
---|
| 450 | |
---|
| 451 | CALL cv3_buoy(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, ale, cin, tv, & |
---|
| 452 | tvp, buoy) |
---|
| 453 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cv3_buoy' |
---|
| 454 | |
---|
| 455 | ! ------------------------------------------------------------- |
---|
| 456 | ! -- Calculate convective available potential energy (cape), |
---|
| 457 | ! -- vertical velocity (w), fractional area covered by |
---|
| 458 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 459 | ! ------------------------------------------------------------- |
---|
| 460 | |
---|
| 461 | DO il = 1, ncum |
---|
| 462 | cape(il) = 0.0 |
---|
| 463 | dtminmax(il) = -100. |
---|
| 464 | END DO |
---|
| 465 | |
---|
| 466 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 467 | |
---|
| 468 | DO k = 1, nl |
---|
| 469 | DO il = 1, ncum |
---|
| 470 | dtmin(il, k) = 100.0 |
---|
| 471 | END DO |
---|
| 472 | END DO |
---|
| 473 | |
---|
| 474 | DO k = 1, nl |
---|
| 475 | DO j = minorig, nl |
---|
| 476 | DO il = 1, ncum |
---|
| 477 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (j>=icb(il)) & |
---|
| 478 | .AND. (j<=(k-1))) THEN |
---|
| 479 | dtmin(il, k) = amin1(dtmin(il,k), buoy(il,j)) |
---|
| 480 | END IF |
---|
| 481 | END DO |
---|
| 482 | END DO |
---|
| 483 | END DO |
---|
| 484 | !jyg< |
---|
| 485 | ! Store maximum of dtmin |
---|
| 486 | ! C est pas terrible d avoir ce test sur Ale+Cin encore une fois ici. |
---|
| 487 | ! A REVOIR ! |
---|
| 488 | DO k = 1, nl |
---|
| 489 | DO il = 1, ncum |
---|
| 490 | IF (k>=(icb(il)+1) .AND. k<=inb(il) .AND. ale(il)+cin(il)>0.) THEN |
---|
| 491 | dtminmax(il) = max(dtmin(il,k), dtminmax(il)) |
---|
| 492 | ENDIF |
---|
| 493 | END DO |
---|
| 494 | END DO |
---|
| 495 | ! |
---|
| 496 | ! prevent convection when ale+cin <= 0 |
---|
| 497 | DO k = 1, nl |
---|
| 498 | DO il = 1, ncum |
---|
| 499 | IF (k>=(icb(il)+1) .AND. k<=inb(il)) THEN |
---|
| 500 | dtmin(il,k) = min(dtmin(il,k), dtminmax(il)) |
---|
| 501 | ENDIF |
---|
| 502 | END DO |
---|
| 503 | END DO |
---|
| 504 | !>jyg |
---|
| 505 | ! |
---|
| 506 | IF (prt_level >= 20) THEN |
---|
| 507 | print *,'cv3p2_closure: dtmin ', (k, dtmin(igout,k), k=1,nl) |
---|
| 508 | print *,'cv3p2_closure: dtminmax ', dtminmax(igout) |
---|
| 509 | ENDIF |
---|
| 510 | ! |
---|
| 511 | ! the interval on which cape is computed starts at pbase : |
---|
| 512 | |
---|
| 513 | DO k = 1, nl |
---|
| 514 | DO il = 1, ncum |
---|
| 515 | |
---|
| 516 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
| 517 | |
---|
| 518 | IF (iflag_mix_adiab.eq.1) THEN |
---|
| 519 | !CR:computation of cape from LCL: keep flag or to modify in all cases? |
---|
| 520 | deltap = min(plcl(il), ph(il,k-1)) - min(plcl(il), ph(il,k)) |
---|
| 521 | ELSE |
---|
| 522 | deltap = min(pbase(il), ph(il,k-1)) - min(pbase(il), ph(il,k)) |
---|
| 523 | ENDIF |
---|
| 524 | cape(il) = cape(il) + rrd*buoy(il, k-1)*deltap/p(il, k-1) |
---|
| 525 | cape(il) = amax1(0.0, cape(il)) |
---|
| 526 | sigold(il, k) = sig(il, k) |
---|
| 527 | |
---|
| 528 | |
---|
| 529 | ! jyg Coefficient coefmix limits convection to levels where a |
---|
| 530 | ! sufficient |
---|
| 531 | ! fraction of mixed draughts are ascending. |
---|
| 532 | siglim(il, k) = coefmix(il, k)*alpha1*dtmin(il, k)*abs(dtmin(il,k)) |
---|
| 533 | siglim(il, k) = amax1(siglim(il,k), 0.0) |
---|
| 534 | siglim(il, k) = amin1(siglim(il,k), 0.01) |
---|
| 535 | ! c fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
| 536 | fac = 1. |
---|
| 537 | wlim(il, k) = fac*sqrt(cape(il)) |
---|
| 538 | amu = siglim(il, k)*wlim(il, k) |
---|
| 539 | !! rhodp(il,k) = 0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) !cor jyg : computed earlier |
---|
| 540 | mlim(il, k) = amu*rhodp(il,k) |
---|
| 541 | ! print*, 'siglim ', k,siglim(1,k) |
---|
| 542 | END IF |
---|
| 543 | |
---|
| 544 | END DO |
---|
| 545 | END DO |
---|
| 546 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 600' |
---|
| 547 | |
---|
| 548 | DO il = 1, ncum |
---|
| 549 | ! IM beg |
---|
| 550 | IF (prt_level>=20) THEN |
---|
| 551 | PRINT *, 'cv3p2_closure il icb mlim ph ph+1 ph+2', il, icb(il), & |
---|
| 552 | mlim(il, icb(il)+1), ph(il, icb(il)), ph(il, icb(il)+1), & |
---|
| 553 | ph(il, icb(il)+2) |
---|
| 554 | END IF |
---|
| 555 | |
---|
| 556 | IF (icb(il)+1<=inb(il)) THEN |
---|
| 557 | ! IM end |
---|
| 558 | mlim(il, icb(il)) = 0.5*mlim(il,icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
| 559 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 560 | ! IM beg |
---|
| 561 | END IF !(icb(il.le.inb(il))) then |
---|
| 562 | ! IM end |
---|
| 563 | END DO |
---|
| 564 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres 700' |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | ! ------------------------------------------------------------------------ |
---|
| 568 | ! c Compute Cloud base mass flux given by Cape closure (cbmflim = cbmf of |
---|
| 569 | ! c elementary systems), cbmf given by Alp closure (cbmfalp), cbmf given by Alp |
---|
| 570 | ! c closure with an upper bound imposed (cbmfalpb) and cbmf resulting from |
---|
| 571 | ! c time integration (cbmflast). |
---|
| 572 | ! ------------------------------------------------------------------------ |
---|
| 573 | |
---|
| 574 | DO il = 1, ncum |
---|
| 575 | cbmflim(il) = 0. |
---|
| 576 | cbmfalp(il) = 0. |
---|
| 577 | cbmfalpb(il) = 0. |
---|
| 578 | cbmflast(il) = 0. |
---|
| 579 | END DO |
---|
| 580 | |
---|
| 581 | ! c 1. Compute cloud base mass flux of elementary system (Cbmflim) |
---|
| 582 | |
---|
| 583 | DO k = 1, nl |
---|
| 584 | DO il = 1, ncum |
---|
| 585 | ! old IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
| 586 | ! IM IF (k .ge. icb(il)+1 .and. k .le. inb(il)) THEN |
---|
| 587 | IF (k>=icb(il) .AND. k<=inb(il) & !cor jyg |
---|
| 588 | .AND. icb(il)+1<=inb(il)) THEN !cor jyg |
---|
| 589 | cbmflim(il) = cbmflim(il) + mlim(il, k) |
---|
| 590 | END IF |
---|
| 591 | END DO |
---|
| 592 | END DO |
---|
| 593 | IF (prt_level>=20) PRINT *, 'cv3p2_closure after cbmflim: cbmflim ', cbmflim(igout) |
---|
| 594 | |
---|
| 595 | ! 1.5 Compute cloud base mass flux given by Alp closure (Cbmfalp), maximum |
---|
| 596 | ! allowed mass flux (Cbmfmax) and bounded mass flux (Cbmfalpb) |
---|
| 597 | ! Cbmfalpb is set to zero if Cbmflim (the mass flux of elementary cloud) |
---|
| 598 | ! is exceedingly small. |
---|
| 599 | |
---|
| 600 | DO il = 1, ncum |
---|
| 601 | wb2(il) = sqrt(2.*max(ale(il)+cin(il),0.)) |
---|
| 602 | END DO |
---|
| 603 | |
---|
| 604 | DO il = 1, ncum |
---|
| 605 | IF (plfc(il)<100.) THEN |
---|
| 606 | ! This is an irealistic value for plfc => no calculation of wbeff |
---|
| 607 | wbeff(il) = 100.1 |
---|
| 608 | ELSE |
---|
| 609 | ! Calculate wbeff |
---|
| 610 | IF (flag_wb==0) THEN |
---|
| 611 | wbeff(il) = wbmax |
---|
| 612 | ELSE IF (flag_wb==1) THEN |
---|
| 613 | wbeff(il) = wbmax/(1.+500./(ph(il,1)-plfc(il))) |
---|
| 614 | ELSE IF (flag_wb==2) THEN |
---|
| 615 | wbeff(il) = wbmax*(0.01*(ph(il,1)-plfc(il)))**2 |
---|
| 616 | END IF |
---|
| 617 | END IF |
---|
| 618 | END DO |
---|
| 619 | |
---|
| 620 | !CR:Compute k at plfc |
---|
| 621 | DO il=1,ncum |
---|
| 622 | klfc(il)=nl |
---|
| 623 | ENDDO |
---|
| 624 | DO k=1,nl |
---|
| 625 | DO il=1,ncum |
---|
| 626 | if ((plfc(il).lt.ph(il,k)).and.(plfc(il).ge.ph(il,k+1))) then |
---|
| 627 | klfc(il)=k |
---|
| 628 | endif |
---|
| 629 | ENDDO |
---|
| 630 | ENDDO |
---|
| 631 | !RC |
---|
| 632 | |
---|
| 633 | DO il = 1, ncum |
---|
| 634 | ! jyg Modification du coef de wb*wb pour conformite avec papier Wake |
---|
| 635 | ! c cbmfalp(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
| 636 | cbmfalp(il) = alp2(il)/(2.*wbeff(il)*wbeff(il)-cin(il)) |
---|
| 637 | !CR: Add large-scale component to the mass-flux |
---|
| 638 | !encore connu sous le nom "Experience du tube de dentifrice" |
---|
| 639 | if ((coef_clos_ls.gt.0.).and.(plfc(il).gt.0.)) then |
---|
| 640 | cbmfalp(il) = cbmfalp(il) - coef_clos_ls*min(0.,1./RG*omega(il,klfc(il))) |
---|
| 641 | endif |
---|
| 642 | !RC |
---|
| 643 | IF (cbmfalp(il)==0 .AND. alp2(il)/=0.) THEN |
---|
| 644 | WRITE (lunout, *) 'cv3p2_closure cbmfalp=0 and alp NE 0 il alp2 alp cin ' , & |
---|
| 645 | il, alp2(il), alp(il), cin(il) |
---|
| 646 | abort_message = '' |
---|
| 647 | CALL abort_physic(modname, abort_message, 1) |
---|
| 648 | END IF |
---|
| 649 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il, icb(il))/(rrd*tv(il,icb(il))) |
---|
| 650 | END DO |
---|
| 651 | |
---|
| 652 | !jyg< |
---|
| 653 | IF (OK_intermittent) THEN |
---|
| 654 | DO il = 1, ncum |
---|
| 655 | IF (cbmflim(il)>1.E-6) THEN |
---|
| 656 | cbmfalpb(il) = min(cbmfalp(il), (cbmfmax(il)-beta*cbmf0(il))/(1.-beta)) |
---|
| 657 | ! print*,'cbmfalpb',cbmfalpb(il),cbmfmax(il) |
---|
| 658 | END IF |
---|
| 659 | END DO |
---|
| 660 | ELSE |
---|
| 661 | !>jyg |
---|
| 662 | DO il = 1, ncum |
---|
| 663 | IF (cbmflim(il)>1.E-6) THEN |
---|
| 664 | ! ATTENTION TEST CR |
---|
| 665 | ! if (cbmfmax(il).lt.1.e-12) then |
---|
| 666 | cbmfalpb(il) = min(cbmfalp(il), cbmfmax(il)) |
---|
| 667 | ! else |
---|
| 668 | ! cbmfalpb(il) = cbmfalp(il) |
---|
| 669 | ! endif |
---|
| 670 | ! print*,'cbmfalpb',cbmfalp(il),cbmfmax(il) |
---|
| 671 | END IF |
---|
| 672 | END DO |
---|
| 673 | ENDIF !(OK_intermittent) |
---|
| 674 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmfalpb: cbmfalpb ',cbmfalpb(igout) |
---|
| 675 | |
---|
| 676 | ! c 2. Compute coefficient and apply correction |
---|
| 677 | |
---|
| 678 | DO il = 1, ncum |
---|
| 679 | coef(il) = (cbmfalpb(il)+1.E-10)/(cbmflim(il)+1.E-10) |
---|
| 680 | END DO |
---|
| 681 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres coef_plantePLUS' |
---|
| 682 | |
---|
| 683 | DO k = 1, nl |
---|
| 684 | DO il = 1, ncum |
---|
| 685 | IF (k>=icb(il)+1 .AND. k<=inb(il)) THEN |
---|
| 686 | amu = beta*sig(il, k)*w0(il, k) + (1.-beta)*coef(il)*siglim(il, k)*wlim(il, k) |
---|
| 687 | w0(il, k) = wlim(il, k) |
---|
| 688 | w0(il, k) = max(w0(il,k), 1.E-10) |
---|
| 689 | sig(il, k) = amu/w0(il, k) |
---|
| 690 | sig(il, k) = min(sig(il,k), 1.) |
---|
| 691 | ! c amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
| 692 | !jyg m(il, k) = amu*0.007*p(il, k)*(ph(il,k)-ph(il,k+1))/tv(il, k) |
---|
| 693 | m(il, k) = amu*rhodp(il,k) |
---|
| 694 | END IF |
---|
| 695 | END DO |
---|
| 696 | END DO |
---|
| 697 | ! jyg2 |
---|
| 698 | DO il = 1, ncum |
---|
| 699 | w0(il, icb(il)) = 0.5*w0(il, icb(il)+1) |
---|
| 700 | m(il, icb(il)) = 0.5*m(il, icb(il)+1)*(ph(il,icb(il))-ph(il,icb(il)+1))/ & |
---|
| 701 | (ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 702 | sig(il, icb(il)) = sig(il, icb(il)+1) |
---|
| 703 | sig(il, icb(il)-1) = sig(il, icb(il)) |
---|
| 704 | END DO |
---|
| 705 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres w0_sig_M: w0, sig ', & |
---|
| 706 | (k,w0(igout,k),sig(igout,k), k=icb(igout),inb(igout)) |
---|
| 707 | |
---|
| 708 | !CR: new erosion of adiabatic ascent: modification of m |
---|
| 709 | !computation of the sum of ascending fluxes |
---|
| 710 | IF (iflag_mix_adiab.eq.1) THEN |
---|
| 711 | |
---|
| 712 | !Verification sum(me)=sum(m) |
---|
| 713 | DO k = 1,nd |
---|
| 714 | DO il = 1, ncum |
---|
| 715 | md(il,k)=0. |
---|
| 716 | med(il,k)=0. |
---|
| 717 | ENDDO |
---|
| 718 | ENDDO |
---|
| 719 | |
---|
| 720 | DO k = nl,1,-1 |
---|
| 721 | DO il = 1, ncum |
---|
| 722 | md(il,k)=md(il,k+1)+m(il,k+1) |
---|
| 723 | ENDDO |
---|
| 724 | ENDDO |
---|
| 725 | |
---|
| 726 | DO k = nl,1,-1 |
---|
| 727 | DO il = 1, ncum |
---|
| 728 | IF ((k>=(icb(il))) .AND. (k<=inb(il))) THEN |
---|
| 729 | mad(il,k)=mad(il,k+1)+m(il,k+1) |
---|
| 730 | ENDIF |
---|
| 731 | ! print*,"mad",il,k,mad(il,k) |
---|
| 732 | ENDDO |
---|
| 733 | ENDDO |
---|
| 734 | |
---|
| 735 | !CR: erosion of each adiabatic ascent during its ascent |
---|
| 736 | |
---|
| 737 | !Computation of erosion coefficient beta_coef |
---|
| 738 | DO k = 1, nl |
---|
| 739 | DO il = 1, ncum |
---|
| 740 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il)) .AND. (mlim(il,k).gt.0.)) THEN |
---|
| 741 | ! print*,"beta_coef",il,k,icb(il),inb(il),buoy(il,k),tv(il,k),wlim(il,k),wlim(il,k+1) |
---|
| 742 | beta_coef(il,k)=RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2 |
---|
| 743 | ELSE |
---|
| 744 | beta_coef(il,k)=0. |
---|
| 745 | ENDIF |
---|
| 746 | ENDDO |
---|
| 747 | ENDDO |
---|
| 748 | |
---|
| 749 | ! print*,"apres beta_coef" |
---|
| 750 | |
---|
| 751 | DO k = 1, nl |
---|
| 752 | DO il = 1, ncum |
---|
| 753 | |
---|
| 754 | IF ((k>=(icb(il)+1)) .AND. (k<=inb(il))) THEN |
---|
| 755 | |
---|
| 756 | ! print*,"dz",il,k,tv(il, k-1) |
---|
| 757 | dz = (ph(il,k-1)-ph(il,k))/(p(il, k-1)/(rrd*tv(il, k-1))*RG) |
---|
| 758 | betalim(il,k)=betalim(il,k-1)*exp(-1.*beta_coef(il,k-1)*dz) |
---|
| 759 | ! betalim(il,k)=betalim(il,k-1)*exp(-RG*coef_peel*buoy(il,k-1)/tv(il,k-1)/5.**2*dz) |
---|
| 760 | ! print*,"me",il,k,mlim(il,k),buoy(il,k),wlim(il,k),mad(il,k) |
---|
| 761 | dz = (ph(il,k)-ph(il,k+1))/(p(il, k)/(rrd*tv(il, k))*RG) |
---|
| 762 | ! me(il,k)=betalim(il,k)*(m(il,k)+RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz*mad(il,k)) |
---|
| 763 | me(il,k)=betalim(il,k)*(m(il,k)+beta_coef(il,k)*dz*mad(il,k)) |
---|
| 764 | ! print*,"B/w2",il,k,RG*coef_peel*buoy(il,k)/tv(il,k)/((wlim(il,k)+wlim(il,k+1))/2.)**2*dz |
---|
| 765 | |
---|
| 766 | END IF |
---|
| 767 | |
---|
| 768 | !Modification of m |
---|
| 769 | m(il,k)=me(il,k) |
---|
| 770 | END DO |
---|
| 771 | END DO |
---|
| 772 | |
---|
| 773 | ! DO il = 1, ncum |
---|
| 774 | ! dz = (ph(il,icb(il))-ph(il,icb(il)+1))/(p(il, icb(il))/(rrd*tv(il, icb(il)))*RG) |
---|
| 775 | ! m(il,icb(il))=m(il,icb(il))+RG*coef_peel*buoy(il,icb(il))/tv(il,icb(il)) & |
---|
| 776 | ! /((wlim(il,icb(il))+wlim(il,icb(il)+1))/2.)**2*dz*mad(il,icb(il)) |
---|
| 777 | ! print*,"wlim(icb)",icb(il),wlim(il,icb(il)),m(il,icb(il)) |
---|
| 778 | ! ENDDO |
---|
| 779 | |
---|
| 780 | !Verification sum(me)=sum(m) |
---|
| 781 | DO k = nl,1,-1 |
---|
| 782 | DO il = 1, ncum |
---|
| 783 | med(il,k)=med(il,k+1)+m(il,k+1) |
---|
| 784 | ! print*,"somme(me),somme(m)",il,k,icb(il),med(il,k),md(il,k),me(il,k),m(il,k),wlim(il,k) |
---|
| 785 | ENDDO |
---|
| 786 | ENDDO |
---|
| 787 | |
---|
| 788 | |
---|
| 789 | ENDIF !(iflag_mix_adiab) |
---|
| 790 | !RC |
---|
| 791 | |
---|
| 792 | ! c 3. Compute final cloud base mass flux; |
---|
| 793 | ! c set iflag to 3 if cloud base mass flux is exceedingly small and is |
---|
| 794 | ! c decreasing (i.e. if the final mass flux (cbmflast) is greater than |
---|
| 795 | ! c the target mass flux (cbmfalpb)). |
---|
| 796 | ! c If(ok_convstop): set iflag to 4 if no positive buoyancy has been met |
---|
| 797 | |
---|
| 798 | !jyg DO il = 1, ncum |
---|
| 799 | !jyg cbmflast(il) = 0. |
---|
| 800 | !jyg END DO |
---|
| 801 | |
---|
| 802 | DO k = 1, nl |
---|
| 803 | DO il = 1, ncum |
---|
| 804 | IF (k>=icb(il) .AND. k<=inb(il)) THEN |
---|
| 805 | !IMpropo?? IF ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) THEN |
---|
| 806 | cbmflast(il) = cbmflast(il) + m(il, k) |
---|
| 807 | END IF |
---|
| 808 | END DO |
---|
| 809 | END DO |
---|
| 810 | IF (prt_level>=20) PRINT *, 'cv3p2_closure apres cbmflast: cbmflast ',cbmflast(igout) |
---|
| 811 | |
---|
| 812 | DO il = 1, ncum |
---|
| 813 | IF (cbmflast(il)<1.E-6 .AND. cbmflast(il)>=cbmfalpb(il)) THEN |
---|
| 814 | iflag(il) = 3 |
---|
| 815 | END IF |
---|
| 816 | END DO |
---|
| 817 | |
---|
| 818 | !jyg< |
---|
| 819 | IF (ok_convstop) THEN |
---|
| 820 | DO il = 1, ncum |
---|
| 821 | IF (dtminmax(il) .LE. 0.) THEN |
---|
| 822 | iflag(il) = 4 |
---|
| 823 | END IF |
---|
| 824 | END DO |
---|
| 825 | ELSE |
---|
| 826 | !>jyg |
---|
| 827 | DO k = 1, nl |
---|
| 828 | DO il = 1, ncum |
---|
| 829 | IF (iflag(il)>=3) THEN |
---|
| 830 | m(il, k) = 0. |
---|
| 831 | sig(il, k) = 0. |
---|
| 832 | w0(il, k) = 0. |
---|
| 833 | END IF |
---|
| 834 | END DO |
---|
| 835 | END DO |
---|
| 836 | ENDIF ! (ok_convstop) |
---|
| 837 | ! |
---|
| 838 | IF (prt_level >= 10) THEN |
---|
| 839 | print *,'cv3p2_closure: iflag ',iflag(igout) |
---|
| 840 | ENDIF |
---|
| 841 | ! |
---|
| 842 | |
---|
| 843 | ! c 4. Introduce a correcting factor for coef, in order to obtain an |
---|
| 844 | ! effective |
---|
| 845 | ! c sigdz larger in the present case (using cv3p2_closure) than in the |
---|
| 846 | ! old |
---|
| 847 | ! c closure (using cv3_closure). |
---|
| 848 | IF (1==0) THEN |
---|
| 849 | DO il = 1, ncum |
---|
| 850 | ! c coef(il) = 2.*coef(il) |
---|
| 851 | coef(il) = 5.*coef(il) |
---|
| 852 | END DO |
---|
| 853 | ! version CVS du ..2008 |
---|
| 854 | ELSE |
---|
| 855 | IF (iflag_cvl_sigd==0) THEN |
---|
| 856 | ! test pour verifier qu on fait la meme chose qu avant: sid constant |
---|
| 857 | coef(1:ncum) = 1. |
---|
| 858 | ELSE |
---|
| 859 | coef(1:ncum) = min(2.*coef(1:ncum), 5.) |
---|
| 860 | coef(1:ncum) = max(2.*coef(1:ncum), 0.2) |
---|
| 861 | END IF |
---|
| 862 | END IF |
---|
| 863 | |
---|
| 864 | IF (prt_level>=20) PRINT *, 'cv3p2_closure FIN' |
---|
| 865 | RETURN |
---|
| 866 | END SUBROUTINE cv3p2_closure |
---|
| 867 | |
---|
| 868 | |
---|