[879] | 1 | Subroutine WAKE (p,ph,ppi,dtime,sigd_con |
---|
[953] | 2 | : ,te0,qe0,omgb |
---|
[879] | 3 | : ,dtdwn,dqdwn,amdwn,amup,dta,dqa |
---|
| 4 | : ,wdtPBL,wdqPBL,udtPBL,udqPBL |
---|
| 5 | o ,deltatw,deltaqw,dth,hw,sigmaw,wape,fip,gfl |
---|
| 6 | o ,dtls,dqls |
---|
| 7 | o ,ktopw,omgbdth,dp_omgb,wdens |
---|
| 8 | o ,tu,qu |
---|
| 9 | o ,dtKE,dqKE |
---|
| 10 | o ,dtPBL,dqPBL |
---|
| 11 | o ,omg,dp_deltomg,spread |
---|
| 12 | o ,Cstar,d_deltat_gw |
---|
| 13 | o ,d_deltatw2,d_deltaqw2) |
---|
| 14 | |
---|
| 15 | *************************************************************** |
---|
| 16 | * * |
---|
| 17 | * WAKE * |
---|
| 18 | * retour a un Pupper fixe * |
---|
| 19 | * * |
---|
| 20 | * written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 21 | * modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 22 | *************************************************************** |
---|
| 23 | c |
---|
[974] | 24 | use dimphy |
---|
| 25 | IMPLICIT none |
---|
| 26 | c============================================================================ |
---|
| 27 | C |
---|
| 28 | C |
---|
| 29 | C But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 30 | C grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 31 | C le declenchement de nouvelles colonnes convectives. |
---|
| 32 | C |
---|
| 33 | C Variables d'etat : deltatw : ecart de temperature wake-undisturbed area |
---|
| 34 | C deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 35 | C sigmaw : fraction d'aire occupee par la poche. |
---|
| 36 | C |
---|
| 37 | C Variable de sortie : |
---|
| 38 | c |
---|
| 39 | c wape : WAke Potential Energy |
---|
| 40 | c fip : Front Incident Power (W/m2) - ALP |
---|
| 41 | c gfl : Gust Front Length per unit area (m-1) |
---|
| 42 | C dtls : large scale temperature tendency due to wake |
---|
| 43 | C dqls : large scale humidity tendency due to wake |
---|
| 44 | C hw : hauteur de la poche |
---|
| 45 | C dp_omgb : vertical gradient of large scale omega |
---|
| 46 | C omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 47 | C dtKE : differential heating (wake - unpertubed) |
---|
| 48 | C dqKE : differential moistening (wake - unpertubed) |
---|
| 49 | C omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 50 | C dp_deltomg : vertical gradient of omg (s-1) |
---|
| 51 | C spread : spreading term in dt_wake and dq_wake |
---|
| 52 | C deltatw : updated temperature difference (T_w-T_u). |
---|
| 53 | C deltaqw : updated humidity difference (q_w-q_u). |
---|
| 54 | C sigmaw : updated wake fractional area. |
---|
| 55 | C d_deltat_gw : delta T tendency due to GW |
---|
| 56 | c |
---|
| 57 | C Variables d'entree : |
---|
| 58 | c |
---|
| 59 | c aire : aire de la maille |
---|
| 60 | c te0 : temperature dans l'environnement (K) |
---|
| 61 | C qe0 : humidite dans l'environnement (kg/kg) |
---|
| 62 | C omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 63 | C dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 64 | C dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 65 | C dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 66 | C dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 67 | C amdwn: flux de masse total des descentes, par unite de |
---|
| 68 | C surface de la maille (kg/m2/s) |
---|
| 69 | C amup : flux de masse total des ascendances, par unite de |
---|
| 70 | C surface de la maille (kg/m2/s) |
---|
| 71 | C p : pressions aux milieux des couches (Pa) |
---|
| 72 | C ph : pressions aux interfaces (Pa) |
---|
| 73 | C ppi : (p/p_0)**kapa (adim) |
---|
| 74 | C dtime: increment temporel (s) |
---|
| 75 | c |
---|
| 76 | C Variables internes : |
---|
| 77 | c |
---|
| 78 | c rhow : masse volumique de la poche froide |
---|
| 79 | C rho : environment density at P levels |
---|
| 80 | C rhoh : environment density at Ph levels |
---|
| 81 | C te : environment temperature | may change within |
---|
| 82 | C qe : environment humidity | sub-time-stepping |
---|
| 83 | C the : environment potential temperature |
---|
| 84 | C thu : potential temperature in undisturbed area |
---|
| 85 | C tu : temperature in undisturbed area |
---|
| 86 | C qu : humidity in undisturbed area |
---|
| 87 | C dp_omgb: vertical gradient og LS omega |
---|
| 88 | C omgbw : wake average vertical omega |
---|
| 89 | C dp_omgbw: vertical gradient of omgbw |
---|
| 90 | C omgbdq : flux of Delta_q transported by LS omega |
---|
| 91 | C dth : potential temperature diff. wake-undist. |
---|
| 92 | C th1 : first pot. temp. for vertical advection (=thu) |
---|
| 93 | C th2 : second pot. temp. for vertical advection (=thw) |
---|
| 94 | C q1 : first humidity for vertical advection |
---|
| 95 | C q2 : second humidity for vertical advection |
---|
| 96 | C d_deltatw : terme de redistribution pour deltatw |
---|
| 97 | C d_deltaqw : terme de redistribution pour deltaqw |
---|
| 98 | C deltatw0 : deltatw initial |
---|
| 99 | C deltaqw0 : deltaqw initial |
---|
| 100 | C hw0 : hw initial |
---|
| 101 | C sigmaw0: sigmaw initial |
---|
| 102 | C amflux : horizontal mass flux through wake boundary |
---|
| 103 | C wdens : number of wakes per unit area (3D) or per |
---|
| 104 | C unit length (2D) |
---|
| 105 | C Tgw : 1 sur la période de onde de gravité |
---|
| 106 | c Cgw : vitesse de propagation de onde de gravité |
---|
| 107 | c LL : distance entre 2 poches |
---|
| 108 | |
---|
| 109 | c------------------------------------------------------------------------- |
---|
| 110 | c Déclaration de variables |
---|
| 111 | c------------------------------------------------------------------------- |
---|
| 112 | |
---|
| 113 | #include "dimensions.h" |
---|
| 114 | #include "YOMCST.h" |
---|
| 115 | #include "cvthermo.h" |
---|
| 116 | #include "iniprint.h" |
---|
| 117 | |
---|
| 118 | c Arguments en entree |
---|
| 119 | c-------------------- |
---|
| 120 | |
---|
| 121 | REAL, dimension(klon,klev) :: p, ppi |
---|
| 122 | REAL, dimension(klon,klev+1) :: ph, omgb |
---|
| 123 | REAL dtime |
---|
| 124 | REAL, dimension(klon,klev) :: te0,qe0 |
---|
| 125 | REAL, dimension(klon,klev) :: dtdwn, dqdwn |
---|
| 126 | REAL, dimension(klon,klev) :: wdtPBL,wdqPBL |
---|
| 127 | REAL, dimension(klon,klev) :: udtPBL,udqPBL |
---|
| 128 | REAL, dimension(klon,klev) :: amdwn, amup |
---|
| 129 | REAL, dimension(klon,klev) :: dta, dqa |
---|
| 130 | REAL, dimension(klon) :: sigd_con |
---|
| 131 | |
---|
| 132 | c Sorties |
---|
| 133 | c-------- |
---|
| 134 | |
---|
| 135 | REAL, dimension(klon,klev) :: deltatw, deltaqw, dth |
---|
| 136 | REAL, dimension(klon,klev) :: tu, qu |
---|
| 137 | REAL, dimension(klon,klev) :: dtls, dqls |
---|
| 138 | REAL, dimension(klon,klev) :: dtKE, dqKE |
---|
| 139 | REAL, dimension(klon,klev) :: dtPBL, dqPBL |
---|
| 140 | REAL, dimension(klon,klev) :: spread |
---|
| 141 | REAL, dimension(klon,klev) :: d_deltatgw |
---|
| 142 | REAL, dimension(klon,klev) :: d_deltatw2, d_deltaqw2 |
---|
| 143 | REAL, dimension(klon,klev+1) :: omgbdth, omg |
---|
| 144 | REAL, dimension(klon,klev) :: dp_omgb, dp_deltomg |
---|
| 145 | REAL, dimension(klon,klev) :: d_deltat_gw |
---|
| 146 | REAL, dimension(klon) :: hw, sigmaw, wape, fip, gfl, Cstar |
---|
| 147 | INTEGER, dimension(klon) :: ktopw |
---|
| 148 | |
---|
| 149 | c Variables internes |
---|
| 150 | c------------------- |
---|
| 151 | |
---|
| 152 | c Variables à fixer |
---|
| 153 | REAL ALON |
---|
| 154 | REAL coefgw |
---|
| 155 | REAL :: wdens0, wdens |
---|
| 156 | REAL stark |
---|
| 157 | REAL alpk |
---|
| 158 | REAL delta_t_min |
---|
| 159 | REAL Pupper |
---|
| 160 | INTEGER nsub |
---|
| 161 | REAL dtimesub |
---|
| 162 | REAL sigmad, hwmin |
---|
| 163 | cIM 080208 |
---|
| 164 | LOGICAL, dimension(klon) :: gwake |
---|
| 165 | |
---|
| 166 | c Variables de sauvegarde |
---|
| 167 | REAL, dimension(klon,klev) :: deltatw0 |
---|
| 168 | REAL, dimension(klon,klev) :: deltaqw0 |
---|
| 169 | REAL, dimension(klon,klev) :: te, qe |
---|
| 170 | REAL, dimension(klon) :: sigmaw0, sigmaw1 |
---|
| 171 | |
---|
| 172 | c Variables pour les GW |
---|
| 173 | REAL, DIMENSION(klon) :: LL |
---|
| 174 | REAL, dimension(klon,klev) :: N2 |
---|
| 175 | REAL, dimension(klon,klev) :: Cgw |
---|
| 176 | REAL, dimension(klon,klev) :: Tgw |
---|
| 177 | |
---|
| 178 | c Variables liées au calcul de hw |
---|
| 179 | REAL, DIMENSION(klon) :: ptop_provis, ptop, ptop_new |
---|
| 180 | REAL, DIMENSION(klon) :: sum_dth |
---|
| 181 | REAL, DIMENSION(klon) :: dthmin |
---|
| 182 | REAL, DIMENSION(klon) :: z, dz, hw0 |
---|
| 183 | INTEGER, DIMENSION(klon) :: ktop, kupper |
---|
| 184 | |
---|
| 185 | c Autres variables internes |
---|
| 186 | INTEGER isubstep, k, i |
---|
| 187 | |
---|
| 188 | REAL, DIMENSION(klon) :: sum_thu, sum_tu, sum_qu,sum_thvu |
---|
| 189 | REAL, DIMENSION(klon) :: sum_dq, sum_rho |
---|
| 190 | REAL, DIMENSION(klon) :: sum_dtdwn, sum_dqdwn |
---|
| 191 | REAL, DIMENSION(klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 192 | REAL, DIMENSION(klon) :: av_dth, av_dq, av_rho |
---|
| 193 | REAL, DIMENSION(klon) :: av_dtdwn, av_dqdwn |
---|
| 194 | |
---|
| 195 | REAL, DIMENSION(klon,klev) :: rho, rhow |
---|
| 196 | REAL, DIMENSION(klon,klev+1) :: rhoh |
---|
| 197 | REAL, DIMENSION(klon,klev) :: rhow_moyen |
---|
| 198 | REAL, DIMENSION(klon,klev) :: zh |
---|
| 199 | REAL, DIMENSION(klon,klev+1) :: zhh |
---|
| 200 | REAL, DIMENSION(klon,klev) :: epaisseur1, epaisseur2 |
---|
| 201 | |
---|
| 202 | REAL, DIMENSION(klon,klev) :: the, thu |
---|
| 203 | |
---|
| 204 | REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
| 205 | |
---|
| 206 | REAL, DIMENSION(klon,klev+1) :: omgbw |
---|
| 207 | REAL, DIMENSION(klon) :: omgtop |
---|
| 208 | REAL, DIMENSION(klon,klev) :: dp_omgbw |
---|
| 209 | REAL, DIMENSION(klon) :: ztop, dztop |
---|
| 210 | REAL, DIMENSION(klon,klev) :: alpha_up |
---|
| 211 | |
---|
| 212 | REAL, dimension(klon) :: RRe1, RRe2 |
---|
| 213 | REAL :: RRd1, RRd2 |
---|
| 214 | REAL, DIMENSION(klon,klev) :: Th1, Th2, q1, q2 |
---|
| 215 | REAL, DIMENSION(klon,klev) :: D_Th1, D_Th2, D_dth |
---|
| 216 | REAL, DIMENSION(klon,klev) :: D_q1, D_q2, D_dq |
---|
| 217 | REAL, DIMENSION(klon,klev) :: omgbdq |
---|
| 218 | |
---|
| 219 | REAL, dimension(klon) :: ff, gg |
---|
| 220 | REAL, dimension(klon) :: wape2, Cstar2, heff |
---|
| 221 | |
---|
| 222 | REAL, DIMENSION(klon,klev) :: Crep |
---|
| 223 | REAL Crep_upper, Crep_sol |
---|
| 224 | |
---|
| 225 | C------------------------------------------------------------------------- |
---|
| 226 | c Initialisations |
---|
| 227 | c------------------------------------------------------------------------- |
---|
| 228 | |
---|
| 229 | c print*, 'wake initialisations' |
---|
| 230 | |
---|
| 231 | c Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 232 | c------------------------------------------------------------------------- |
---|
| 233 | |
---|
| 234 | DATA sigmad, hwmin /.02,10./ |
---|
| 235 | |
---|
| 236 | C Longueur de maille (en m) |
---|
| 237 | c------------------------------------------------------------------------- |
---|
| 238 | |
---|
| 239 | c ALON = 3.e5 |
---|
| 240 | ALON = 1.e6 |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | C Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
| 244 | c |
---|
| 245 | c coefgw : Coefficient pour les ondes de gravité |
---|
| 246 | c stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 247 | c wdens : Densité de poche froide par maille |
---|
| 248 | c------------------------------------------------------------------------- |
---|
| 249 | |
---|
| 250 | coefgw=10 |
---|
| 251 | c coefgw=1 |
---|
| 252 | c wdens0 = 1.0/(alon**2) |
---|
| 253 | wdens = 1.0/(alon**2) |
---|
| 254 | stark = 0.50 |
---|
| 255 | cCRtest |
---|
| 256 | alpk=0.1 |
---|
| 257 | c alpk = 1.0 |
---|
| 258 | c alpk = 0.5 |
---|
| 259 | c alpk = 0.05 |
---|
| 260 | Crep_upper=0.9 |
---|
| 261 | Crep_sol=1.0 |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | C Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 265 | c------------------------------------------------------------------------- |
---|
| 266 | |
---|
| 267 | delta_t_min = 0.2 |
---|
| 268 | |
---|
| 269 | C 1. - Save initial values and initialize tendencies |
---|
| 270 | C -------------------------------------------------- |
---|
| 271 | |
---|
| 272 | DO k=1,klev |
---|
| 273 | DO i=1, klon |
---|
| 274 | deltatw0(i,k) = deltatw(i,k) |
---|
| 275 | deltaqw0(i,k)= deltaqw(i,k) |
---|
| 276 | te(i,k) = te0(i,k) |
---|
| 277 | qe(i,k) = qe0(i,k) |
---|
| 278 | dtls(i,k) = 0. |
---|
| 279 | dqls(i,k) = 0. |
---|
| 280 | d_deltat_gw(i,k)=0. |
---|
| 281 | !IM 060508 beg |
---|
| 282 | d_deltatw2(i,k)=0. |
---|
| 283 | d_deltaqw2(i,k)=0. |
---|
| 284 | !IM 060508 end |
---|
| 285 | ENDDO |
---|
| 286 | ENDDO |
---|
| 287 | c sigmaw1=sigmaw |
---|
| 288 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
| 289 | c print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 290 | c ENDIF |
---|
| 291 | DO i=1, klon |
---|
| 292 | cc sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 293 | sigmaw(i) = amax1(sigmaw(i),sigmad) |
---|
| 294 | sigmaw(i) = amin1(sigmaw(i),0.99) |
---|
| 295 | sigmaw0(i) = sigmaw(i) |
---|
| 296 | ENDDO |
---|
| 297 | C |
---|
| 298 | C |
---|
| 299 | C 2. - Prognostic part |
---|
| 300 | C -------------------- |
---|
| 301 | C |
---|
| 302 | C |
---|
| 303 | C 2.1 - Undisturbed area and Wake integrals |
---|
| 304 | C --------------------------------------------------------- |
---|
| 305 | |
---|
| 306 | DO i=1, klon |
---|
| 307 | z(i) = 0. |
---|
| 308 | ktop(i)=0 |
---|
| 309 | kupper(i) = 0 |
---|
| 310 | sum_thu(i) = 0. |
---|
| 311 | sum_tu(i) = 0. |
---|
| 312 | sum_qu(i) = 0. |
---|
| 313 | sum_thvu(i) = 0. |
---|
| 314 | sum_dth(i) = 0. |
---|
| 315 | sum_dq(i) = 0. |
---|
| 316 | sum_rho(i) = 0. |
---|
| 317 | sum_dtdwn(i) = 0. |
---|
| 318 | sum_dqdwn(i) = 0. |
---|
| 319 | |
---|
| 320 | av_thu(i) = 0. |
---|
| 321 | av_tu(i) =0. |
---|
| 322 | av_qu(i) =0. |
---|
| 323 | av_thvu(i) = 0. |
---|
| 324 | av_dth(i) = 0. |
---|
| 325 | av_dq(i) = 0. |
---|
| 326 | av_rho(i) =0. |
---|
| 327 | av_dtdwn(i) =0. |
---|
| 328 | av_dqdwn(i) = 0. |
---|
| 329 | ENDDO |
---|
| 330 | c |
---|
| 331 | c Distance between wakes |
---|
| 332 | DO i = 1,klon |
---|
| 333 | LL(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens) |
---|
| 334 | ENDDO |
---|
| 335 | C Potential temperatures and humidity |
---|
| 336 | c---------------------------------------------------------- |
---|
| 337 | DO k =1,klev |
---|
| 338 | DO i=1, klon |
---|
| 339 | rho(i,k) = p(i,k)/(rd*te(i,k)) |
---|
| 340 | IF(k .eq. 1) THEN |
---|
| 341 | rhoh(i,k) = ph(i,k)/(rd*te(i,k)) |
---|
| 342 | zhh(i,k)=0 |
---|
| 343 | ELSE |
---|
| 344 | rhoh(i,k) = ph(i,k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 345 | zhh(i,k)=(ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 346 | ENDIF |
---|
| 347 | the(i,k) = te(i,k)/ppi(i,k) |
---|
| 348 | thu(i,k) = (te(i,k) - deltatw(i,k)*sigmaw(i))/ppi(i,k) |
---|
| 349 | tu(i,k) = te(i,k) - deltatw(i,k)*sigmaw(i) |
---|
| 350 | qu(i,k) = qe(i,k) - deltaqw(i,k)*sigmaw(i) |
---|
| 351 | rhow(i,k) = p(i,k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 352 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
| 353 | ENDDO |
---|
| 354 | ENDDO |
---|
| 355 | |
---|
| 356 | DO k = 1, klev-1 |
---|
| 357 | DO i=1, klon |
---|
| 358 | IF(k.eq.1) THEN |
---|
| 359 | N2(i,k)=0 |
---|
| 360 | ELSE |
---|
| 361 | N2(i,k)=amax1(0.,-RG**2/the(i,k)*rho(i,k)*(the(i,k+1)- |
---|
| 362 | $ the(i,k-1))/(p(i,k+1)-p(i,k-1))) |
---|
| 363 | ENDIF |
---|
| 364 | ZH(i,k)=(zhh(i,k)+zhh(i,k+1))/2 |
---|
| 365 | |
---|
| 366 | Cgw(i,k)=sqrt(N2(i,k))*ZH(i,k) |
---|
| 367 | Tgw(i,k)=coefgw*Cgw(i,k)/LL(i) |
---|
| 368 | ENDDO |
---|
| 369 | ENDDO |
---|
| 370 | |
---|
| 371 | DO i=1, klon |
---|
| 372 | N2(i,klev)=0 |
---|
| 373 | ZH(i,klev)=0 |
---|
| 374 | Cgw(i,klev)=0 |
---|
| 375 | Tgw(i,klev)=0 |
---|
| 376 | ENDDO |
---|
| 377 | |
---|
| 378 | c Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 379 | c----------------------------------------------------------------- |
---|
| 380 | |
---|
| 381 | DO k=1,klev |
---|
| 382 | DO i=1, klon |
---|
| 383 | epaisseur1(i,k)=0. |
---|
| 384 | epaisseur2(i,k)=0. |
---|
| 385 | ENDDO |
---|
| 386 | ENDDO |
---|
| 387 | |
---|
| 388 | DO i=1, klon |
---|
| 389 | epaisseur1(i,1)= -(ph(i,2)-ph(i,1))/(rho(i,1)*rg)+1. |
---|
| 390 | epaisseur2(i,1)= -(ph(i,2)-ph(i,1))/(rho(i,1)*rg)+1. |
---|
| 391 | rhow_moyen(i,1) = rhow(i,1) |
---|
| 392 | ENDDO |
---|
| 393 | |
---|
| 394 | DO k = 2, klev |
---|
| 395 | DO i=1, klon |
---|
| 396 | epaisseur1(i,k)= -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) +1. |
---|
| 397 | epaisseur2(i,k)=epaisseur2(i,k-1)+epaisseur1(i,k) |
---|
| 398 | rhow_moyen(i,k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+ |
---|
| 399 | $ rhow(i,k)*epaisseur1(i,k))/epaisseur2(i,k) |
---|
| 400 | ENDDO |
---|
| 401 | ENDDO |
---|
| 402 | |
---|
| 403 | C |
---|
| 404 | C Choose an integration bound well above wake top |
---|
| 405 | c----------------------------------------------------------------- |
---|
| 406 | c |
---|
| 407 | C Pupper = 50000. ! melting level |
---|
| 408 | Pupper = 60000. |
---|
| 409 | c Pupper = 80000. ! essais pour case_e |
---|
| 410 | C |
---|
| 411 | C Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 412 | C -------------------------------------------------------- |
---|
| 413 | c |
---|
| 414 | c-1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 415 | |
---|
| 416 | DO i=1,klon |
---|
| 417 | ptop_provis(i)=ph(i,1) |
---|
| 418 | ENDDO |
---|
| 419 | DO k= 2,klev |
---|
| 420 | DO i=1,klon |
---|
| 421 | c |
---|
| 422 | cIM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 423 | c |
---|
| 424 | IF (dth(i,k) .GT. -delta_t_min .and. |
---|
| 425 | $ dth(i,k-1).LT. -delta_t_min .and. |
---|
| 426 | $ ptop_provis(i).EQ. ph(i,1)) THEN |
---|
| 427 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
| 428 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) / |
---|
| 429 | $ (dth(i,k) - dth(i,k-1)) |
---|
| 430 | ENDIF |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | |
---|
| 434 | c-2/ dth integral |
---|
| 435 | |
---|
| 436 | DO i=1,klon |
---|
| 437 | sum_dth(i) = 0. |
---|
| 438 | dthmin(i) = -delta_t_min |
---|
| 439 | z(i) = 0. |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | DO k = 1,klev |
---|
| 443 | DO i=1,klon |
---|
| 444 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-Ph(i,k))/(rho(i,k)*rg) |
---|
| 445 | IF (dz(i) .gt. 0) THEN |
---|
| 446 | z(i) = z(i)+dz(i) |
---|
| 447 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
| 448 | dthmin(i) = amin1(dthmin(i),dth(i,k)) |
---|
| 449 | ENDIF |
---|
| 450 | ENDDO |
---|
| 451 | ENDDO |
---|
| 452 | |
---|
| 453 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 454 | |
---|
| 455 | DO i=1,klon |
---|
| 456 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i),-0.5) |
---|
| 457 | hw0(i) = amax1(hwmin,hw0(i)) |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | c-4/ now, get Ptop |
---|
| 461 | |
---|
| 462 | DO i=1,klon |
---|
| 463 | z(i) = 0. |
---|
| 464 | ptop(i) = ph(i,1) |
---|
| 465 | ENDDO |
---|
| 466 | |
---|
| 467 | DO k = 1,klev |
---|
| 468 | DO i=1,klon |
---|
| 469 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg),hw0(i)-z(i)) |
---|
| 470 | IF (dz(i) .gt. 0) THEN |
---|
| 471 | z(i) = z(i)+dz(i) |
---|
| 472 | ptop(i) = ph(i,k)-rho(i,k)*rg*dz(i) |
---|
| 473 | ENDIF |
---|
| 474 | ENDDO |
---|
| 475 | ENDDO |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | C-5/ Determination de ktop et kupper |
---|
| 479 | |
---|
| 480 | DO k=klev,1,-1 |
---|
| 481 | DO i=1,klon |
---|
| 482 | IF (ph(i,k+1) .lt. ptop(i)) ktop(i)=k |
---|
| 483 | IF (ph(i,k+1) .lt. pupper) kupper(i)=k |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | |
---|
| 487 | c-6/ Correct ktop and ptop |
---|
| 488 | |
---|
| 489 | DO i = 1,klon |
---|
| 490 | ptop_new(i)=ptop(i) |
---|
| 491 | ENDDO |
---|
| 492 | DO k= klev,2,-1 |
---|
| 493 | DO i=1,klon |
---|
| 494 | IF (k .LE. ktop(i) .and. |
---|
| 495 | $ ptop_new(i) .EQ. ptop(i) .and. |
---|
| 496 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
| 497 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
| 498 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
| 499 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) / |
---|
| 500 | $ (dth(i,k) - dth(i,k-1)) |
---|
| 501 | ENDIF |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | |
---|
| 505 | DO i=1,klon |
---|
| 506 | ptop(i) = ptop_new(i) |
---|
| 507 | ENDDO |
---|
| 508 | |
---|
| 509 | DO k=klev,1,-1 |
---|
| 510 | DO i=1,klon |
---|
| 511 | IF (ph(i,k+1) .lt. ptop(i)) ktop(i)=k |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | c |
---|
| 515 | c-5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 516 | c |
---|
| 517 | DO k = 1,klev |
---|
| 518 | DO i=1,klon |
---|
| 519 | IF (k.GE. kupper(i)) THEN |
---|
| 520 | deltatw(i,k) = 0. |
---|
| 521 | deltaqw(i,k) = 0. |
---|
| 522 | ENDIF |
---|
| 523 | ENDDO |
---|
| 524 | ENDDO |
---|
| 525 | c |
---|
| 526 | C |
---|
| 527 | C Vertical gradient of LS omega |
---|
| 528 | C |
---|
| 529 | DO k = 1,klev |
---|
| 530 | DO i=1,klon |
---|
| 531 | IF (k.LE. kupper(i)) THEN |
---|
| 532 | dp_omgb(i,k) = (omgb(i,k+1) - omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 533 | ENDIF |
---|
| 534 | ENDDO |
---|
| 535 | ENDDO |
---|
| 536 | C |
---|
| 537 | C Integrals (and wake top level number) |
---|
| 538 | C -------------------------------------- |
---|
| 539 | C |
---|
| 540 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 541 | |
---|
| 542 | DO i=1,klon |
---|
| 543 | z(i) = 1. |
---|
| 544 | dz(i) = 1. |
---|
| 545 | sum_thvu(i) = thu(i,1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 546 | sum_dth(i) = 0. |
---|
| 547 | ENDDO |
---|
| 548 | |
---|
| 549 | DO k = 1,klev |
---|
| 550 | DO i=1,klon |
---|
| 551 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 552 | IF (dz(i) .GT. 0) THEN |
---|
| 553 | z(i) = z(i)+dz(i) |
---|
| 554 | sum_thu(i) = sum_thu(i) + thu(i,k)*dz(i) |
---|
| 555 | sum_tu(i) = sum_tu(i) + tu(i,k)*dz(i) |
---|
| 556 | sum_qu(i) = sum_qu(i) + qu(i,k)*dz(i) |
---|
| 557 | sum_thvu(i) = sum_thvu(i) + thu(i,k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 558 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
| 559 | sum_dq(i) = sum_dq(i) + deltaqw(i,k)*dz(i) |
---|
| 560 | sum_rho(i) = sum_rho(i) + rhow(i,k)*dz(i) |
---|
| 561 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i,k)*dz(i) |
---|
| 562 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i,k)*dz(i) |
---|
| 563 | ENDIF |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | c |
---|
| 567 | DO i=1,klon |
---|
| 568 | hw0(i) = z(i) |
---|
| 569 | ENDDO |
---|
| 570 | c |
---|
| 571 | C |
---|
| 572 | C 2.1 - WAPE and mean forcing computation |
---|
| 573 | C --------------------------------------- |
---|
| 574 | C |
---|
| 575 | C --------------------------------------- |
---|
| 576 | C |
---|
| 577 | C Means |
---|
| 578 | |
---|
| 579 | DO i=1,klon |
---|
| 580 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 581 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 582 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 583 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 584 | c av_thve = sum_thve/hw0 |
---|
| 585 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 586 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 587 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 588 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 589 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 590 | |
---|
| 591 | wape(i) = - rg*hw0(i)*(av_dth(i) |
---|
| 592 | $ + eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)* |
---|
| 593 | $ av_dq(i) ))/av_thvu(i) |
---|
| 594 | ENDDO |
---|
| 595 | C |
---|
| 596 | C 2.2 Prognostic variable update |
---|
| 597 | C ------------------------------ |
---|
| 598 | C |
---|
| 599 | C Filter out bad wakes |
---|
| 600 | |
---|
| 601 | DO k = 1,klev |
---|
| 602 | DO i=1,klon |
---|
| 603 | IF ( wape(i) .LT. 0.) THEN |
---|
| 604 | deltatw(i,k) = 0. |
---|
| 605 | deltaqw(i,k) = 0. |
---|
| 606 | dth(i,k) = 0. |
---|
| 607 | ENDIF |
---|
| 608 | ENDDO |
---|
| 609 | ENDDO |
---|
| 610 | c |
---|
| 611 | DO i=1,klon |
---|
| 612 | IF ( wape(i) .LT. 0.) THEN |
---|
| 613 | wape(i) = 0. |
---|
| 614 | Cstar(i) = 0. |
---|
| 615 | hw(i) = hwmin |
---|
| 616 | sigmaw(i) = amax1(sigmad,sigd_con(i)) |
---|
| 617 | fip(i) = 0. |
---|
| 618 | gwake(i) = .FALSE. |
---|
| 619 | ELSE |
---|
| 620 | Cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 621 | gwake(i) = .TRUE. |
---|
| 622 | ENDIF |
---|
| 623 | ENDDO |
---|
| 624 | c |
---|
| 625 | C |
---|
| 626 | CC ----------------------------------------------------------------- |
---|
| 627 | C Sub-time-stepping |
---|
| 628 | C ----------------- |
---|
| 629 | C |
---|
| 630 | nsub=10 |
---|
| 631 | dtimesub=dtime/nsub |
---|
| 632 | c |
---|
| 633 | c------------------------------------------------------------ |
---|
| 634 | DO isubstep = 1,nsub |
---|
| 635 | c------------------------------------------------------------ |
---|
| 636 | DO i=1,klon |
---|
| 637 | gfl(i) = 2.*sqrt(3.14*wdens*sigmaw(i)) |
---|
| 638 | ENDDO |
---|
| 639 | DO i=1,klon |
---|
| 640 | sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 641 | sigmaw(i) =amin1(sigmaw(i),0.99) !!!!!!!! |
---|
| 642 | c wdens = wdens0/(10.*sigmaw) |
---|
| 643 | c sigmaw =max(sigmaw,sigd_con) |
---|
| 644 | c sigmaw =max(sigmaw,sigmad) |
---|
| 645 | ENDDO |
---|
| 646 | C |
---|
| 647 | C |
---|
| 648 | c calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 649 | cIM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 650 | cIM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
| 651 | cIM 060208 au niveau k=1..? |
---|
| 652 | dp_deltomg(1:klon,1:klev)=0. |
---|
| 653 | DO k= 1,klev+1 |
---|
| 654 | DO i = 1,klon |
---|
| 655 | omg(i,k)=0. |
---|
| 656 | ENDDO |
---|
| 657 | ENDDO |
---|
| 658 | c |
---|
| 659 | DO i=1,klon |
---|
| 660 | z(i)= 0. |
---|
| 661 | omg(i,1) = 0. |
---|
| 662 | dp_deltomg(i,1) = -(gfl(i)*Cstar(i))/(sigmaw(i) * (1-sigmaw(i))) |
---|
| 663 | ENDDO |
---|
| 664 | c |
---|
| 665 | DO k= 2,klev |
---|
| 666 | DO i = 1,klon |
---|
| 667 | IF( k .LE. ktop(i)) THEN |
---|
| 668 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
| 669 | z(i) = z(i)+dz(i) |
---|
| 670 | dp_deltomg(i,k)= dp_deltomg(i,1) |
---|
| 671 | omg(i,k)= dp_deltomg(i,1)*z(i) |
---|
| 672 | ENDIF |
---|
| 673 | ENDDO |
---|
| 674 | ENDDO |
---|
| 675 | c |
---|
| 676 | DO i = 1,klon |
---|
| 677 | dztop(i)=-(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 678 | ztop(i) = z(i)+dztop(i) |
---|
| 679 | omgtop(i)=dp_deltomg(i,1)*ztop(i) |
---|
| 680 | ENDDO |
---|
| 681 | c |
---|
| 682 | c ----------------- |
---|
| 683 | c From m/s to Pa/s |
---|
| 684 | c ----------------- |
---|
| 685 | c |
---|
| 686 | DO i=1,klon |
---|
| 687 | omgtop(i) = -rho(i,ktop(i))*rg*omgtop(i) |
---|
| 688 | dp_deltomg(i,1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 689 | ENDDO |
---|
| 690 | c |
---|
| 691 | DO k= 1,klev |
---|
| 692 | DO i = 1,klon |
---|
| 693 | IF( k .LE. ktop(i)) THEN |
---|
| 694 | omg(i,k) = - rho(i,k)*rg*omg(i,k) |
---|
| 695 | dp_deltomg(i,k) = dp_deltomg(i,1) |
---|
| 696 | ENDIF |
---|
| 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | c |
---|
| 700 | c raccordement lineaire de omg de ptop a pupper |
---|
| 701 | |
---|
| 702 | DO i=1,klon |
---|
| 703 | IF (kupper(i) .GT. ktop(i)) THEN |
---|
| 704 | omg(i,kupper(i)+1) = - Rg*amdwn(i,kupper(i)+1)/sigmaw(i) |
---|
| 705 | $ + Rg*amup(i,kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 706 | dp_deltomg(i,kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ |
---|
| 707 | $ (ptop(i)-pupper) |
---|
| 708 | ENDIF |
---|
| 709 | ENDDO |
---|
| 710 | c |
---|
| 711 | DO k= 1,klev |
---|
| 712 | DO i = 1,klon |
---|
| 713 | IF( k .GT. ktop(i) .AND. k .LE. kupper(i)) THEN |
---|
| 714 | dp_deltomg(i,k) = dp_deltomg(i,kupper(i)) |
---|
| 715 | omg(i,k) = omgtop(i)+(ph(i,k)-ptop(i))*dp_deltomg(i,kupper(i)) |
---|
| 716 | ENDIF |
---|
| 717 | ENDDO |
---|
| 718 | ENDDO |
---|
| 719 | c |
---|
| 720 | c-- Compute wake average vertical velocity omgbw |
---|
| 721 | c |
---|
| 722 | c |
---|
| 723 | DO k = 1,klev+1 |
---|
| 724 | DO i=1,klon |
---|
| 725 | omgbw(i,k) = omgb(i,k)+(1.-sigmaw(i))*omg(i,k) |
---|
| 726 | ENDDO |
---|
| 727 | ENDDO |
---|
| 728 | c-- and its vertical gradient dp_omgbw |
---|
| 729 | c |
---|
| 730 | DO k = 1,klev |
---|
| 731 | DO i=1,klon |
---|
| 732 | dp_omgbw(i,k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 733 | ENDDO |
---|
| 734 | ENDDO |
---|
| 735 | C |
---|
| 736 | c-- Upstream coefficients for omgb velocity |
---|
| 737 | c-- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 738 | c-- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 739 | DO k = 1,klev |
---|
| 740 | DO i=1,klon |
---|
| 741 | alpha_up(i,k) = 0. |
---|
| 742 | IF (omgb(i,k) .GT. 0.) alpha_up(i,k) = 1. |
---|
| 743 | ENDDO |
---|
| 744 | ENDDO |
---|
| 745 | |
---|
| 746 | c Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
| 747 | |
---|
| 748 | DO i=1,klon |
---|
| 749 | RRe1(i) = 1.-sigmaw(i) |
---|
| 750 | RRe2(i) = sigmaw(i) |
---|
| 751 | ENDDO |
---|
| 752 | RRd1 = -1. |
---|
| 753 | RRd2 = 1. |
---|
| 754 | c |
---|
| 755 | c-- Get [Th1,Th2], dth and [q1,q2] |
---|
| 756 | c |
---|
| 757 | DO k= 1,klev |
---|
| 758 | DO i = 1,klon |
---|
| 759 | IF(k .LE. kupper(i)+1) THEN |
---|
| 760 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
| 761 | Th1(i,k) = the(i,k) - sigmaw(i) *dth(i,k) ! undisturbed area |
---|
| 762 | Th2(i,k) = the(i,k) + (1.-sigmaw(i))*dth(i,k) ! wake |
---|
| 763 | q1(i,k) = qe(i,k) - sigmaw(i) *deltaqw(i,k) ! undisturbed area |
---|
| 764 | q2(i,k) = qe(i,k) + (1.-sigmaw(i))*deltaqw(i,k) ! wake |
---|
| 765 | ENDIF |
---|
| 766 | ENDDO |
---|
| 767 | ENDDO |
---|
| 768 | |
---|
| 769 | DO i=1,klon |
---|
| 770 | D_Th1(i,1) = 0. |
---|
| 771 | D_Th2(i,1) = 0. |
---|
| 772 | D_dth(i,1) = 0. |
---|
| 773 | D_q1(i,1) = 0. |
---|
| 774 | D_q2(i,1) = 0. |
---|
| 775 | D_dq(i,1) = 0. |
---|
| 776 | ENDDO |
---|
| 777 | |
---|
| 778 | DO k= 2,klev |
---|
| 779 | DO i = 1,klon |
---|
| 780 | IF(k .LE. kupper(i)+1) THEN |
---|
| 781 | D_Th1(i,k) = Th1(i,k-1)-Th1(i,k) |
---|
| 782 | D_Th2(i,k) = Th2(i,k-1)-Th2(i,k) |
---|
| 783 | D_dth(i,k) = dth(i,k-1)-dth(i,k) |
---|
| 784 | D_q1(i,k) = q1(i,k-1)-q1(i,k) |
---|
| 785 | D_q2(i,k) = q2(i,k-1)-q2(i,k) |
---|
| 786 | D_dq(i,k) = deltaqw(i,k-1)-deltaqw(i,k) |
---|
| 787 | ENDIF |
---|
| 788 | ENDDO |
---|
| 789 | ENDDO |
---|
| 790 | |
---|
| 791 | DO i=1,klon |
---|
| 792 | omgbdth(i,1) = 0. |
---|
| 793 | omgbdq(i,1) = 0. |
---|
| 794 | ENDDO |
---|
| 795 | |
---|
| 796 | DO k= 2,klev |
---|
| 797 | DO i = 1,klon |
---|
| 798 | IF(k .LE. kupper(i)+1) THEN ! loop on interfaces |
---|
| 799 | omgbdth(i,k) = omgb(i,k)*( dth(i,k-1) - dth(i,k)) |
---|
| 800 | omgbdq(i,k) = omgb(i,k)*(deltaqw(i,k-1) - deltaqw(i,k)) |
---|
| 801 | ENDIF |
---|
| 802 | ENDDO |
---|
| 803 | ENDDO |
---|
| 804 | c |
---|
| 805 | c----------------------------------------------------------------- |
---|
| 806 | DO k= 1,klev |
---|
| 807 | DO i = 1,klon |
---|
| 808 | IF(k .LE. kupper(i)-1) THEN |
---|
| 809 | c----------------------------------------------------------------- |
---|
| 810 | c |
---|
| 811 | c Compute redistribution (advective) term |
---|
| 812 | c |
---|
| 813 | d_deltatw(i,k) = |
---|
| 814 | $ dtimesub/(Ph(i,k)-Ph(i,k+1))*( |
---|
| 815 | $ RRd1*omg(i,k )*sigmaw(i) *D_Th1(i,k) |
---|
| 816 | $ -RRd2*omg(i,k+1)*(1.-sigmaw(i))*D_Th2(i,k+1) |
---|
| 817 | $ -(1.-alpha_up(i,k))*omgbdth(i,k) - alpha_up(i,k+1)* |
---|
| 818 | $ omgbdth(i,k+1))*ppi(i,k) |
---|
| 819 | c print*,'d_deltatw=',d_deltatw(i,k) |
---|
| 820 | c |
---|
| 821 | d_deltaqw(i,k) = |
---|
| 822 | $ dtimesub/(Ph(i,k)-Ph(i,k+1))*( |
---|
| 823 | $ RRd1*omg(i,k )*sigmaw(i) *D_q1(i,k) |
---|
| 824 | $ -RRd2*omg(i,k+1)*(1.-sigmaw(i))*D_q2(i,k+1) |
---|
| 825 | $ -(1.-alpha_up(i,k))*omgbdq(i,k) - alpha_up(i,k+1)* |
---|
| 826 | $ omgbdq(i,k+1)) |
---|
| 827 | c print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
| 828 | c |
---|
| 829 | c and increment large scale tendencies |
---|
| 830 | c |
---|
| 831 | dtls(i,k) = dtls(i,k) + |
---|
| 832 | $ dtimesub*( |
---|
| 833 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_Th1(i,k) |
---|
| 834 | $ -RRe2(i)*omg(i,k+1)*(1.-sigmaw(i))*D_Th2(i,k+1) ) |
---|
| 835 | $ /(Ph(i,k)-Ph(i,k+1)) |
---|
| 836 | $ -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
| 837 | $ )*ppi(i,k) |
---|
| 838 | c print*,'dtls=',dtls(i,k) |
---|
| 839 | c |
---|
| 840 | dqls(i,k) = dqls(i,k) + |
---|
| 841 | $ dtimesub*( |
---|
| 842 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_q1(i,k) |
---|
| 843 | $ -RRe2(i)*omg(i,k+1)*(1.-sigmaw(i))*D_q2(i,k+1) ) |
---|
| 844 | $ /(Ph(i,k)-Ph(i,k+1)) |
---|
| 845 | $ -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
| 846 | $ ) |
---|
| 847 | c print*,'dqls=',dqls(k) |
---|
| 848 | ENDIF |
---|
| 849 | c------------------------------------------------------------------- |
---|
| 850 | ENDDO |
---|
| 851 | ENDDO |
---|
| 852 | c------------------------------------------------------------------ |
---|
| 853 | C |
---|
| 854 | C Increment state variables |
---|
| 855 | |
---|
| 856 | DO k= 1,klev |
---|
| 857 | DO i = 1,klon |
---|
| 858 | IF(k .LE. kupper(i)-1) THEN |
---|
| 859 | c |
---|
| 860 | c Coefficient de répartition |
---|
| 861 | |
---|
| 862 | Crep(i,k)=Crep_sol*(ph(i,kupper(i))-ph(i,k))/(ph(i,kupper(i)) |
---|
| 863 | $ -ph(i,1)) |
---|
| 864 | Crep(i,k)=Crep(i,k)+Crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)- |
---|
| 865 | $ ph(i,kupper(i))) |
---|
| 866 | |
---|
| 867 | |
---|
| 868 | c Reintroduce compensating subsidence term. |
---|
| 869 | |
---|
| 870 | c dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 871 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 872 | c . /(1-sigmaw) |
---|
| 873 | c dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 874 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 875 | c . /(1-sigmaw) |
---|
| 876 | c |
---|
| 877 | c dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 878 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 879 | c . /(1-sigmaw) |
---|
| 880 | c dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 881 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 882 | c . /(1-sigmaw) |
---|
| 883 | |
---|
| 884 | dtKE(i,k)=(dtdwn(i,k)/sigmaw(i) - dta(i,k)/(1.-sigmaw(i))) |
---|
| 885 | dqKE(i,k)=(dqdwn(i,k)/sigmaw(i) - dqa(i,k)/(1.-sigmaw(i))) |
---|
| 886 | c print*,'dtKE=',dtKE(k) |
---|
| 887 | c print*,'dqKE=',dqKE(k) |
---|
| 888 | c |
---|
| 889 | dtPBL(i,k)=(wdtPBL(i,k)/sigmaw(i) - udtPBL(i,k)/(1.-sigmaw(i))) |
---|
| 890 | dqPBL(i,k)=(wdqPBL(i,k)/sigmaw(i) - udqPBL(i,k)/(1.-sigmaw(i))) |
---|
| 891 | c |
---|
| 892 | spread(i,k) = (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 893 | $ sigmaw(i) |
---|
| 894 | |
---|
| 895 | |
---|
| 896 | c ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU Jingmei |
---|
| 897 | |
---|
| 898 | d_deltat_gw(i,k)=d_deltat_gw(i,k)-Tgw(i,k)*deltatw(i,k)* |
---|
| 899 | $ dtimesub |
---|
| 900 | ff(i)=d_deltatw(i,k)/dtimesub |
---|
| 901 | |
---|
| 902 | c Sans GW |
---|
| 903 | c |
---|
| 904 | c deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 905 | c |
---|
| 906 | c GW formule 1 |
---|
| 907 | c |
---|
| 908 | c deltatw(k) = deltatw(k)+dtimesub* |
---|
| 909 | c $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 910 | c |
---|
| 911 | c GW formule 2 |
---|
| 912 | |
---|
| 913 | IF (dtimesub*Tgw(i,k).lt.1.e-10) THEN |
---|
| 914 | deltatw(i,k) = deltatw(i,k)+dtimesub* |
---|
| 915 | $ (ff(i)+dtKE(i,k)+dtPBL(i,k) |
---|
| 916 | $ - spread(i,k)*deltatw(i,k)-Tgw(i,k)*deltatw(i,k)) |
---|
| 917 | ELSE |
---|
| 918 | deltatw(i,k) = deltatw(i,k)+1/Tgw(i,k)*(1-exp(-dtimesub* |
---|
| 919 | $ Tgw(i,k)))* |
---|
| 920 | $ (ff(i)+dtKE(i,k)+dtPBL(i,k) |
---|
| 921 | $ - spread(i,k)*deltatw(i,k)-Tgw(i,k)*deltatw(i,k)) |
---|
| 922 | ENDIF |
---|
| 923 | |
---|
| 924 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
| 925 | |
---|
| 926 | gg(i)=d_deltaqw(i,k)/dtimesub |
---|
| 927 | |
---|
| 928 | deltaqw(i,k) = deltaqw(i,k) + |
---|
| 929 | $ dtimesub*(gg(i)+ dqKE(i,k)+dqPBL(i,k) - spread(i,k)* |
---|
| 930 | $ deltaqw(i,k)) |
---|
| 931 | |
---|
| 932 | d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 933 | d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 934 | ENDIF |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | C And update large scale variables |
---|
| 939 | cIM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 940 | cIM 060208 DO k = 1,kupper(i) |
---|
| 941 | DO k= 1,klev |
---|
| 942 | DO i = 1,klon |
---|
| 943 | IF(k .LE. kupper(i)) THEN |
---|
| 944 | te(i,k) = te0(i,k) + dtls(i,k) |
---|
| 945 | qe(i,k) = qe0(i,k) + dqls(i,k) |
---|
| 946 | the(i,k) = te(i,k)/ppi(i,k) |
---|
| 947 | ENDIF |
---|
| 948 | ENDDO |
---|
| 949 | ENDDO |
---|
| 950 | c |
---|
| 951 | C |
---|
| 952 | c Determine Ptop from buoyancy integral |
---|
| 953 | c --------------------------------------- |
---|
| 954 | c |
---|
| 955 | c- 1/ Pressure of the level where dth changes sign. |
---|
| 956 | c |
---|
| 957 | DO i=1,klon |
---|
| 958 | Ptop_provis(i)=ph(i,1) |
---|
| 959 | ENDDO |
---|
| 960 | c |
---|
| 961 | DO k= 2,klev |
---|
| 962 | DO i=1,klon |
---|
| 963 | IF (Ptop_provis(i) .EQ. ph(i,1) .AND. |
---|
| 964 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
| 965 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
| 966 | Ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
| 967 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) /(dth(i,k) |
---|
| 968 | $ - dth(i,k-1)) |
---|
| 969 | ENDIF |
---|
| 970 | ENDDO |
---|
| 971 | ENDDO |
---|
| 972 | c |
---|
| 973 | c- 2/ dth integral |
---|
| 974 | c |
---|
| 975 | DO i=1,klon |
---|
| 976 | sum_dth(i) = 0. |
---|
| 977 | dthmin(i) = -delta_t_min |
---|
| 978 | z(i) = 0. |
---|
| 979 | ENDDO |
---|
| 980 | |
---|
| 981 | DO k = 1,klev |
---|
| 982 | DO i=1,klon |
---|
| 983 | dz(i) = -(amax1(ph(i,k+1),Ptop_provis(i))-Ph(i,k))/(rho(i,k)*rg) |
---|
| 984 | IF (dz(i) .gt. 0) THEN |
---|
| 985 | z(i) = z(i)+dz(i) |
---|
| 986 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
| 987 | dthmin(i) = amin1(dthmin(i),dth(i,k)) |
---|
| 988 | ENDIF |
---|
| 989 | ENDDO |
---|
| 990 | ENDDO |
---|
| 991 | c |
---|
| 992 | c- 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 993 | |
---|
| 994 | DO i=1,klon |
---|
| 995 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i),-0.5) |
---|
| 996 | hw(i) = amax1(hwmin,hw(i)) |
---|
| 997 | ENDDO |
---|
| 998 | c |
---|
| 999 | c- 4/ now, get Ptop |
---|
| 1000 | c |
---|
| 1001 | DO i=1,klon |
---|
| 1002 | ktop(i) = 0 |
---|
| 1003 | z(i)=0. |
---|
| 1004 | ENDDO |
---|
| 1005 | c |
---|
| 1006 | DO k = 1,klev |
---|
| 1007 | DO i=1,klon |
---|
| 1008 | dz(i) = amin1(-(ph(i,k+1)-Ph(i,k))/(rho(i,k)*rg),hw(i)-z(i)) |
---|
| 1009 | IF (dz(i) .gt. 0) THEN |
---|
| 1010 | z(i) = z(i)+dz(i) |
---|
| 1011 | Ptop(i) = Ph(i,k)-rho(i,k)*rg*dz(i) |
---|
| 1012 | ktop(i) = k |
---|
| 1013 | ENDIF |
---|
| 1014 | ENDDO |
---|
| 1015 | ENDDO |
---|
| 1016 | c |
---|
| 1017 | c 4.5/Correct ktop and ptop |
---|
| 1018 | c |
---|
| 1019 | DO i=1,klon |
---|
| 1020 | Ptop_new(i)=ptop(i) |
---|
| 1021 | ENDDO |
---|
| 1022 | c |
---|
| 1023 | DO k= klev,2,-1 |
---|
| 1024 | DO i=1,klon |
---|
| 1025 | cIM v3JYG; IF (k .GE. ktop(i) |
---|
| 1026 | IF (k .LE. ktop(i) .AND. |
---|
| 1027 | $ ptop_new(i) .EQ. ptop(i) .AND. |
---|
| 1028 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
| 1029 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
| 1030 | Ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
| 1031 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) /(dth(i,k) |
---|
| 1032 | $ - dth(i,k-1)) |
---|
| 1033 | ENDIF |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | c |
---|
| 1037 | c |
---|
| 1038 | DO i=1,klon |
---|
| 1039 | ptop(i) = ptop_new(i) |
---|
| 1040 | ENDDO |
---|
| 1041 | |
---|
| 1042 | DO k=klev,1,-1 |
---|
| 1043 | DO i=1,klon |
---|
| 1044 | IF (ph(i,k+1) .LT. ptop(i)) ktop(i)=k |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | c |
---|
| 1048 | c 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1049 | c |
---|
| 1050 | DO k = 1,klev |
---|
| 1051 | DO i=1,klon |
---|
| 1052 | IF (k .GE. kupper(i)) THEN |
---|
| 1053 | deltatw(i,k) = 0. |
---|
| 1054 | deltaqw(i,k) = 0. |
---|
| 1055 | ENDIF |
---|
| 1056 | ENDDO |
---|
| 1057 | ENDDO |
---|
| 1058 | c |
---|
| 1059 | C |
---|
| 1060 | ENDDO ! end sub-timestep loop |
---|
| 1061 | C |
---|
| 1062 | C ----------------------------------------------------------------- |
---|
| 1063 | c Get back to tendencies per second |
---|
| 1064 | c |
---|
| 1065 | DO k = 1,klev |
---|
| 1066 | DO i=1,klon |
---|
| 1067 | IF (k .LE. kupper(i)-1) THEN |
---|
| 1068 | dtls(i,k) = dtls(i,k)/dtime |
---|
| 1069 | dqls(i,k) = dqls(i,k)/dtime |
---|
| 1070 | d_deltatw2(i,k)=d_deltatw2(i,k)/dtime |
---|
| 1071 | d_deltaqw2(i,k)=d_deltaqw2(i,k)/dtime |
---|
| 1072 | d_deltat_gw(i,k) = d_deltat_gw(i,k)/dtime |
---|
| 1073 | ENDIF |
---|
| 1074 | ENDDO |
---|
| 1075 | ENDDO |
---|
| 1076 | c |
---|
| 1077 | c |
---|
| 1078 | c---------------------------------------------------------- |
---|
| 1079 | c Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1080 | c filter out bad wakes. |
---|
| 1081 | c---------------------------------------------------------- |
---|
| 1082 | c |
---|
| 1083 | C 2.1 - Undisturbed area and Wake integrals |
---|
| 1084 | C --------------------------------------------------------- |
---|
| 1085 | |
---|
| 1086 | DO i=1,klon |
---|
| 1087 | z(i) = 0. |
---|
| 1088 | sum_thu(i) = 0. |
---|
| 1089 | sum_tu(i) = 0. |
---|
| 1090 | sum_qu(i) = 0. |
---|
| 1091 | sum_thvu(i) = 0. |
---|
| 1092 | sum_dth(i) = 0. |
---|
| 1093 | sum_dq(i) = 0. |
---|
| 1094 | sum_rho(i) = 0. |
---|
| 1095 | sum_dtdwn(i) = 0. |
---|
| 1096 | sum_dqdwn(i) = 0. |
---|
| 1097 | |
---|
| 1098 | av_thu(i) = 0. |
---|
| 1099 | av_tu(i) =0. |
---|
| 1100 | av_qu(i) =0. |
---|
| 1101 | av_thvu(i) = 0. |
---|
| 1102 | av_dth(i) = 0. |
---|
| 1103 | av_dq(i) = 0. |
---|
| 1104 | av_rho(i) =0. |
---|
| 1105 | av_dtdwn(i) =0. |
---|
| 1106 | av_dqdwn(i) = 0. |
---|
| 1107 | ENDDO |
---|
| 1108 | C Potential temperatures and humidity |
---|
| 1109 | c---------------------------------------------------------- |
---|
| 1110 | |
---|
| 1111 | DO k =1,klev |
---|
| 1112 | DO i=1,klon |
---|
| 1113 | rho(i,k) = p(i,k)/(rd*te(i,k)) |
---|
| 1114 | IF(k .eq. 1) THEN |
---|
| 1115 | rhoh(i,k) = ph(i,k)/(rd*te(i,k)) |
---|
| 1116 | zhh(i,k)=0 |
---|
| 1117 | ELSE |
---|
| 1118 | rhoh(i,k) = ph(i,k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1119 | zhh(i,k)=(ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 1120 | ENDIF |
---|
| 1121 | the(i,k) = te(i,k)/ppi(i,k) |
---|
| 1122 | thu(i,k) = (te(i,k) - deltatw(i,k)*sigmaw(i))/ppi(i,k) |
---|
| 1123 | tu(i,k) = te(i,k) - deltatw(i,k)*sigmaw(i) |
---|
| 1124 | qu(i,k) = qe(i,k) - deltaqw(i,k)*sigmaw(i) |
---|
| 1125 | rhow(i,k) = p(i,k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1126 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
| 1127 | ENDDO |
---|
| 1128 | ENDDO |
---|
| 1129 | |
---|
| 1130 | C Integrals (and wake top level number) |
---|
| 1131 | C ----------------------------------------------------------- |
---|
| 1132 | |
---|
| 1133 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1134 | |
---|
| 1135 | DO i=1,klon |
---|
| 1136 | z(i) = 1. |
---|
| 1137 | dz(i) = 1. |
---|
| 1138 | sum_thvu(i) = thu(i,1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 1139 | sum_dth(i) = 0. |
---|
| 1140 | ENDDO |
---|
| 1141 | |
---|
| 1142 | DO k = 1,klev |
---|
| 1143 | DO i=1,klon |
---|
| 1144 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1145 | IF (dz(i) .GT. 0) THEN |
---|
| 1146 | z(i) = z(i)+dz(i) |
---|
| 1147 | sum_thu(i) = sum_thu(i) + thu(i,k)*dz(i) |
---|
| 1148 | sum_tu(i) = sum_tu(i) + tu(i,k)*dz(i) |
---|
| 1149 | sum_qu(i) = sum_qu(i) + qu(i,k)*dz(i) |
---|
| 1150 | sum_thvu(i) = sum_thvu(i) + thu(i,k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 1151 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
| 1152 | sum_dq(i) = sum_dq(i) + deltaqw(i,k)*dz(i) |
---|
| 1153 | sum_rho(i) = sum_rho(i) + rhow(i,k)*dz(i) |
---|
| 1154 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i,k)*dz(i) |
---|
| 1155 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i,k)*dz(i) |
---|
| 1156 | ENDIF |
---|
| 1157 | ENDDO |
---|
| 1158 | ENDDO |
---|
| 1159 | c |
---|
| 1160 | DO i=1,klon |
---|
| 1161 | hw0(i) = z(i) |
---|
| 1162 | ENDDO |
---|
| 1163 | c |
---|
| 1164 | C 2.1 - WAPE and mean forcing computation |
---|
| 1165 | C------------------------------------------------------------- |
---|
| 1166 | |
---|
| 1167 | C Means |
---|
| 1168 | |
---|
| 1169 | DO i=1, klon |
---|
| 1170 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1171 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1172 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1173 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1174 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1175 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1176 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1177 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1178 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1179 | |
---|
| 1180 | wape2(i) = - rg*hw0(i)*(av_dth(i) |
---|
| 1181 | $ + eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+ |
---|
| 1182 | $ av_dth(i)*av_dq(i) ))/av_thvu(i) |
---|
| 1183 | ENDDO |
---|
| 1184 | |
---|
| 1185 | C 2.2 Prognostic variable update |
---|
| 1186 | C ------------------------------------------------------------ |
---|
| 1187 | |
---|
| 1188 | C Filter out bad wakes |
---|
| 1189 | c |
---|
| 1190 | DO k = 1,klev |
---|
| 1191 | DO i=1,klon |
---|
| 1192 | IF ( wape2(i) .LT. 0.) THEN |
---|
| 1193 | deltatw(i,k) = 0. |
---|
| 1194 | deltaqw(i,k) = 0. |
---|
| 1195 | dth(i,k) = 0. |
---|
| 1196 | ENDIF |
---|
| 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | c |
---|
| 1200 | |
---|
| 1201 | DO i=1, klon |
---|
| 1202 | IF ( wape2(i) .LT. 0.) THEN |
---|
| 1203 | wape2(i) = 0. |
---|
| 1204 | Cstar2(i) = 0. |
---|
| 1205 | hw(i) = hwmin |
---|
| 1206 | sigmaw(i) = amax1(sigmad,sigd_con(i)) |
---|
| 1207 | fip(i) = 0. |
---|
| 1208 | gwake(i) = .FALSE. |
---|
| 1209 | ELSE |
---|
| 1210 | if(prt_level.ge.10) print*,'wape2>0' |
---|
| 1211 | Cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
| 1212 | gwake(i) = .TRUE. |
---|
| 1213 | ENDIF |
---|
| 1214 | ENDDO |
---|
| 1215 | c |
---|
| 1216 | DO i=1, klon |
---|
| 1217 | ktopw(i) = ktop(i) |
---|
| 1218 | ENDDO |
---|
| 1219 | c |
---|
| 1220 | DO i=1, klon |
---|
| 1221 | IF (ktopw(i) .gt. 0 .and. gwake(i)) then |
---|
| 1222 | |
---|
| 1223 | Cjyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 1224 | ccc heff = 600. |
---|
| 1225 | C Utilisation de la hauteur hw |
---|
| 1226 | cc heff = 0.7*hw |
---|
| 1227 | heff(i) = hw(i) |
---|
| 1228 | |
---|
| 1229 | FIP(i) = 0.5*rho(i,ktopw(i))*Cstar2(i)**3*heff(i)*2* |
---|
| 1230 | $ sqrt(sigmaw(i)*wdens*3.14) |
---|
| 1231 | FIP(i) = alpk * FIP(i) |
---|
| 1232 | Cjyg2 |
---|
| 1233 | ELSE |
---|
| 1234 | FIP(i) = 0. |
---|
| 1235 | ENDIF |
---|
| 1236 | ENDDO |
---|
| 1237 | c |
---|
| 1238 | C Limitation de sigmaw |
---|
| 1239 | c |
---|
| 1240 | C sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
| 1241 | C alors il disparait en se mélangeant à la partie undisturbed |
---|
| 1242 | c |
---|
| 1243 | DO k = 1,klev |
---|
| 1244 | DO i=1, klon |
---|
| 1245 | IF ((sigmaw(i).GT.0.9).or. |
---|
[1059] | 1246 | $ ((wape(i).ge.wape2(i)).and.(wape2(i).le.1.0)).or. |
---|
| 1247 | $ (ktopw(i).le.2)) THEN |
---|
| 1248 | cIM cf NR/JYG 251108 $ ((wape(i).ge.wape2(i)).and.(wape2(i).le.1.0))) THEN |
---|
[974] | 1249 | ccc IF (sigmaw(i).GT.0.9) THEN |
---|
| 1250 | dtls(i,k) = 0. |
---|
| 1251 | dqls(i,k) = 0. |
---|
| 1252 | deltatw(i,k) = 0. |
---|
| 1253 | deltaqw(i,k) = 0. |
---|
| 1254 | ENDIF |
---|
| 1255 | ENDDO |
---|
| 1256 | ENDDO |
---|
| 1257 | c |
---|
| 1258 | DO i=1, klon |
---|
| 1259 | IF ((sigmaw(i).GT.0.9).or. |
---|
| 1260 | $ ((wape(i).ge.wape2(i)).and.(wape2(i).le.1.0))) THEN |
---|
| 1261 | ccc IF (sigmaw(i).GT.0.9) THEN |
---|
| 1262 | wape(i) = 0. |
---|
| 1263 | hw(i) = hwmin |
---|
| 1264 | sigmaw(i) = sigmad |
---|
| 1265 | fip(i) = 0. |
---|
| 1266 | ELSE |
---|
| 1267 | wape(i) = wape2(i) |
---|
| 1268 | ENDIF |
---|
| 1269 | ENDDO |
---|
| 1270 | c |
---|
| 1271 | c |
---|
| 1272 | RETURN |
---|
| 1273 | END |
---|
| 1274 | Subroutine WAKE_scal (p,ph,ppi,dtime,sigd_con |
---|
| 1275 | : ,te0,qe0,omgb |
---|
| 1276 | : ,dtdwn,dqdwn,amdwn,amup,dta,dqa |
---|
| 1277 | : ,wdtPBL,wdqPBL,udtPBL,udqPBL |
---|
| 1278 | o ,deltatw,deltaqw,dth,hw,sigmaw,wape,fip,gfl |
---|
| 1279 | o ,dtls,dqls |
---|
| 1280 | o ,ktopw,omgbdth,dp_omgb,wdens |
---|
| 1281 | o ,tu,qu |
---|
| 1282 | o ,dtKE,dqKE |
---|
| 1283 | o ,dtPBL,dqPBL |
---|
| 1284 | o ,omg,dp_deltomg,spread |
---|
| 1285 | o ,Cstar,d_deltat_gw |
---|
| 1286 | o ,d_deltatw2,d_deltaqw2) |
---|
| 1287 | |
---|
| 1288 | *************************************************************** |
---|
| 1289 | * * |
---|
| 1290 | * WAKE * |
---|
| 1291 | * retour a un Pupper fixe * |
---|
| 1292 | * * |
---|
| 1293 | * written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 1294 | * modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 1295 | *************************************************************** |
---|
| 1296 | c |
---|
[940] | 1297 | USE dimphy |
---|
[879] | 1298 | IMPLICIT none |
---|
| 1299 | c============================================================================ |
---|
| 1300 | C |
---|
| 1301 | C |
---|
| 1302 | C But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 1303 | C grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 1304 | C le declenchement de nouvelles colonnes convectives. |
---|
| 1305 | C |
---|
| 1306 | C Variables d'etat : deltatw : ecart de temperature wake-undisturbed area |
---|
| 1307 | C deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 1308 | C sigmaw : fraction d'aire occupee par la poche. |
---|
| 1309 | C |
---|
| 1310 | C Variable de sortie : |
---|
| 1311 | c |
---|
| 1312 | c wape : WAke Potential Energy |
---|
| 1313 | c fip : Front Incident Power (W/m2) - ALP |
---|
| 1314 | c gfl : Gust Front Length per unit area (m-1) |
---|
| 1315 | C dtls : large scale temperature tendency due to wake |
---|
| 1316 | C dqls : large scale humidity tendency due to wake |
---|
| 1317 | C hw : hauteur de la poche |
---|
| 1318 | C dp_omgb : vertical gradient of large scale omega |
---|
| 1319 | C omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 1320 | C dtKE : differential heating (wake - unpertubed) |
---|
| 1321 | C dqKE : differential moistening (wake - unpertubed) |
---|
| 1322 | C omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 1323 | C dp_deltomg : vertical gradient of omg (s-1) |
---|
| 1324 | C spread : spreading term in dt_wake and dq_wake |
---|
| 1325 | C deltatw : updated temperature difference (T_w-T_u). |
---|
| 1326 | C deltaqw : updated humidity difference (q_w-q_u). |
---|
| 1327 | C sigmaw : updated wake fractional area. |
---|
| 1328 | C d_deltat_gw : delta T tendency due to GW |
---|
| 1329 | c |
---|
| 1330 | C Variables d'entree : |
---|
| 1331 | c |
---|
| 1332 | c aire : aire de la maille |
---|
| 1333 | c te0 : temperature dans l'environnement (K) |
---|
| 1334 | C qe0 : humidite dans l'environnement (kg/kg) |
---|
| 1335 | C omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 1336 | C dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 1337 | C dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 1338 | C dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 1339 | C dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 1340 | C amdwn: flux de masse total des descentes, par unite de |
---|
| 1341 | C surface de la maille (kg/m2/s) |
---|
| 1342 | C amup : flux de masse total des ascendances, par unite de |
---|
| 1343 | C surface de la maille (kg/m2/s) |
---|
| 1344 | C p : pressions aux milieux des couches (Pa) |
---|
| 1345 | C ph : pressions aux interfaces (Pa) |
---|
| 1346 | C ppi : (p/p_0)**kapa (adim) |
---|
| 1347 | C dtime: increment temporel (s) |
---|
| 1348 | c |
---|
| 1349 | C Variables internes : |
---|
| 1350 | c |
---|
| 1351 | c rhow : masse volumique de la poche froide |
---|
| 1352 | C rho : environment density at P levels |
---|
| 1353 | C rhoh : environment density at Ph levels |
---|
| 1354 | C te : environment temperature | may change within |
---|
| 1355 | C qe : environment humidity | sub-time-stepping |
---|
| 1356 | C the : environment potential temperature |
---|
| 1357 | C thu : potential temperature in undisturbed area |
---|
| 1358 | C tu : temperature in undisturbed area |
---|
| 1359 | C qu : humidity in undisturbed area |
---|
| 1360 | C dp_omgb: vertical gradient og LS omega |
---|
| 1361 | C omgbw : wake average vertical omega |
---|
| 1362 | C dp_omgbw: vertical gradient of omgbw |
---|
| 1363 | C omgbdq : flux of Delta_q transported by LS omega |
---|
| 1364 | C dth : potential temperature diff. wake-undist. |
---|
| 1365 | C th1 : first pot. temp. for vertical advection (=thu) |
---|
| 1366 | C th2 : second pot. temp. for vertical advection (=thw) |
---|
| 1367 | C q1 : first humidity for vertical advection |
---|
| 1368 | C q2 : second humidity for vertical advection |
---|
| 1369 | C d_deltatw : terme de redistribution pour deltatw |
---|
| 1370 | C d_deltaqw : terme de redistribution pour deltaqw |
---|
| 1371 | C deltatw0 : deltatw initial |
---|
| 1372 | C deltaqw0 : deltaqw initial |
---|
| 1373 | C hw0 : hw initial |
---|
| 1374 | C sigmaw0: sigmaw initial |
---|
| 1375 | C amflux : horizontal mass flux through wake boundary |
---|
| 1376 | C wdens : number of wakes per unit area (3D) or per |
---|
| 1377 | C unit length (2D) |
---|
| 1378 | C Tgw : 1 sur la période de onde de gravité |
---|
| 1379 | c Cgw : vitesse de propagation de onde de gravité |
---|
| 1380 | c LL : distance entre 2 poches |
---|
| 1381 | |
---|
| 1382 | c------------------------------------------------------------------------- |
---|
| 1383 | c Déclaration de variables |
---|
| 1384 | c------------------------------------------------------------------------- |
---|
| 1385 | |
---|
| 1386 | #include "dimensions.h" |
---|
[940] | 1387 | cccc#include "dimphy.h" |
---|
[879] | 1388 | #include "YOMCST.h" |
---|
| 1389 | #include "cvthermo.h" |
---|
[953] | 1390 | #include "iniprint.h" |
---|
[879] | 1391 | |
---|
| 1392 | c Arguments en entree |
---|
| 1393 | c-------------------- |
---|
| 1394 | |
---|
| 1395 | REAL p(klev),ph(klev+1),ppi(klev) |
---|
| 1396 | REAL dtime |
---|
| 1397 | REAL te0(klev),qe0(klev) |
---|
| 1398 | REAL omgb(klev+1) |
---|
| 1399 | REAL dtdwn(klev), dqdwn(klev) |
---|
| 1400 | REAL wdtPBL(klev),wdqPBL(klev) |
---|
| 1401 | REAL udtPBL(klev),udqPBL(klev) |
---|
| 1402 | REAL amdwn(klev), amup(klev) |
---|
| 1403 | REAL dta(klev), dqa(klev) |
---|
| 1404 | REAL sigd_con |
---|
| 1405 | |
---|
| 1406 | c Sorties |
---|
| 1407 | c-------- |
---|
| 1408 | |
---|
| 1409 | REAL deltatw(klev), deltaqw(klev), dth(klev) |
---|
| 1410 | REAL tu(klev), qu(klev) |
---|
| 1411 | REAL dtls(klev), dqls(klev) |
---|
| 1412 | REAL dtKE(klev), dqKE(klev) |
---|
| 1413 | REAL dtPBL(klev), dqPBL(klev) |
---|
| 1414 | REAL spread(klev) |
---|
| 1415 | REAL d_deltatgw(klev) |
---|
| 1416 | REAL d_deltatw2(klev), d_deltaqw2(klev) |
---|
| 1417 | REAL omgbdth(klev+1), omg(klev+1) |
---|
| 1418 | REAL dp_omgb(klev), dp_deltomg(klev) |
---|
| 1419 | REAL d_deltat_gw(klev) |
---|
| 1420 | REAL hw, sigmaw, wape, fip, gfl, Cstar |
---|
| 1421 | INTEGER ktopw |
---|
| 1422 | |
---|
| 1423 | c Variables internes |
---|
| 1424 | c------------------- |
---|
| 1425 | |
---|
| 1426 | c Variables à fixer |
---|
| 1427 | REAL ALON |
---|
| 1428 | REAL coefgw |
---|
| 1429 | REAL wdens0, wdens |
---|
| 1430 | REAL stark |
---|
| 1431 | REAL alpk |
---|
| 1432 | REAL delta_t_min |
---|
| 1433 | REAL Pupper |
---|
| 1434 | INTEGER nsub |
---|
| 1435 | REAL dtimesub |
---|
| 1436 | REAL sigmad, hwmin |
---|
| 1437 | |
---|
| 1438 | c Variables de sauvegarde |
---|
| 1439 | REAL deltatw0(klev) |
---|
| 1440 | REAL deltaqw0(klev) |
---|
| 1441 | REAL te(klev), qe(klev) |
---|
| 1442 | REAL sigmaw0, sigmaw1 |
---|
| 1443 | |
---|
| 1444 | c Variables pour les GW |
---|
| 1445 | REAL LL |
---|
| 1446 | REAL N2(klev) |
---|
| 1447 | REAL Cgw(klev) |
---|
| 1448 | REAL Tgw(klev) |
---|
| 1449 | |
---|
| 1450 | c Variables liées au calcul de hw |
---|
| 1451 | REAL ptop_provis, ptop, ptop_new |
---|
| 1452 | REAL sum_dth |
---|
| 1453 | REAL dthmin |
---|
| 1454 | REAL z, dz, hw0 |
---|
| 1455 | INTEGER ktop, kupper |
---|
| 1456 | |
---|
| 1457 | c Autres variables internes |
---|
| 1458 | INTEGER isubstep, k |
---|
| 1459 | |
---|
| 1460 | REAL sum_thu, sum_tu, sum_qu,sum_thvu |
---|
| 1461 | REAL sum_dq, sum_rho |
---|
| 1462 | REAL sum_dtdwn, sum_dqdwn |
---|
| 1463 | REAL av_thu, av_tu, av_qu, av_thvu |
---|
| 1464 | REAL av_dth, av_dq, av_rho |
---|
| 1465 | REAL av_dtdwn, av_dqdwn |
---|
| 1466 | |
---|
| 1467 | REAL rho(klev), rhoh(klev+1), rhow(klev) |
---|
| 1468 | REAL rhow_moyen(klev) |
---|
| 1469 | REAL zh(klev), zhh(klev+1) |
---|
| 1470 | REAL epaisseur1(klev), epaisseur2(klev) |
---|
| 1471 | |
---|
| 1472 | REAL the(klev), thu(klev) |
---|
| 1473 | |
---|
| 1474 | REAL d_deltatw(klev), d_deltaqw(klev) |
---|
| 1475 | |
---|
| 1476 | REAL omgbw(klev+1), omgtop |
---|
| 1477 | REAL dp_omgbw(klev) |
---|
| 1478 | REAL ztop, dztop |
---|
| 1479 | REAL alpha_up(klev) |
---|
| 1480 | |
---|
| 1481 | REAL RRe1, RRe2, RRd1, RRd2 |
---|
| 1482 | REAL Th1(klev), Th2(klev), q1(klev), q2(klev) |
---|
| 1483 | REAL D_Th1(klev), D_Th2(klev), D_dth(klev) |
---|
| 1484 | REAL D_q1(klev), D_q2(klev), D_dq(klev) |
---|
| 1485 | REAL omgbdq(klev) |
---|
| 1486 | |
---|
| 1487 | REAL ff, gg |
---|
| 1488 | REAL wape2, Cstar2, heff |
---|
| 1489 | |
---|
| 1490 | REAL Crep(klev) |
---|
| 1491 | REAL Crep_upper, Crep_sol |
---|
| 1492 | |
---|
| 1493 | C------------------------------------------------------------------------- |
---|
| 1494 | c Initialisations |
---|
| 1495 | c------------------------------------------------------------------------- |
---|
| 1496 | |
---|
| 1497 | c print*, 'wake initialisations' |
---|
| 1498 | |
---|
| 1499 | c Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 1500 | c------------------------------------------------------------------------- |
---|
| 1501 | |
---|
| 1502 | DATA sigmad, hwmin /.02,10./ |
---|
| 1503 | |
---|
| 1504 | C Longueur de maille (en m) |
---|
| 1505 | c------------------------------------------------------------------------- |
---|
| 1506 | |
---|
| 1507 | c ALON = 3.e5 |
---|
| 1508 | ALON = 1.e6 |
---|
| 1509 | |
---|
| 1510 | |
---|
| 1511 | C Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
| 1512 | c |
---|
| 1513 | c coefgw : Coefficient pour les ondes de gravité |
---|
| 1514 | c stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 1515 | c wdens : Densité de poche froide par maille |
---|
| 1516 | c------------------------------------------------------------------------- |
---|
| 1517 | |
---|
| 1518 | coefgw=10 |
---|
| 1519 | c coefgw=1 |
---|
| 1520 | c wdens0 = 1.0/(alon**2) |
---|
| 1521 | wdens = 1.0/(alon**2) |
---|
| 1522 | stark = 0.50 |
---|
| 1523 | cCRtest |
---|
| 1524 | alpk=0.1 |
---|
| 1525 | c alpk = 1.0 |
---|
| 1526 | c alpk = 0.5 |
---|
| 1527 | c alpk = 0.05 |
---|
| 1528 | Crep_upper=0.9 |
---|
| 1529 | Crep_sol=1.0 |
---|
| 1530 | |
---|
| 1531 | |
---|
| 1532 | C Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 1533 | c------------------------------------------------------------------------- |
---|
| 1534 | |
---|
| 1535 | delta_t_min = 0.2 |
---|
| 1536 | |
---|
| 1537 | |
---|
| 1538 | C 1. - Save initial values and initialize tendencies |
---|
| 1539 | C -------------------------------------------------- |
---|
| 1540 | |
---|
| 1541 | DO k=1,klev |
---|
| 1542 | deltatw0(k) = deltatw(k) |
---|
| 1543 | deltaqw0(k)= deltaqw(k) |
---|
| 1544 | te(k) = te0(k) |
---|
| 1545 | qe(k) = qe0(k) |
---|
| 1546 | dtls(k) = 0. |
---|
| 1547 | dqls(k) = 0. |
---|
| 1548 | d_deltat_gw(k)=0. |
---|
| 1549 | d_deltatw2(k)=0. |
---|
| 1550 | d_deltaqw2(k)=0. |
---|
| 1551 | ENDDO |
---|
| 1552 | c sigmaw1=sigmaw |
---|
| 1553 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
| 1554 | c print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 1555 | c ENDIF |
---|
| 1556 | sigmaw = max(sigmaw,sigd_con) |
---|
| 1557 | sigmaw = max(sigmaw,sigmad) |
---|
| 1558 | sigmaw = min(sigmaw,0.99) |
---|
| 1559 | sigmaw0 = sigmaw |
---|
| 1560 | c wdens=wdens0/(10.*sigmaw) |
---|
| 1561 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
| 1562 | c print*, 'sigmaw1,sigd1', sigmaw, sigd_con |
---|
| 1563 | c ENDIF |
---|
| 1564 | |
---|
| 1565 | C 2. - Prognostic part |
---|
| 1566 | C ========================================================= |
---|
| 1567 | |
---|
| 1568 | c print *, 'prognostic wake computation' |
---|
| 1569 | |
---|
| 1570 | |
---|
| 1571 | C 2.1 - Undisturbed area and Wake integrals |
---|
| 1572 | C --------------------------------------------------------- |
---|
| 1573 | |
---|
| 1574 | z = 0. |
---|
| 1575 | ktop=0 |
---|
| 1576 | kupper = 0 |
---|
| 1577 | sum_thu = 0. |
---|
| 1578 | sum_tu = 0. |
---|
| 1579 | sum_qu = 0. |
---|
| 1580 | sum_thvu = 0. |
---|
| 1581 | sum_dth = 0. |
---|
| 1582 | sum_dq = 0. |
---|
| 1583 | sum_rho = 0. |
---|
| 1584 | sum_dtdwn = 0. |
---|
| 1585 | sum_dqdwn = 0. |
---|
| 1586 | |
---|
| 1587 | av_thu = 0. |
---|
| 1588 | av_tu =0. |
---|
| 1589 | av_qu =0. |
---|
| 1590 | av_thvu = 0. |
---|
| 1591 | av_dth = 0. |
---|
| 1592 | av_dq = 0. |
---|
| 1593 | av_rho =0. |
---|
| 1594 | av_dtdwn =0. |
---|
| 1595 | av_dqdwn = 0. |
---|
| 1596 | |
---|
| 1597 | C Potential temperatures and humidity |
---|
| 1598 | c---------------------------------------------------------- |
---|
| 1599 | |
---|
| 1600 | DO k =1,klev |
---|
| 1601 | rho(k) = p(k)/(rd*te(k)) |
---|
| 1602 | IF(k .eq. 1) THEN |
---|
| 1603 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 1604 | zhh(k)=0 |
---|
| 1605 | ELSE |
---|
| 1606 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 1607 | zhh(k)=(ph(k)-ph(k-1))/(-rhoh(k)*RG)+zhh(k-1) |
---|
| 1608 | ENDIF |
---|
| 1609 | the(k) = te(k)/ppi(k) |
---|
| 1610 | thu(k) = (te(k) - deltatw(k)*sigmaw)/ppi(k) |
---|
| 1611 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 1612 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 1613 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 1614 | dth(k) = deltatw(k)/ppi(k) |
---|
| 1615 | LL = (1-sqrt(sigmaw))/sqrt(wdens) |
---|
| 1616 | ENDDO |
---|
| 1617 | |
---|
| 1618 | DO k = 1, klev-1 |
---|
| 1619 | IF(k.eq.1) THEN |
---|
| 1620 | N2(k)=0 |
---|
| 1621 | ELSE |
---|
| 1622 | N2(k)=max(0.,-RG**2/the(k)*rho(k)*(the(k+1)-the(k-1)) |
---|
| 1623 | $ /(p(k+1)-p(k-1))) |
---|
| 1624 | ENDIF |
---|
| 1625 | ZH(k)=(zhh(k)+zhh(k+1))/2 |
---|
| 1626 | |
---|
| 1627 | Cgw(k)=sqrt(N2(k))*ZH(k) |
---|
| 1628 | Tgw(k)=coefgw*Cgw(k)/LL |
---|
| 1629 | ENDDO |
---|
| 1630 | |
---|
| 1631 | N2(klev)=0 |
---|
| 1632 | ZH(klev)=0 |
---|
| 1633 | Cgw(klev)=0 |
---|
| 1634 | Tgw(klev)=0 |
---|
| 1635 | |
---|
| 1636 | c Calcul de la masse volumique moyenne de la colonne |
---|
| 1637 | c----------------------------------------------------------------- |
---|
| 1638 | |
---|
| 1639 | DO k=1,klev |
---|
| 1640 | epaisseur1(k)=0. |
---|
| 1641 | epaisseur2(k)=0. |
---|
| 1642 | ENDDO |
---|
| 1643 | |
---|
| 1644 | epaisseur1(1)= -(Ph(2)-Ph(1))/(rho(1)*rg)+1. |
---|
| 1645 | epaisseur2(1)= -(Ph(2)-Ph(1))/(rho(1)*rg)+1. |
---|
| 1646 | rhow_moyen(1) = rhow(1) |
---|
| 1647 | |
---|
| 1648 | DO k = 2, klev |
---|
| 1649 | epaisseur1(k)= -(Ph(k+1)-Ph(k))/(rho(k)*rg) +1. |
---|
| 1650 | epaisseur2(k)=epaisseur2(k-1)+epaisseur1(k) |
---|
| 1651 | rhow_moyen(k) = (rhow_moyen(k-1)*epaisseur2(k-1)+ |
---|
| 1652 | $ rhow(k)*epaisseur1(k))/epaisseur2(k) |
---|
| 1653 | ENDDO |
---|
| 1654 | |
---|
| 1655 | |
---|
| 1656 | C Choose an integration bound well above wake top |
---|
| 1657 | c----------------------------------------------------------------- |
---|
| 1658 | |
---|
| 1659 | c Pupper = 50000. ! melting level |
---|
| 1660 | Pupper = 60000. |
---|
| 1661 | c Pupper = 70000. |
---|
| 1662 | |
---|
| 1663 | |
---|
| 1664 | C Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 1665 | C----------------------------------------------------------------- |
---|
| 1666 | |
---|
| 1667 | c-1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 1668 | |
---|
| 1669 | Ptop_provis=ph(1) |
---|
| 1670 | DO k= 2,klev |
---|
| 1671 | IF (dth(k) .GT. -delta_t_min .and. |
---|
| 1672 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
| 1673 | Ptop_provis = ((dth(k)+delta_t_min)*p(k-1) |
---|
| 1674 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
| 1675 | GO TO 25 |
---|
| 1676 | ENDIF |
---|
| 1677 | ENDDO |
---|
| 1678 | 25 CONTINUE |
---|
| 1679 | |
---|
| 1680 | c-2/ dth integral |
---|
| 1681 | |
---|
| 1682 | sum_dth = 0. |
---|
| 1683 | dthmin = -delta_t_min |
---|
| 1684 | z = 0. |
---|
| 1685 | |
---|
| 1686 | DO k = 1,klev |
---|
| 1687 | dz = -(max(ph(k+1),Ptop_provis)-Ph(k))/(rho(k)*rg) |
---|
| 1688 | IF (dz .le. 0) GO TO 40 |
---|
| 1689 | z = z+dz |
---|
| 1690 | sum_dth = sum_dth + dth(k)*dz |
---|
| 1691 | dthmin = min(dthmin,dth(k)) |
---|
| 1692 | ENDDO |
---|
| 1693 | 40 CONTINUE |
---|
| 1694 | |
---|
| 1695 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1696 | |
---|
| 1697 | hw0 = 2.*sum_dth/min(dthmin,-0.5) |
---|
| 1698 | hw0 = max(hwmin,hw0) |
---|
| 1699 | |
---|
| 1700 | c-4/ now, get Ptop |
---|
| 1701 | |
---|
| 1702 | z = 0. |
---|
| 1703 | ptop = ph(1) |
---|
| 1704 | |
---|
| 1705 | DO k = 1,klev |
---|
| 1706 | dz = min(-(ph(k+1)-Ph(k))/(rho(k)*rg),hw0-z) |
---|
| 1707 | IF (dz .le. 0) GO TO 45 |
---|
| 1708 | z = z+dz |
---|
| 1709 | Ptop = Ph(k)-rho(k)*rg*dz |
---|
| 1710 | ENDDO |
---|
| 1711 | 45 CONTINUE |
---|
| 1712 | |
---|
| 1713 | |
---|
| 1714 | C-5/ Determination de ktop et kupper |
---|
| 1715 | |
---|
| 1716 | DO k=klev,1,-1 |
---|
| 1717 | IF (ph(k+1) .lt. ptop) ktop=k |
---|
| 1718 | IF (ph(k+1) .lt. pupper) kupper=k |
---|
| 1719 | ENDDO |
---|
| 1720 | |
---|
| 1721 | c-6/ Correct ktop and ptop |
---|
| 1722 | |
---|
| 1723 | Ptop_new=ptop |
---|
| 1724 | DO k= ktop,2,-1 |
---|
| 1725 | IF (dth(k) .GT. -delta_t_min .and. |
---|
| 1726 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
| 1727 | Ptop_new = ((dth(k)+delta_t_min)*p(k-1) |
---|
| 1728 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
| 1729 | GO TO 225 |
---|
| 1730 | ENDIF |
---|
| 1731 | ENDDO |
---|
| 1732 | 225 CONTINUE |
---|
| 1733 | |
---|
| 1734 | ptop = ptop_new |
---|
| 1735 | |
---|
| 1736 | DO k=klev,1,-1 |
---|
| 1737 | IF (ph(k+1) .lt. ptop) ktop=k |
---|
| 1738 | ENDDO |
---|
| 1739 | |
---|
| 1740 | c Set deltatw & deltaqw to 0 above kupper |
---|
| 1741 | c----------------------------------------------------------- |
---|
| 1742 | |
---|
| 1743 | DO k = kupper,klev |
---|
| 1744 | deltatw(k) = 0. |
---|
| 1745 | deltaqw(k) = 0. |
---|
| 1746 | ENDDO |
---|
| 1747 | |
---|
| 1748 | |
---|
| 1749 | C Vertical gradient of LS omega |
---|
| 1750 | C------------------------------------------------------------ |
---|
| 1751 | |
---|
| 1752 | DO k = 1,kupper |
---|
| 1753 | dp_omgb(k) = (omgb(k+1) - omgb(k))/(ph(k+1)-ph(k)) |
---|
| 1754 | ENDDO |
---|
| 1755 | |
---|
| 1756 | |
---|
| 1757 | C Integrals (and wake top level number) |
---|
| 1758 | C ----------------------------------------------------------- |
---|
| 1759 | |
---|
| 1760 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1761 | |
---|
| 1762 | z = 1. |
---|
| 1763 | dz = 1. |
---|
| 1764 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 1765 | sum_dth = 0. |
---|
| 1766 | |
---|
| 1767 | DO k = 1,klev |
---|
| 1768 | dz = -(max(ph(k+1),Ptop)-Ph(k))/(rho(k)*rg) |
---|
| 1769 | IF (dz .LE. 0) GO TO 50 |
---|
| 1770 | z = z+dz |
---|
| 1771 | sum_thu = sum_thu + thu(k)*dz |
---|
| 1772 | sum_tu = sum_tu + tu(k)*dz |
---|
| 1773 | sum_qu = sum_qu + qu(k)*dz |
---|
| 1774 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 1775 | sum_dth = sum_dth + dth(k)*dz |
---|
| 1776 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 1777 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 1778 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 1779 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 1780 | ENDDO |
---|
| 1781 | 50 CONTINUE |
---|
| 1782 | |
---|
| 1783 | hw0 = z |
---|
| 1784 | |
---|
| 1785 | C 2.1 - WAPE and mean forcing computation |
---|
| 1786 | C------------------------------------------------------------- |
---|
| 1787 | |
---|
| 1788 | C Means |
---|
| 1789 | |
---|
| 1790 | av_thu = sum_thu/hw0 |
---|
| 1791 | av_tu = sum_tu/hw0 |
---|
| 1792 | av_qu = sum_qu/hw0 |
---|
| 1793 | av_thvu = sum_thvu/hw0 |
---|
| 1794 | c av_thve = sum_thve/hw0 |
---|
| 1795 | av_dth = sum_dth/hw0 |
---|
| 1796 | av_dq = sum_dq/hw0 |
---|
| 1797 | av_rho = sum_rho/hw0 |
---|
| 1798 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 1799 | av_dqdwn = sum_dqdwn/hw0 |
---|
| 1800 | |
---|
| 1801 | wape = - rg*hw0*(av_dth |
---|
| 1802 | $ + eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq ))/av_thvu |
---|
| 1803 | |
---|
| 1804 | C 2.2 Prognostic variable update |
---|
| 1805 | C ------------------------------------------------------------ |
---|
| 1806 | |
---|
| 1807 | C Filter out bad wakes |
---|
| 1808 | |
---|
| 1809 | IF ( wape .LT. 0.) THEN |
---|
[953] | 1810 | if(prt_level.ge.10) print*,'wape<0' |
---|
[879] | 1811 | wape = 0. |
---|
| 1812 | hw = hwmin |
---|
| 1813 | sigmaw = max(sigmad,sigd_con) |
---|
| 1814 | fip = 0. |
---|
| 1815 | DO k = 1,klev |
---|
| 1816 | deltatw(k) = 0. |
---|
| 1817 | deltaqw(k) = 0. |
---|
| 1818 | dth(k) = 0. |
---|
| 1819 | ENDDO |
---|
| 1820 | ELSE |
---|
[953] | 1821 | if(prt_level.ge.10) print*,'wape>0' |
---|
[879] | 1822 | Cstar = stark*sqrt(2.*wape) |
---|
| 1823 | ENDIF |
---|
| 1824 | |
---|
| 1825 | C------------------------------------------------------------------ |
---|
| 1826 | C Sub-time-stepping |
---|
| 1827 | C------------------------------------------------------------------ |
---|
| 1828 | |
---|
| 1829 | c nsub=36 |
---|
| 1830 | nsub=10 |
---|
| 1831 | dtimesub=dtime/nsub |
---|
| 1832 | |
---|
| 1833 | c------------------------------------------------------------ |
---|
| 1834 | DO isubstep = 1,nsub |
---|
| 1835 | c------------------------------------------------------------ |
---|
| 1836 | |
---|
| 1837 | c print*,'---------------','substep=',isubstep,'-------------' |
---|
| 1838 | |
---|
| 1839 | c Evolution of sigmaw |
---|
| 1840 | |
---|
| 1841 | |
---|
| 1842 | gfl = 2.*sqrt(3.14*wdens*sigmaw) |
---|
| 1843 | |
---|
| 1844 | sigmaw =sigmaw + gfl*Cstar*dtimesub |
---|
| 1845 | sigmaw =min(sigmaw,0.99) !!!!!!!! |
---|
| 1846 | c wdens = wdens0/(10.*sigmaw) |
---|
| 1847 | c sigmaw =max(sigmaw,sigd_con) |
---|
| 1848 | c sigmaw =max(sigmaw,sigmad) |
---|
| 1849 | |
---|
| 1850 | c calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 1851 | |
---|
| 1852 | z= 0. |
---|
| 1853 | dp_deltomg(1:klev)=0. |
---|
| 1854 | omg(1:klev+1)=0. |
---|
| 1855 | |
---|
| 1856 | omg(1) = 0. |
---|
| 1857 | dp_deltomg(1) = -(gfl*Cstar)/(sigmaw * (1-sigmaw)) |
---|
| 1858 | |
---|
| 1859 | DO k=2,ktop |
---|
| 1860 | dz = -(Ph(k)-Ph(k-1))/(rho(k-1)*rg) |
---|
| 1861 | z = z+dz |
---|
| 1862 | dp_deltomg(k)= dp_deltomg(1) |
---|
| 1863 | omg(k)= dp_deltomg(1)*z |
---|
| 1864 | ENDDO |
---|
| 1865 | |
---|
| 1866 | dztop=-(Ptop-Ph(ktop))/(rho(ktop)*rg) |
---|
| 1867 | ztop = z+dztop |
---|
| 1868 | omgtop=dp_deltomg(1)*ztop |
---|
| 1869 | |
---|
| 1870 | |
---|
| 1871 | c Conversion de la vitesse verticale de m/s a Pa/s |
---|
| 1872 | |
---|
| 1873 | omgtop = -rho(ktop)*rg*omgtop |
---|
| 1874 | dp_deltomg(1) = omgtop/(ptop-ph(1)) |
---|
| 1875 | |
---|
| 1876 | DO k = 1,ktop |
---|
| 1877 | omg(k) = - rho(k)*rg*omg(k) |
---|
| 1878 | dp_deltomg(k) = dp_deltomg(1) |
---|
| 1879 | ENDDO |
---|
| 1880 | |
---|
| 1881 | c raccordement lineaire de omg de ptop a pupper |
---|
| 1882 | |
---|
| 1883 | IF (kupper .GT. ktop) THEN |
---|
| 1884 | omg(kupper+1) = - Rg*amdwn(kupper+1)/sigmaw |
---|
| 1885 | $ + Rg*amup(kupper+1)/(1.-sigmaw) |
---|
| 1886 | dp_deltomg(kupper) = (omgtop-omg(kupper+1))/(Ptop-Pupper) |
---|
| 1887 | DO k=ktop+1,kupper |
---|
| 1888 | dp_deltomg(k) = dp_deltomg(kupper) |
---|
| 1889 | omg(k) = omgtop+(ph(k)-Ptop)*dp_deltomg(kupper) |
---|
| 1890 | ENDDO |
---|
| 1891 | ENDIF |
---|
| 1892 | |
---|
| 1893 | c Compute wake average vertical velocity omgbw |
---|
| 1894 | |
---|
| 1895 | DO k = 1,klev+1 |
---|
| 1896 | omgbw(k) = omgb(k)+(1.-sigmaw)*omg(k) |
---|
| 1897 | ENDDO |
---|
| 1898 | |
---|
| 1899 | c and its vertical gradient dp_omgbw |
---|
| 1900 | |
---|
| 1901 | DO k = 1,klev |
---|
| 1902 | dp_omgbw(k) = (omgbw(k+1)-omgbw(k))/(ph(k+1)-ph(k)) |
---|
| 1903 | ENDDO |
---|
| 1904 | |
---|
| 1905 | |
---|
| 1906 | c Upstream coefficients for omgb velocity |
---|
| 1907 | c-- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 1908 | c-- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 1909 | |
---|
| 1910 | DO k = 1,klev |
---|
| 1911 | alpha_up(k) = 0. |
---|
| 1912 | IF (omgb(k) .GT. 0.) alpha_up(k) = 1. |
---|
| 1913 | ENDDO |
---|
| 1914 | |
---|
| 1915 | c Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
| 1916 | |
---|
| 1917 | RRe1 = 1.-sigmaw |
---|
| 1918 | RRe2 = sigmaw |
---|
| 1919 | RRd1 = -1. |
---|
| 1920 | RRd2 = 1. |
---|
| 1921 | |
---|
| 1922 | c Get [Th1,Th2], dth and [q1,q2] |
---|
| 1923 | |
---|
| 1924 | DO k = 1,kupper+1 |
---|
| 1925 | dth(k) = deltatw(k)/ppi(k) |
---|
| 1926 | Th1(k) = the(k) - sigmaw *dth(k) ! undisturbed area |
---|
| 1927 | Th2(k) = the(k) + (1.-sigmaw)*dth(k) ! wake |
---|
| 1928 | q1(k) = qe(k) - sigmaw *deltaqw(k) ! undisturbed area |
---|
| 1929 | q2(k) = qe(k) + (1.-sigmaw)*deltaqw(k) ! wake |
---|
| 1930 | ENDDO |
---|
| 1931 | |
---|
| 1932 | D_Th1(1) = 0. |
---|
| 1933 | D_Th2(1) = 0. |
---|
| 1934 | D_dth(1) = 0. |
---|
| 1935 | D_q1(1) = 0. |
---|
| 1936 | D_q2(1) = 0. |
---|
| 1937 | D_dq(1) = 0. |
---|
| 1938 | |
---|
| 1939 | DO k = 2,kupper+1 ! loop on interfaces |
---|
| 1940 | D_Th1(k) = Th1(k-1)-Th1(k) |
---|
| 1941 | D_Th2(k) = Th2(k-1)-Th2(k) |
---|
| 1942 | D_dth(k) = dth(k-1)-dth(k) |
---|
| 1943 | D_q1(k) = q1(k-1)-q1(k) |
---|
| 1944 | D_q2(k) = q2(k-1)-q2(k) |
---|
| 1945 | D_dq(k) = deltaqw(k-1)-deltaqw(k) |
---|
| 1946 | ENDDO |
---|
| 1947 | |
---|
| 1948 | omgbdth(1) = 0. |
---|
| 1949 | omgbdq(1) = 0. |
---|
| 1950 | |
---|
| 1951 | DO k = 2,kupper+1 ! loop on interfaces |
---|
| 1952 | omgbdth(k) = omgb(k)*( dth(k-1) - dth(k)) |
---|
| 1953 | omgbdq(k) = omgb(k)*(deltaqw(k-1) - deltaqw(k)) |
---|
| 1954 | ENDDO |
---|
| 1955 | |
---|
| 1956 | |
---|
| 1957 | c----------------------------------------------------------------- |
---|
| 1958 | DO k=1,kupper-1 |
---|
| 1959 | c----------------------------------------------------------------- |
---|
| 1960 | c |
---|
| 1961 | c Compute redistribution (advective) term |
---|
| 1962 | c |
---|
| 1963 | d_deltatw(k) = |
---|
| 1964 | $ dtimesub/(Ph(k)-Ph(k+1))*( |
---|
| 1965 | $ RRd1*omg(k )*sigmaw *D_Th1(k) |
---|
| 1966 | $ -RRd2*omg(k+1)*(1.-sigmaw)*D_Th2(k+1) |
---|
| 1967 | $ -(1.-alpha_up(k))*omgbdth(k) - alpha_up(k+1)*omgbdth(k+1) |
---|
| 1968 | $ )*ppi(k) |
---|
| 1969 | c print*,'d_deltatw=',d_deltatw(k) |
---|
| 1970 | c |
---|
| 1971 | d_deltaqw(k) = |
---|
| 1972 | $ dtimesub/(Ph(k)-Ph(k+1))*( |
---|
| 1973 | $ RRd1*omg(k )*sigmaw *D_q1(k) |
---|
| 1974 | $ -RRd2*omg(k+1)*(1.-sigmaw)*D_q2(k+1) |
---|
| 1975 | $ -(1.-alpha_up(k))*omgbdq(k) - alpha_up(k+1)*omgbdq(k+1) |
---|
| 1976 | $ ) |
---|
| 1977 | c print*,'d_deltaqw=',d_deltaqw(k) |
---|
| 1978 | c |
---|
| 1979 | c and increment large scale tendencies |
---|
| 1980 | c |
---|
| 1981 | dtls(k) = dtls(k) + |
---|
| 1982 | $ dtimesub*( |
---|
| 1983 | $ ( RRe1*omg(k )*sigmaw *D_Th1(k) |
---|
| 1984 | $ -RRe2*omg(k+1)*(1.-sigmaw)*D_Th2(k+1) ) |
---|
| 1985 | $ /(Ph(k)-Ph(k+1)) |
---|
| 1986 | $ -sigmaw*(1.-sigmaw)*dth(k)*dp_deltomg(k) |
---|
| 1987 | $ )*ppi(k) |
---|
| 1988 | c print*,'dtls=',dtls(k) |
---|
| 1989 | c |
---|
| 1990 | dqls(k) = dqls(k) + |
---|
| 1991 | $ dtimesub*( |
---|
| 1992 | $ ( RRe1*omg(k )*sigmaw *D_q1(k) |
---|
| 1993 | $ -RRe2*omg(k+1)*(1.-sigmaw)*D_q2(k+1) ) |
---|
| 1994 | $ /(Ph(k)-Ph(k+1)) |
---|
| 1995 | $ -sigmaw*(1.-sigmaw)*deltaqw(k)*dp_deltomg(k) |
---|
| 1996 | $ ) |
---|
| 1997 | c print*,'dqls=',dqls(k) |
---|
| 1998 | |
---|
| 1999 | c------------------------------------------------------------------- |
---|
| 2000 | ENDDO |
---|
| 2001 | c------------------------------------------------------------------ |
---|
| 2002 | |
---|
| 2003 | C Increment state variables |
---|
| 2004 | |
---|
| 2005 | DO k = 1,kupper-1 |
---|
| 2006 | |
---|
| 2007 | c Coefficient de répartition |
---|
| 2008 | |
---|
| 2009 | Crep(k)=Crep_sol*(ph(kupper)-ph(k))/(ph(kupper)-ph(1)) |
---|
| 2010 | Crep(k)=Crep(k)+Crep_upper*(ph(1)-ph(k))/(p(1)-ph(kupper)) |
---|
| 2011 | |
---|
| 2012 | |
---|
| 2013 | c Reintroduce compensating subsidence term. |
---|
| 2014 | |
---|
| 2015 | c dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 2016 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 2017 | c . /(1-sigmaw) |
---|
| 2018 | c dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 2019 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 2020 | c . /(1-sigmaw) |
---|
| 2021 | c |
---|
| 2022 | c dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 2023 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 2024 | c . /(1-sigmaw) |
---|
| 2025 | c dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 2026 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 2027 | c . /(1-sigmaw) |
---|
| 2028 | |
---|
| 2029 | dtKE(k)=(dtdwn(k)/sigmaw - dta(k)/(1.-sigmaw)) |
---|
| 2030 | dqKE(k)=(dqdwn(k)/sigmaw - dqa(k)/(1.-sigmaw)) |
---|
| 2031 | c print*,'dtKE=',dtKE(k) |
---|
| 2032 | c print*,'dqKE=',dqKE(k) |
---|
| 2033 | c |
---|
| 2034 | dtPBL(k)=(wdtPBL(k)/sigmaw - udtPBL(k)/(1.-sigmaw)) |
---|
| 2035 | dqPBL(k)=(wdqPBL(k)/sigmaw - udqPBL(k)/(1.-sigmaw)) |
---|
| 2036 | c |
---|
| 2037 | spread(k) = (1.-sigmaw)*dp_deltomg(k)+gfl*Cstar/sigmaw |
---|
| 2038 | c print*,'spread=',spread(k) |
---|
| 2039 | |
---|
| 2040 | |
---|
| 2041 | c ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU Jingmei |
---|
| 2042 | |
---|
| 2043 | d_deltat_gw(k)=d_deltat_gw(k)-Tgw(k)*deltatw(k)* dtimesub |
---|
| 2044 | c print*,'d_delta_gw=',d_deltat_gw(k) |
---|
| 2045 | ff=d_deltatw(k)/dtimesub |
---|
| 2046 | |
---|
| 2047 | c Sans GW |
---|
| 2048 | c |
---|
| 2049 | c deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 2050 | c |
---|
| 2051 | c GW formule 1 |
---|
| 2052 | c |
---|
| 2053 | c deltatw(k) = deltatw(k)+dtimesub* |
---|
| 2054 | c $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 2055 | c |
---|
| 2056 | c GW formule 2 |
---|
| 2057 | |
---|
| 2058 | IF (dtimesub*Tgw(k).lt.1.e-10) THEN |
---|
| 2059 | deltatw(k) = deltatw(k)+dtimesub* |
---|
| 2060 | $ (ff+dtKE(k)+dtPBL(k) |
---|
| 2061 | $ - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 2062 | ELSE |
---|
| 2063 | deltatw(k) = deltatw(k)+1/Tgw(k)*(1-exp(-dtimesub*Tgw(k)))* |
---|
| 2064 | $ (ff+dtKE(k)+dtPBL(k) |
---|
| 2065 | $ - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 2066 | ENDIF |
---|
| 2067 | |
---|
| 2068 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2069 | |
---|
| 2070 | gg=d_deltaqw(k)/dtimesub |
---|
| 2071 | |
---|
| 2072 | deltaqw(k) = deltaqw(k) + |
---|
| 2073 | $ dtimesub*(gg+ dqKE(k)+dqPBL(k) - spread(k)*deltaqw(k)) |
---|
| 2074 | |
---|
| 2075 | d_deltatw2(k)=d_deltatw2(k)+d_deltatw(k) |
---|
| 2076 | d_deltaqw2(k)=d_deltaqw2(k)+d_deltaqw(k) |
---|
| 2077 | ENDDO |
---|
| 2078 | |
---|
| 2079 | C And update large scale variables |
---|
| 2080 | |
---|
| 2081 | DO k = 1,kupper |
---|
| 2082 | te(k) = te0(k) + dtls(k) |
---|
| 2083 | qe(k) = qe0(k) + dqls(k) |
---|
| 2084 | the(k) = te(k)/ppi(k) |
---|
| 2085 | ENDDO |
---|
| 2086 | |
---|
| 2087 | c Determine Ptop from buoyancy integral |
---|
| 2088 | c---------------------------------------------------------------------- |
---|
| 2089 | |
---|
| 2090 | c-1/ Pressure of the level where dth changes sign. |
---|
| 2091 | |
---|
| 2092 | Ptop_provis=ph(1) |
---|
| 2093 | |
---|
| 2094 | DO k= 2,klev |
---|
| 2095 | IF (dth(k) .GT. -delta_t_min .and. |
---|
| 2096 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
| 2097 | Ptop_provis = ((dth(k)+delta_t_min)*p(k-1) |
---|
| 2098 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
| 2099 | GO TO 65 |
---|
| 2100 | ENDIF |
---|
| 2101 | ENDDO |
---|
| 2102 | 65 CONTINUE |
---|
| 2103 | |
---|
| 2104 | c-2/ dth integral |
---|
| 2105 | |
---|
| 2106 | sum_dth = 0. |
---|
| 2107 | dthmin = -delta_t_min |
---|
| 2108 | z = 0. |
---|
| 2109 | |
---|
| 2110 | DO k = 1,klev |
---|
| 2111 | dz = -(max(ph(k+1),Ptop_provis)-Ph(k))/(rho(k)*rg) |
---|
| 2112 | IF (dz .le. 0) GO TO 70 |
---|
| 2113 | z = z+dz |
---|
| 2114 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2115 | dthmin = min(dthmin,dth(k)) |
---|
| 2116 | ENDDO |
---|
| 2117 | 70 CONTINUE |
---|
| 2118 | |
---|
| 2119 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 2120 | |
---|
| 2121 | hw = 2.*sum_dth/min(dthmin,-0.5) |
---|
| 2122 | hw = max(hwmin,hw) |
---|
| 2123 | |
---|
| 2124 | c-4/ now, get Ptop |
---|
| 2125 | |
---|
| 2126 | ktop = 0 |
---|
| 2127 | z=0. |
---|
| 2128 | |
---|
| 2129 | DO k = 1,klev |
---|
| 2130 | dz = min(-(ph(k+1)-Ph(k))/(rho(k)*rg),hw-z) |
---|
| 2131 | IF (dz .le. 0) GO TO 75 |
---|
| 2132 | z = z+dz |
---|
| 2133 | Ptop = Ph(k)-rho(k)*rg*dz |
---|
| 2134 | ktop = k |
---|
| 2135 | ENDDO |
---|
| 2136 | 75 CONTINUE |
---|
| 2137 | |
---|
| 2138 | c-5/Correct ktop and ptop |
---|
| 2139 | |
---|
| 2140 | Ptop_new=ptop |
---|
| 2141 | |
---|
| 2142 | DO k= ktop,2,-1 |
---|
| 2143 | IF (dth(k) .GT. -delta_t_min .and. |
---|
| 2144 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
| 2145 | Ptop_new = ((dth(k)+delta_t_min)*p(k-1) |
---|
| 2146 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
| 2147 | GO TO 275 |
---|
| 2148 | ENDIF |
---|
| 2149 | ENDDO |
---|
| 2150 | 275 CONTINUE |
---|
| 2151 | |
---|
| 2152 | ptop = ptop_new |
---|
| 2153 | |
---|
| 2154 | DO k=klev,1,-1 |
---|
| 2155 | IF (ph(k+1) .LT. ptop) ktop=k |
---|
| 2156 | ENDDO |
---|
| 2157 | |
---|
| 2158 | c-6/ Set deltatw & deltaqw to 0 above kupper |
---|
| 2159 | |
---|
| 2160 | DO k = kupper,klev |
---|
| 2161 | deltatw(k) = 0. |
---|
| 2162 | deltaqw(k) = 0. |
---|
| 2163 | ENDDO |
---|
| 2164 | |
---|
| 2165 | c------------------------------------------------------------------ |
---|
| 2166 | ENDDO ! end sub-timestep loop |
---|
| 2167 | C ----------------------------------------------------------------- |
---|
| 2168 | |
---|
| 2169 | c Get back to tendencies per second |
---|
| 2170 | |
---|
| 2171 | DO k = 1,kupper-1 |
---|
| 2172 | dtls(k) = dtls(k)/dtime |
---|
| 2173 | dqls(k) = dqls(k)/dtime |
---|
| 2174 | d_deltatw2(k)=d_deltatw2(k)/dtime |
---|
| 2175 | d_deltaqw2(k)=d_deltaqw2(k)/dtime |
---|
| 2176 | d_deltat_gw(k) = d_deltat_gw(k)/dtime |
---|
| 2177 | ENDDO |
---|
| 2178 | |
---|
| 2179 | C 2.1 - Undisturbed area and Wake integrals |
---|
| 2180 | C --------------------------------------------------------- |
---|
| 2181 | |
---|
| 2182 | z = 0. |
---|
| 2183 | sum_thu = 0. |
---|
| 2184 | sum_tu = 0. |
---|
| 2185 | sum_qu = 0. |
---|
| 2186 | sum_thvu = 0. |
---|
| 2187 | sum_dth = 0. |
---|
| 2188 | sum_dq = 0. |
---|
| 2189 | sum_rho = 0. |
---|
| 2190 | sum_dtdwn = 0. |
---|
| 2191 | sum_dqdwn = 0. |
---|
| 2192 | |
---|
| 2193 | av_thu = 0. |
---|
| 2194 | av_tu =0. |
---|
| 2195 | av_qu =0. |
---|
| 2196 | av_thvu = 0. |
---|
| 2197 | av_dth = 0. |
---|
| 2198 | av_dq = 0. |
---|
| 2199 | av_rho =0. |
---|
| 2200 | av_dtdwn =0. |
---|
| 2201 | av_dqdwn = 0. |
---|
| 2202 | |
---|
| 2203 | C Potential temperatures and humidity |
---|
| 2204 | c---------------------------------------------------------- |
---|
| 2205 | |
---|
| 2206 | DO k =1,klev |
---|
| 2207 | rho(k) = p(k)/(rd*te(k)) |
---|
| 2208 | IF(k .eq. 1) THEN |
---|
| 2209 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 2210 | zhh(k)=0 |
---|
| 2211 | ELSE |
---|
| 2212 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 2213 | zhh(k)=(ph(k)-ph(k-1))/(-rhoh(k)*RG)+zhh(k-1) |
---|
| 2214 | ENDIF |
---|
| 2215 | the(k) = te(k)/ppi(k) |
---|
| 2216 | thu(k) = (te(k) - deltatw(k)*sigmaw)/ppi(k) |
---|
| 2217 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 2218 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 2219 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 2220 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2221 | |
---|
| 2222 | ENDDO |
---|
| 2223 | |
---|
| 2224 | C Integrals (and wake top level number) |
---|
| 2225 | C ----------------------------------------------------------- |
---|
| 2226 | |
---|
| 2227 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 2228 | |
---|
| 2229 | z = 1. |
---|
| 2230 | dz = 1. |
---|
| 2231 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 2232 | sum_dth = 0. |
---|
| 2233 | |
---|
| 2234 | DO k = 1,klev |
---|
| 2235 | dz = -(max(ph(k+1),Ptop)-Ph(k))/(rho(k)*rg) |
---|
| 2236 | |
---|
| 2237 | IF (dz .LE. 0) GO TO 51 |
---|
| 2238 | z = z+dz |
---|
| 2239 | sum_thu = sum_thu + thu(k)*dz |
---|
| 2240 | sum_tu = sum_tu + tu(k)*dz |
---|
| 2241 | sum_qu = sum_qu + qu(k)*dz |
---|
| 2242 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 2243 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2244 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 2245 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 2246 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 2247 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 2248 | ENDDO |
---|
| 2249 | 51 CONTINUE |
---|
| 2250 | |
---|
| 2251 | hw0 = z |
---|
| 2252 | |
---|
| 2253 | C 2.1 - WAPE and mean forcing computation |
---|
| 2254 | C------------------------------------------------------------- |
---|
| 2255 | |
---|
| 2256 | C Means |
---|
| 2257 | |
---|
| 2258 | av_thu = sum_thu/hw0 |
---|
| 2259 | av_tu = sum_tu/hw0 |
---|
| 2260 | av_qu = sum_qu/hw0 |
---|
| 2261 | av_thvu = sum_thvu/hw0 |
---|
| 2262 | av_dth = sum_dth/hw0 |
---|
| 2263 | av_dq = sum_dq/hw0 |
---|
| 2264 | av_rho = sum_rho/hw0 |
---|
| 2265 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 2266 | av_dqdwn = sum_dqdwn/hw0 |
---|
| 2267 | |
---|
| 2268 | wape2 = - rg*hw0*(av_dth |
---|
| 2269 | $ + eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq ))/av_thvu |
---|
| 2270 | |
---|
| 2271 | |
---|
| 2272 | C 2.2 Prognostic variable update |
---|
| 2273 | C ------------------------------------------------------------ |
---|
| 2274 | |
---|
| 2275 | C Filter out bad wakes |
---|
| 2276 | |
---|
| 2277 | IF ( wape2 .LT. 0.) THEN |
---|
[953] | 2278 | if(prt_level.ge.10) print*,'wape2<0' |
---|
[879] | 2279 | wape2 = 0. |
---|
| 2280 | hw = hwmin |
---|
| 2281 | sigmaw = max(sigmad,sigd_con) |
---|
| 2282 | fip = 0. |
---|
| 2283 | DO k = 1,klev |
---|
| 2284 | deltatw(k) = 0. |
---|
| 2285 | deltaqw(k) = 0. |
---|
| 2286 | dth(k) = 0. |
---|
| 2287 | ENDDO |
---|
| 2288 | ELSE |
---|
[953] | 2289 | if(prt_level.ge.10) print*,'wape2>0' |
---|
[879] | 2290 | Cstar2 = stark*sqrt(2.*wape2) |
---|
| 2291 | |
---|
| 2292 | ENDIF |
---|
| 2293 | |
---|
| 2294 | ktopw = ktop |
---|
| 2295 | |
---|
| 2296 | IF (ktopw .gt. 0) then |
---|
| 2297 | |
---|
| 2298 | Cjyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2299 | ccc heff = 600. |
---|
| 2300 | C Utilisation de la hauteur hw |
---|
| 2301 | cc heff = 0.7*hw |
---|
| 2302 | heff = hw |
---|
| 2303 | |
---|
| 2304 | FIP = 0.5*rho(ktopw)*Cstar2**3*heff*2*sqrt(sigmaw*wdens*3.14) |
---|
| 2305 | FIP = alpk * FIP |
---|
| 2306 | Cjyg2 |
---|
| 2307 | ELSE |
---|
| 2308 | FIP = 0. |
---|
| 2309 | ENDIF |
---|
| 2310 | |
---|
| 2311 | |
---|
| 2312 | C Limitation de sigmaw |
---|
| 2313 | c |
---|
| 2314 | C sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
| 2315 | C alors il disparait en se mélangeant à la partie undisturbed |
---|
| 2316 | |
---|
| 2317 | IF ((sigmaw.GT.0.9).or. |
---|
[1059] | 2318 | . ((wape.ge.wape2).and.(wape2.le.1.0)).or.(ktopw.le.2)) THEN |
---|
| 2319 | cIM cf NR/JYG 251108 . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
[879] | 2320 | c IF (sigmaw.GT.0.9) THEN |
---|
| 2321 | DO k = 1,klev |
---|
| 2322 | dtls(k) = 0. |
---|
| 2323 | dqls(k) = 0. |
---|
| 2324 | deltatw(k) = 0. |
---|
| 2325 | deltaqw(k) = 0. |
---|
| 2326 | ENDDO |
---|
| 2327 | wape = 0. |
---|
| 2328 | hw = hwmin |
---|
| 2329 | sigmaw = sigmad |
---|
| 2330 | fip = 0. |
---|
| 2331 | ENDIF |
---|
| 2332 | |
---|
| 2333 | RETURN |
---|
| 2334 | END |
---|
| 2335 | |
---|
| 2336 | |
---|
| 2337 | |
---|