[814] | 1 | SUBROUTINE thermcell_main(ngrid,nlay,ptimestep & |
---|
| 2 | & ,pplay,pplev,pphi,debut & |
---|
| 3 | & ,pu,pv,pt,po & |
---|
| 4 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
| 5 | & ,fm0,entr0,zqla,lmax & |
---|
| 6 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
| 7 | & ,r_aspect,l_mix,w2di,tho) |
---|
| 8 | |
---|
| 9 | IMPLICIT NONE |
---|
| 10 | |
---|
| 11 | !======================================================================= |
---|
| 12 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 13 | ! Version du 09.02.07 |
---|
| 14 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 15 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 16 | ! |
---|
| 17 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 18 | ! |
---|
| 19 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 20 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 21 | ! mélange |
---|
| 22 | ! |
---|
| 23 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 24 | ! en compte: |
---|
| 25 | ! 1. un flux de masse montant |
---|
| 26 | ! 2. un flux de masse descendant |
---|
| 27 | ! 3. un entrainement |
---|
| 28 | ! 4. un detrainement |
---|
| 29 | ! |
---|
| 30 | !======================================================================= |
---|
| 31 | |
---|
| 32 | !----------------------------------------------------------------------- |
---|
| 33 | ! declarations: |
---|
| 34 | ! ------------- |
---|
| 35 | |
---|
| 36 | #include "dimensions.h" |
---|
| 37 | #include "dimphy.h" |
---|
| 38 | #include "YOMCST.h" |
---|
| 39 | #include "YOETHF.h" |
---|
| 40 | #include "FCTTRE.h" |
---|
| 41 | |
---|
| 42 | ! arguments: |
---|
| 43 | ! ---------- |
---|
| 44 | |
---|
| 45 | INTEGER ngrid,nlay,w2di,tho |
---|
| 46 | real ptimestep,l_mix,r_aspect |
---|
| 47 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 48 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 49 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 50 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 51 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 52 | real pphi(ngrid,nlay) |
---|
| 53 | |
---|
| 54 | ! local: |
---|
| 55 | ! ------ |
---|
| 56 | |
---|
| 57 | integer,save :: igout=871 |
---|
| 58 | integer,save :: lunout=6 |
---|
| 59 | integer,save :: lev_out=0 |
---|
| 60 | |
---|
| 61 | INTEGER ig,k,l,ll |
---|
| 62 | real zsortie1d(klon) |
---|
| 63 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 64 | INTEGER lmix(klon) |
---|
| 65 | real linter(klon) |
---|
| 66 | real zmix(klon) |
---|
| 67 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev) |
---|
| 68 | real zmax_sec(klon) |
---|
| 69 | real w_est(klon,klev+1) |
---|
| 70 | !on garde le zmax du pas de temps precedent |
---|
| 71 | real zmax0(klon) |
---|
| 72 | save zmax0 |
---|
| 73 | |
---|
| 74 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 75 | real deltaz(klon,klev) |
---|
| 76 | REAL zh(klon,klev),zdhadj(klon,klev) |
---|
| 77 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 78 | REAL ztv(klon,klev) |
---|
| 79 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 80 | real zl(klon,klev) |
---|
| 81 | real zsortie(klon,klev) |
---|
| 82 | real zva(klon,klev) |
---|
| 83 | real zua(klon,klev) |
---|
| 84 | real zoa(klon,klev) |
---|
| 85 | |
---|
| 86 | real zta(klon,klev) |
---|
| 87 | real zha(klon,klev) |
---|
| 88 | real fraca(klon,klev+1) |
---|
| 89 | real zf,zf2 |
---|
| 90 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 91 | real q2(klon,klev) |
---|
| 92 | common/comtherm/thetath2,wth2 |
---|
| 93 | |
---|
| 94 | real ratqscth(klon,klev) |
---|
| 95 | real var |
---|
| 96 | real vardiff |
---|
| 97 | real ratqsdiff(klon,klev) |
---|
| 98 | integer isplit,nsplit |
---|
| 99 | parameter (nsplit=10) |
---|
| 100 | data isplit/0/ |
---|
| 101 | save isplit |
---|
| 102 | |
---|
| 103 | logical sorties |
---|
| 104 | real rho(klon,klev),rhobarz(klon,klev+1),masse(klon,klev) |
---|
| 105 | real zpspsk(klon,klev) |
---|
| 106 | |
---|
| 107 | real wmax(klon) |
---|
| 108 | real wmax_sec(klon) |
---|
| 109 | real fm0(klon,klev+1),entr0(klon,klev),detr(klon,klev) |
---|
| 110 | real detr0(klon,klev) |
---|
| 111 | real fm(klon,klev+1),entr(klon,klev) |
---|
| 112 | |
---|
| 113 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 114 | !niveau de condensation |
---|
| 115 | real nivcon(klon) |
---|
| 116 | real zcon(klon) |
---|
| 117 | REAL CHI |
---|
| 118 | real zcon2(klon) |
---|
| 119 | real pcon(klon) |
---|
| 120 | real zqsat(klon,klev) |
---|
| 121 | real zqsatth(klon,klev) |
---|
| 122 | |
---|
| 123 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 124 | real detr_star(klon,klev) |
---|
| 125 | real alim_star_tot(klon),alim_star2(klon) |
---|
| 126 | real alim_star(klon,klev) |
---|
| 127 | real f(klon), f0(klon) |
---|
| 128 | save f0 |
---|
| 129 | real zlevinter(klon) |
---|
| 130 | logical debut |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | |
---|
| 134 | character*2 str2 |
---|
| 135 | character*10 str10 |
---|
| 136 | |
---|
| 137 | EXTERNAL SCOPY |
---|
| 138 | ! |
---|
| 139 | |
---|
| 140 | !----------------------------------------------------------------------- |
---|
| 141 | ! initialisation: |
---|
| 142 | ! --------------- |
---|
| 143 | ! |
---|
| 144 | if (lev_out.ge.1) print*,'thermcell_main V4' |
---|
| 145 | |
---|
| 146 | sorties=.true. |
---|
| 147 | IF(ngrid.NE.klon) THEN |
---|
| 148 | PRINT* |
---|
| 149 | PRINT*,'STOP dans convadj' |
---|
| 150 | PRINT*,'ngrid =',ngrid |
---|
| 151 | PRINT*,'klon =',klon |
---|
| 152 | ENDIF |
---|
| 153 | ! |
---|
| 154 | !Initialisation |
---|
| 155 | ! |
---|
| 156 | do ig=1,klon |
---|
| 157 | if ((debut).or.((.not.debut).and.(f0(ig).lt.1.e-10))) then |
---|
| 158 | f0(ig)=1.e-5 |
---|
| 159 | zmax0(ig)=40. |
---|
| 160 | endif |
---|
| 161 | enddo |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | !----------------------------------------------------------------------- |
---|
| 166 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 167 | ! -------------------------------------------------------------------- |
---|
| 168 | ! |
---|
| 169 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 170 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 171 | |
---|
| 172 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
| 173 | |
---|
| 174 | !------------------------------------------------------------------------ |
---|
| 175 | ! -------------------- |
---|
| 176 | ! |
---|
| 177 | ! |
---|
| 178 | ! + + + + + + + + + + + |
---|
| 179 | ! |
---|
| 180 | ! |
---|
| 181 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 182 | ! wh,wt,wo ... |
---|
| 183 | ! |
---|
| 184 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 185 | ! |
---|
| 186 | ! |
---|
| 187 | ! -------------------- zlev(1) |
---|
| 188 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 189 | ! |
---|
| 190 | ! |
---|
| 191 | |
---|
| 192 | !----------------------------------------------------------------------- |
---|
| 193 | ! Calcul des altitudes des couches |
---|
| 194 | !----------------------------------------------------------------------- |
---|
| 195 | |
---|
| 196 | do l=2,nlay |
---|
| 197 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 198 | enddo |
---|
| 199 | zlev(:,1)=0. |
---|
| 200 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 201 | do l=1,nlay |
---|
| 202 | zlay(:,l)=pphi(:,l)/RG |
---|
| 203 | enddo |
---|
| 204 | !calcul de l epaisseur des couches |
---|
| 205 | do l=1,nlay |
---|
| 206 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 207 | enddo |
---|
| 208 | |
---|
| 209 | ! print*,'2 OK convect8' |
---|
| 210 | !----------------------------------------------------------------------- |
---|
| 211 | ! Calcul des densites |
---|
| 212 | !----------------------------------------------------------------------- |
---|
| 213 | |
---|
| 214 | do l=1,nlay |
---|
| 215 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 216 | enddo |
---|
| 217 | |
---|
| 218 | do l=2,nlay |
---|
| 219 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 220 | enddo |
---|
| 221 | |
---|
| 222 | !calcul de la masse |
---|
| 223 | do l=1,nlay |
---|
| 224 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 225 | enddo |
---|
| 226 | |
---|
| 227 | if (lev_out.ge.1) print*,'thermcell_main apres initialisation' |
---|
| 228 | |
---|
| 229 | !------------------------------------------------------------------ |
---|
| 230 | ! Calcul de w2, carre de w a partir de la cape |
---|
| 231 | ! |
---|
| 232 | ! Indicages: |
---|
| 233 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 234 | ! une vitesse wa(k,l). |
---|
| 235 | ! |
---|
| 236 | ! -------------------- |
---|
| 237 | ! |
---|
| 238 | ! + + + + + + + + + + |
---|
| 239 | ! |
---|
| 240 | ! wa(k,l) ---- -------------------- l |
---|
| 241 | ! /\ |
---|
| 242 | ! /||\ + + + + + + + + + + |
---|
| 243 | ! || |
---|
| 244 | ! || -------------------- |
---|
| 245 | ! || |
---|
| 246 | ! || + + + + + + + + + + |
---|
| 247 | ! || |
---|
| 248 | ! || -------------------- |
---|
| 249 | ! ||__ |
---|
| 250 | ! |___ + + + + + + + + + + k |
---|
| 251 | ! |
---|
| 252 | ! -------------------- |
---|
| 253 | ! |
---|
| 254 | ! |
---|
| 255 | ! |
---|
| 256 | !------------------------------------------------------------------ |
---|
| 257 | !definition du profil d alimentation a partir de la flottabilite: |
---|
| 258 | !alim_star, alim_star_tot, lalim et lmin |
---|
| 259 | !------------------------------------------------------------------ |
---|
| 260 | ! |
---|
| 261 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
| 262 | CALL thermcell_init(ngrid,nlay,ztv,zlev, & |
---|
| 263 | & lalim,lmin,alim_star,alim_star_tot,lev_out) |
---|
| 264 | |
---|
| 265 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_init' |
---|
| 266 | if (lev_out.ge.10) then |
---|
| 267 | write(lunout,*) 'Dans thermcell_main 1' |
---|
| 268 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 269 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 270 | endif |
---|
| 271 | |
---|
| 272 | !----------------------------------------------------------------------------------- |
---|
| 273 | !calcul des caracteristiques du thermique sec pour le calcul de detr et la fermeture |
---|
| 274 | !----------------------------------------------------------------------------------- |
---|
| 275 | ! |
---|
| 276 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 277 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
| 278 | |
---|
| 279 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | |
---|
| 283 | !--------------------------------------------------------------------------------- |
---|
| 284 | !calcul du melange et des variables dans le thermique |
---|
| 285 | !-------------------------------------------------------------------------------- |
---|
| 286 | ! |
---|
| 287 | CALL thermcell_plume(ngrid,nlay,ztv,zthl,po,zl,rhobarz, & |
---|
| 288 | & zlev,pplev,pphi,zpspsk,l_mix,r_aspect,alim_star, & |
---|
| 289 | & lalim,zmax_sec,f0,detr_star,entr_star,f_star,ztva, & |
---|
| 290 | & ztla,zqla,zqta,zha,zw2,zqsatth,lmix,linter,lev_out) |
---|
| 291 | |
---|
| 292 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 293 | if (lev_out.ge.10) then |
---|
| 294 | write(lunout,*) 'Dans thermcell_main 2' |
---|
| 295 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 296 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 297 | write(lunout,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 298 | write(lunout,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
| 299 | & ,f_star(igout,l+1),l=1,lmax(igout)) |
---|
| 300 | endif |
---|
| 301 | |
---|
| 302 | !------------------------------------------------------------------------------- |
---|
| 303 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 304 | !------------------------------------------------------------------------------- |
---|
| 305 | ! |
---|
| 306 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 307 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
| 308 | |
---|
| 309 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
| 310 | |
---|
| 311 | !------------------------------------------------------------------------------- |
---|
| 312 | ! Fermeture,determination de f |
---|
| 313 | !------------------------------------------------------------------------------- |
---|
| 314 | |
---|
| 315 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
| 316 | & zlev,lalim,alim_star,zmax_sec,wmax_sec,zmax,wmax,f,f0,lev_out) |
---|
| 317 | |
---|
| 318 | if(lev_out.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
| 319 | |
---|
| 320 | !------------------------------------------------------------------------------- |
---|
| 321 | !deduction des flux |
---|
| 322 | !------------------------------------------------------------------------------- |
---|
| 323 | |
---|
| 324 | CALL thermcell_flux(ngrid,nlay,ptimestep,masse, & |
---|
| 325 | & lalim,lmax,alim_star, & |
---|
| 326 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
| 327 | & detr,zqla,zmax,lev_out,lunout,igout) |
---|
| 328 | |
---|
| 329 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
| 330 | |
---|
| 331 | !c------------------------------------------------------------------ |
---|
| 332 | ! calcul du transport vertical |
---|
| 333 | !------------------------------------------------------------------ |
---|
| 334 | |
---|
| 335 | if (w2di.eq.1) then |
---|
| 336 | fm0=fm0+ptimestep*(fm-fm0)/float(tho) |
---|
| 337 | entr0=entr0+ptimestep*(entr-entr0)/float(tho) |
---|
| 338 | else |
---|
| 339 | fm0=fm |
---|
| 340 | entr0=entr |
---|
| 341 | detr0=detr |
---|
| 342 | endif |
---|
| 343 | |
---|
| 344 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 345 | & zthl,zdthladj,zta,lev_out) |
---|
| 346 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 347 | & po,pdoadj,zoa,lev_out) |
---|
| 348 | |
---|
| 349 | if (1.eq.0) then |
---|
| 350 | |
---|
| 351 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 352 | ! de pression horizontal avec l'environnement |
---|
| 353 | |
---|
| 354 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 355 | & ,fraca,zmax & |
---|
| 356 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
| 357 | else |
---|
| 358 | |
---|
| 359 | ! calcul purement conservatif pour le transport de V |
---|
| 360 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 361 | & ,zu,pduadj,zua,lev_out) |
---|
| 362 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 363 | & ,zv,pdvadj,zva,lev_out) |
---|
| 364 | endif |
---|
| 365 | |
---|
| 366 | ! print*,'13 OK convect8' |
---|
| 367 | do l=1,nlay |
---|
| 368 | do ig=1,ngrid |
---|
| 369 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 370 | enddo |
---|
| 371 | enddo |
---|
| 372 | |
---|
| 373 | print*,'14 OK convect8' |
---|
| 374 | !------------------------------------------------------------------ |
---|
| 375 | ! Calculs de diagnostiques pour les sorties |
---|
| 376 | !------------------------------------------------------------------ |
---|
| 377 | !calcul de fraca pour les sorties |
---|
| 378 | |
---|
| 379 | if (sorties) then |
---|
| 380 | do ig=1,klon |
---|
| 381 | fraca(ig,1)=0. |
---|
| 382 | enddo |
---|
| 383 | do l=2,nlay |
---|
| 384 | do ig=1,klon |
---|
| 385 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 386 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 387 | else |
---|
| 388 | fraca(ig,l)=0. |
---|
| 389 | endif |
---|
| 390 | enddo |
---|
| 391 | enddo |
---|
| 392 | |
---|
| 393 | ! calcul du niveau de condensation |
---|
| 394 | ! initialisation |
---|
| 395 | do ig=1,ngrid |
---|
| 396 | nivcon(ig)=0. |
---|
| 397 | zcon(ig)=0. |
---|
| 398 | enddo |
---|
| 399 | !nouveau calcul |
---|
| 400 | do ig=1,ngrid |
---|
| 401 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 402 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 403 | enddo |
---|
| 404 | do k=1,nlay |
---|
| 405 | do ig=1,ngrid |
---|
| 406 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 407 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 408 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 409 | endif |
---|
| 410 | enddo |
---|
| 411 | enddo |
---|
| 412 | do k=nlay,1,-1 |
---|
| 413 | do ig=1,ngrid |
---|
| 414 | if (zqla(ig,k).gt.1e-10) then |
---|
| 415 | nivcon(ig)=k |
---|
| 416 | zcon(ig)=zlev(ig,k) |
---|
| 417 | endif |
---|
| 418 | enddo |
---|
| 419 | enddo |
---|
| 420 | !calcul des moments |
---|
| 421 | !initialisation |
---|
| 422 | do l=1,nlay |
---|
| 423 | do ig=1,ngrid |
---|
| 424 | q2(ig,l)=0. |
---|
| 425 | wth2(ig,l)=0. |
---|
| 426 | wth3(ig,l)=0. |
---|
| 427 | ratqscth(ig,l)=0. |
---|
| 428 | ratqsdiff(ig,l)=0. |
---|
| 429 | enddo |
---|
| 430 | enddo |
---|
| 431 | do l=1,nlay |
---|
| 432 | do ig=1,ngrid |
---|
| 433 | zf=fraca(ig,l) |
---|
| 434 | zf2=zf/(1.-zf) |
---|
| 435 | thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
| 436 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 437 | ! print*,'wth2=',wth2(ig,l) |
---|
| 438 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 439 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
| 440 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 441 | !test: on calcul q2/po=ratqsc |
---|
| 442 | ratqscth(ig,l)=sqrt(q2(ig,l))/(po(ig,l)*1000.) |
---|
| 443 | enddo |
---|
| 444 | enddo |
---|
| 445 | !calcul du ratqscdiff |
---|
| 446 | var=0. |
---|
| 447 | vardiff=0. |
---|
| 448 | ratqsdiff(:,:)=0. |
---|
| 449 | do ig=1,ngrid |
---|
| 450 | do l=1,lalim(ig) |
---|
| 451 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 452 | enddo |
---|
| 453 | enddo |
---|
| 454 | do ig=1,ngrid |
---|
| 455 | do l=1,lalim(ig) |
---|
| 456 | zf=fraca(ig,l) |
---|
| 457 | zf2=zf/(1.-zf) |
---|
| 458 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 459 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 460 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 461 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 462 | enddo |
---|
| 463 | enddo |
---|
| 464 | do l=1,nlay |
---|
| 465 | do ig=1,ngrid |
---|
| 466 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 467 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 468 | enddo |
---|
| 469 | enddo |
---|
| 470 | !-------------------------------------------------------------------- |
---|
| 471 | ! |
---|
| 472 | !ecriture des fichiers sortie |
---|
| 473 | ! print*,'15 OK convect8' |
---|
| 474 | |
---|
| 475 | isplit=isplit+1 |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | #ifdef und |
---|
| 479 | if (lev_out.ge.1) print*,'thermcell_main sorties 1D' |
---|
| 480 | #include "thermcell_out1d.h" |
---|
| 481 | #endif |
---|
| 482 | |
---|
| 483 | |
---|
| 484 | ! #define troisD |
---|
| 485 | if (lev_out.ge.1) print*,'thermcell_main sorties 3D' |
---|
| 486 | #ifdef troisD |
---|
| 487 | #include "thermcell_out3d.h" |
---|
| 488 | #endif |
---|
| 489 | |
---|
| 490 | endif |
---|
| 491 | |
---|
| 492 | if (lev_out.ge.1) print*,'thermcell_main FIN OK' |
---|
| 493 | |
---|
| 494 | return |
---|
| 495 | end |
---|
| 496 | |
---|
| 497 | !----------------------------------------------------------------------------- |
---|