[878] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
[972] | 4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
[878] | 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
[1026] | 8 | & ,fm0,entr0,detr0,zqta,zqla,lmax & |
---|
[878] | 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[972] | 10 | & ,r_aspect,l_mix,tau_thermals & |
---|
[927] | 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
[1026] | 12 | & ,zmax0, f0,zw2,fraca) |
---|
[878] | 13 | |
---|
[972] | 14 | USE dimphy |
---|
[1026] | 15 | USE comgeomphy , ONLY:rlond,rlatd |
---|
[878] | 16 | IMPLICIT NONE |
---|
| 17 | |
---|
| 18 | !======================================================================= |
---|
| 19 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 20 | ! Version du 09.02.07 |
---|
| 21 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 22 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 23 | ! |
---|
| 24 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 25 | ! |
---|
| 26 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 27 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 28 | ! mélange |
---|
| 29 | ! |
---|
| 30 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 31 | ! en compte: |
---|
| 32 | ! 1. un flux de masse montant |
---|
| 33 | ! 2. un flux de masse descendant |
---|
| 34 | ! 3. un entrainement |
---|
| 35 | ! 4. un detrainement |
---|
| 36 | ! |
---|
| 37 | !======================================================================= |
---|
| 38 | |
---|
| 39 | !----------------------------------------------------------------------- |
---|
| 40 | ! declarations: |
---|
| 41 | ! ------------- |
---|
| 42 | |
---|
| 43 | #include "dimensions.h" |
---|
| 44 | #include "YOMCST.h" |
---|
| 45 | #include "YOETHF.h" |
---|
| 46 | #include "FCTTRE.h" |
---|
[938] | 47 | #include "iniprint.h" |
---|
[878] | 48 | |
---|
| 49 | ! arguments: |
---|
| 50 | ! ---------- |
---|
| 51 | |
---|
[972] | 52 | !IM 140508 |
---|
| 53 | INTEGER itap |
---|
| 54 | |
---|
| 55 | INTEGER ngrid,nlay,w2di |
---|
| 56 | real tau_thermals |
---|
[878] | 57 | real ptimestep,l_mix,r_aspect |
---|
| 58 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 59 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 60 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 61 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 62 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 63 | real pphi(ngrid,nlay) |
---|
| 64 | |
---|
| 65 | ! local: |
---|
| 66 | ! ------ |
---|
| 67 | |
---|
[972] | 68 | integer icount |
---|
| 69 | data icount/0/ |
---|
| 70 | save icount |
---|
[987] | 71 | !$OMP THREADPRIVATE(icount) |
---|
[972] | 72 | |
---|
[883] | 73 | integer,save :: igout=1 |
---|
[987] | 74 | !$OMP THREADPRIVATE(igout) |
---|
[938] | 75 | integer,save :: lunout1=6 |
---|
[987] | 76 | !$OMP THREADPRIVATE(lunout1) |
---|
[883] | 77 | integer,save :: lev_out=10 |
---|
[987] | 78 | !$OMP THREADPRIVATE(lev_out) |
---|
[878] | 79 | |
---|
| 80 | INTEGER ig,k,l,ll |
---|
| 81 | real zsortie1d(klon) |
---|
| 82 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 83 | INTEGER lmix(klon) |
---|
[1026] | 84 | INTEGER lmix_bis(klon) |
---|
[878] | 85 | real linter(klon) |
---|
| 86 | real zmix(klon) |
---|
[1026] | 87 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev),zw_est(klon,klev+1) |
---|
| 88 | ! real fraca(klon,klev) |
---|
| 89 | |
---|
[878] | 90 | real zmax_sec(klon) |
---|
| 91 | !on garde le zmax du pas de temps precedent |
---|
| 92 | real zmax0(klon) |
---|
[927] | 93 | !FH/IM save zmax0 |
---|
[878] | 94 | |
---|
[972] | 95 | real lambda |
---|
| 96 | |
---|
[878] | 97 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 98 | real deltaz(klon,klev) |
---|
[972] | 99 | REAL zh(klon,klev) |
---|
[878] | 100 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 101 | REAL ztv(klon,klev) |
---|
| 102 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 103 | real zl(klon,klev) |
---|
| 104 | real zsortie(klon,klev) |
---|
| 105 | real zva(klon,klev) |
---|
| 106 | real zua(klon,klev) |
---|
| 107 | real zoa(klon,klev) |
---|
| 108 | |
---|
| 109 | real zta(klon,klev) |
---|
| 110 | real zha(klon,klev) |
---|
| 111 | real fraca(klon,klev+1) |
---|
| 112 | real zf,zf2 |
---|
| 113 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 114 | real q2(klon,klev) |
---|
[972] | 115 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
| 116 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 117 | |
---|
| 118 | real ratqscth(klon,klev) |
---|
| 119 | real var |
---|
| 120 | real vardiff |
---|
| 121 | real ratqsdiff(klon,klev) |
---|
| 122 | |
---|
| 123 | logical sorties |
---|
[972] | 124 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
[878] | 125 | real zpspsk(klon,klev) |
---|
| 126 | |
---|
| 127 | real wmax(klon) |
---|
| 128 | real wmax_sec(klon) |
---|
[972] | 129 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
| 130 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
[878] | 131 | |
---|
| 132 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 133 | !niveau de condensation |
---|
[879] | 134 | integer nivcon(klon) |
---|
[878] | 135 | real zcon(klon) |
---|
| 136 | REAL CHI |
---|
| 137 | real zcon2(klon) |
---|
| 138 | real pcon(klon) |
---|
| 139 | real zqsat(klon,klev) |
---|
| 140 | real zqsatth(klon,klev) |
---|
| 141 | |
---|
| 142 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 143 | real detr_star(klon,klev) |
---|
| 144 | real alim_star_tot(klon),alim_star2(klon) |
---|
| 145 | real alim_star(klon,klev) |
---|
| 146 | real f(klon), f0(klon) |
---|
[927] | 147 | !FH/IM save f0 |
---|
[878] | 148 | real zlevinter(klon) |
---|
| 149 | logical debut |
---|
| 150 | real seuil |
---|
| 151 | |
---|
| 152 | ! |
---|
[879] | 153 | !nouvelles variables pour la convection |
---|
| 154 | real Ale_bl(klon) |
---|
| 155 | real Alp_bl(klon) |
---|
| 156 | real alp_int(klon) |
---|
| 157 | real ale_int(klon) |
---|
| 158 | integer n_int(klon) |
---|
| 159 | real fm_tot(klon) |
---|
| 160 | real wght_th(klon,klev) |
---|
| 161 | integer lalim_conv(klon) |
---|
[926] | 162 | !v1d logical therm |
---|
| 163 | !v1d save therm |
---|
[878] | 164 | |
---|
| 165 | character*2 str2 |
---|
| 166 | character*10 str10 |
---|
| 167 | |
---|
| 168 | EXTERNAL SCOPY |
---|
| 169 | ! |
---|
| 170 | |
---|
| 171 | !----------------------------------------------------------------------- |
---|
| 172 | ! initialisation: |
---|
| 173 | ! --------------- |
---|
| 174 | ! |
---|
| 175 | |
---|
| 176 | seuil=0.25 |
---|
| 177 | |
---|
[972] | 178 | if (debut) then |
---|
| 179 | fm0=0. |
---|
| 180 | entr0=0. |
---|
| 181 | detr0=0. |
---|
[1026] | 182 | |
---|
| 183 | |
---|
| 184 | ! #define wrgrads_thermcell |
---|
| 185 | #undef wrgrads_thermcell |
---|
| 186 | #ifdef wrgrads_thermcell |
---|
| 187 | ! Initialisation des sorties grads pour les thermiques. |
---|
| 188 | ! Pour l'instant en 1D sur le point igout. |
---|
| 189 | ! Utilise par thermcell_out3d.h |
---|
| 190 | str10='therm' |
---|
| 191 | call inigrads(1,1,rlond(igout),1.,-180.,180.,jjm, & |
---|
| 192 | & rlatd(igout),-90.,90.,1.,llm,pplay(igout,:),1., & |
---|
| 193 | & ptimestep,str10,'therm ') |
---|
| 194 | #endif |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | |
---|
[972] | 198 | endif |
---|
| 199 | |
---|
| 200 | fm=0. ; entr=0. ; detr=0. |
---|
| 201 | |
---|
| 202 | icount=icount+1 |
---|
| 203 | |
---|
| 204 | !IM 090508 beg |
---|
| 205 | !print*,'=====================================================================' |
---|
| 206 | !print*,'=====================================================================' |
---|
| 207 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
| 208 | !print*,'=====================================================================' |
---|
| 209 | !print*,'=====================================================================' |
---|
| 210 | !IM 090508 end |
---|
| 211 | |
---|
[938] | 212 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 213 | |
---|
| 214 | sorties=.true. |
---|
| 215 | IF(ngrid.NE.klon) THEN |
---|
| 216 | PRINT* |
---|
| 217 | PRINT*,'STOP dans convadj' |
---|
| 218 | PRINT*,'ngrid =',ngrid |
---|
| 219 | PRINT*,'klon =',klon |
---|
| 220 | ENDIF |
---|
| 221 | ! |
---|
| 222 | !Initialisation |
---|
| 223 | ! |
---|
[972] | 224 | ! IF (1.eq.0) THEN |
---|
| 225 | ! do ig=1,klon |
---|
[927] | 226 | !FH/IM 130308 if ((debut).or.((.not.debut).and.(f0(ig).lt.1.e-10))) then |
---|
[972] | 227 | ! if ((.not.debut).and.(f0(ig).lt.1.e-10)) then |
---|
| 228 | ! f0(ig)=1.e-5 |
---|
| 229 | ! zmax0(ig)=40. |
---|
[926] | 230 | !v1d therm=.false. |
---|
[972] | 231 | ! endif |
---|
| 232 | ! enddo |
---|
| 233 | ! ENDIF !(1.eq.0) THEN |
---|
| 234 | print*,'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
| 235 | do ig=1,klon |
---|
| 236 | if (prt_level.ge.20) then |
---|
| 237 | print*,'th_main ig f0',ig,f0(ig) |
---|
[878] | 238 | endif |
---|
[972] | 239 | f0(ig)=max(f0(ig),1.e-2) |
---|
| 240 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
| 241 | enddo |
---|
[878] | 242 | |
---|
| 243 | !----------------------------------------------------------------------- |
---|
| 244 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 245 | ! -------------------------------------------------------------------- |
---|
| 246 | ! |
---|
| 247 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 248 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 249 | |
---|
[938] | 250 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 251 | |
---|
| 252 | !------------------------------------------------------------------------ |
---|
| 253 | ! -------------------- |
---|
| 254 | ! |
---|
| 255 | ! |
---|
| 256 | ! + + + + + + + + + + + |
---|
| 257 | ! |
---|
| 258 | ! |
---|
| 259 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 260 | ! wh,wt,wo ... |
---|
| 261 | ! |
---|
| 262 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 263 | ! |
---|
| 264 | ! |
---|
| 265 | ! -------------------- zlev(1) |
---|
| 266 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 267 | ! |
---|
| 268 | ! |
---|
| 269 | |
---|
| 270 | !----------------------------------------------------------------------- |
---|
| 271 | ! Calcul des altitudes des couches |
---|
| 272 | !----------------------------------------------------------------------- |
---|
| 273 | |
---|
| 274 | do l=2,nlay |
---|
| 275 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 276 | enddo |
---|
| 277 | zlev(:,1)=0. |
---|
| 278 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 279 | do l=1,nlay |
---|
| 280 | zlay(:,l)=pphi(:,l)/RG |
---|
| 281 | enddo |
---|
| 282 | !calcul de l epaisseur des couches |
---|
| 283 | do l=1,nlay |
---|
| 284 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 285 | enddo |
---|
| 286 | |
---|
| 287 | ! print*,'2 OK convect8' |
---|
| 288 | !----------------------------------------------------------------------- |
---|
| 289 | ! Calcul des densites |
---|
| 290 | !----------------------------------------------------------------------- |
---|
| 291 | |
---|
| 292 | do l=1,nlay |
---|
| 293 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 294 | enddo |
---|
| 295 | |
---|
[972] | 296 | !IM |
---|
| 297 | print*,'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
| 298 | rhobarz(:,1)=rho(:,1) |
---|
| 299 | |
---|
[878] | 300 | do l=2,nlay |
---|
| 301 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 302 | enddo |
---|
| 303 | |
---|
| 304 | !calcul de la masse |
---|
| 305 | do l=1,nlay |
---|
| 306 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 307 | enddo |
---|
| 308 | |
---|
[938] | 309 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 310 | |
---|
| 311 | !------------------------------------------------------------------ |
---|
| 312 | ! |
---|
| 313 | ! /|\ |
---|
| 314 | ! -------- | F_k+1 ------- |
---|
| 315 | ! ----> D_k |
---|
| 316 | ! /|\ <---- E_k , A_k |
---|
| 317 | ! -------- | F_k --------- |
---|
| 318 | ! ----> D_k-1 |
---|
| 319 | ! <---- E_k-1 , A_k-1 |
---|
| 320 | ! |
---|
| 321 | ! |
---|
| 322 | ! |
---|
| 323 | ! |
---|
| 324 | ! |
---|
| 325 | ! --------------------------- |
---|
| 326 | ! |
---|
| 327 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 328 | ! lmax (zmax) | |
---|
| 329 | ! --------------------------- | |
---|
| 330 | ! | |
---|
| 331 | ! --------------------------- | |
---|
| 332 | ! | |
---|
| 333 | ! --------------------------- | |
---|
| 334 | ! | |
---|
| 335 | ! --------------------------- | |
---|
| 336 | ! | |
---|
| 337 | ! --------------------------- | |
---|
| 338 | ! | E |
---|
| 339 | ! --------------------------- | D |
---|
| 340 | ! | |
---|
| 341 | ! --------------------------- | |
---|
| 342 | ! | |
---|
| 343 | ! --------------------------- \ | |
---|
| 344 | ! lalim | | |
---|
| 345 | ! --------------------------- | | |
---|
| 346 | ! | | |
---|
| 347 | ! --------------------------- | | |
---|
| 348 | ! | A | |
---|
| 349 | ! --------------------------- | | |
---|
| 350 | ! | | |
---|
| 351 | ! --------------------------- | | |
---|
| 352 | ! lmin (=1 pour le moment) | | |
---|
| 353 | ! ----- F_lmin=0 ------------ / / |
---|
| 354 | ! |
---|
| 355 | ! --------------------------- |
---|
| 356 | ! ////////////////////////// |
---|
| 357 | ! |
---|
| 358 | ! |
---|
| 359 | !============================================================================= |
---|
| 360 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 361 | !============================================================================= |
---|
| 362 | |
---|
| 363 | !------------------------------------------------------------------ |
---|
| 364 | ! 1. alim_star est le profil vertical de l'alimentation à la base du |
---|
| 365 | ! panache thermique, calculé à partir de la flotabilité de l'air sec |
---|
| 366 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 367 | !------------------------------------------------------------------ |
---|
| 368 | ! |
---|
| 369 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
[972] | 370 | CALL thermcell_init(ngrid,nlay,ztv,zlay,zlev, & |
---|
[878] | 371 | & lalim,lmin,alim_star,alim_star_tot,lev_out) |
---|
| 372 | |
---|
| 373 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lmin ') |
---|
| 374 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lalim ') |
---|
| 375 | |
---|
| 376 | |
---|
[938] | 377 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_init' |
---|
| 378 | if (prt_level.ge.10) then |
---|
[972] | 379 | write(lunout1,*) 'Dans thermcell_main 1' |
---|
| 380 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 381 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 382 | write(lunout1,*) ' ig l alim_star thetav' |
---|
| 383 | write(lunout1,'(i6,i4,2e15.5)') (igout,l,alim_star(igout,l) & |
---|
[878] | 384 | & ,ztv(igout,l),l=1,lalim(igout)+4) |
---|
| 385 | endif |
---|
| 386 | |
---|
[938] | 387 | !v1d do ig=1,klon |
---|
[926] | 388 | !v1d if (alim_star(ig,1).gt.1.e-10) then |
---|
| 389 | !v1d therm=.true. |
---|
| 390 | !v1d endif |
---|
[938] | 391 | !v1d enddo |
---|
[878] | 392 | !----------------------------------------------------------------------------- |
---|
| 393 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 394 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 395 | ! Il s'agit d'un calcul de type CAPE |
---|
| 396 | ! zmax_sec est utilisé pour déterminer la géométrie du thermique. |
---|
| 397 | !------------------------------------------------------------------------------ |
---|
| 398 | ! |
---|
| 399 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 400 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
| 401 | |
---|
| 402 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 403 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 404 | |
---|
[938] | 405 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 406 | if (prt_level.ge.10) then |
---|
[972] | 407 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
| 408 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 409 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 410 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 411 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
[878] | 412 | & ,l=1,lalim(igout)+4) |
---|
| 413 | endif |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | |
---|
| 417 | !--------------------------------------------------------------------------------- |
---|
| 418 | !calcul du melange et des variables dans le thermique |
---|
| 419 | !-------------------------------------------------------------------------------- |
---|
| 420 | ! |
---|
[972] | 421 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
| 422 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
| 423 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
[1026] | 424 | & zlev,pplev,pphi,zpspsk,l_mix,r_aspect,alim_star,alim_star_tot, & |
---|
[878] | 425 | & lalim,zmax_sec,f0,detr_star,entr_star,f_star,ztva, & |
---|
[1026] | 426 | & ztla,zqla,zqta,zha,zw2,zw_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 427 | & ,lev_out,lunout1,igout) |
---|
[972] | 428 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
| 429 | |
---|
[878] | 430 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 431 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 432 | |
---|
[938] | 433 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 434 | if (prt_level.ge.10) then |
---|
[972] | 435 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
| 436 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 437 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 438 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 439 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
[878] | 440 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 441 | endif |
---|
| 442 | |
---|
| 443 | !------------------------------------------------------------------------------- |
---|
| 444 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 445 | !------------------------------------------------------------------------------- |
---|
| 446 | ! |
---|
| 447 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 448 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 452 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 453 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 454 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 455 | |
---|
[938] | 456 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 457 | |
---|
| 458 | !------------------------------------------------------------------------------- |
---|
| 459 | ! Fermeture,determination de f |
---|
| 460 | !------------------------------------------------------------------------------- |
---|
[1026] | 461 | ! |
---|
| 462 | !avant closure: on redéfinit lalim, alim_star_tot et alim_star |
---|
| 463 | ! do ig=1,klon |
---|
| 464 | ! do l=2,lalim(ig) |
---|
| 465 | ! alim_star(ig,l)=entr_star(ig,l) |
---|
| 466 | ! entr_star(ig,l)=0. |
---|
| 467 | ! enddo |
---|
| 468 | ! enddo |
---|
[878] | 469 | |
---|
| 470 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
[1026] | 471 | & zlev,lalim,alim_star,alim_star_tot,zmax_sec,wmax_sec,zmax,wmax,f,lev_out) |
---|
[878] | 472 | |
---|
[938] | 473 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 474 | |
---|
[972] | 475 | if (tau_thermals>1.) then |
---|
| 476 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 477 | f0=(1.-lambda)*f+lambda*f0 |
---|
| 478 | else |
---|
| 479 | f0=f |
---|
| 480 | endif |
---|
| 481 | |
---|
| 482 | ! Test valable seulement en 1D mais pas genant |
---|
| 483 | if (.not. (f0(1).ge.0.) ) then |
---|
| 484 | stop'Dans thermcell_main' |
---|
| 485 | endif |
---|
| 486 | |
---|
[878] | 487 | !------------------------------------------------------------------------------- |
---|
| 488 | !deduction des flux |
---|
| 489 | !------------------------------------------------------------------------------- |
---|
| 490 | |
---|
[972] | 491 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
[878] | 492 | & lalim,lmax,alim_star, & |
---|
| 493 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
[972] | 494 | & detr,zqla,lev_out,lunout1,igout) |
---|
| 495 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
[878] | 496 | |
---|
[938] | 497 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 498 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 499 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 500 | |
---|
| 501 | !------------------------------------------------------------------ |
---|
[972] | 502 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
| 503 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
| 504 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
| 505 | !------------------------------------------------------------------ |
---|
[878] | 506 | |
---|
[972] | 507 | if (tau_thermals>1.) then |
---|
| 508 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 509 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
| 510 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
| 511 | ! detr0=(1.-lambda)*detr+lambda*detr0 |
---|
[878] | 512 | else |
---|
| 513 | fm0=fm |
---|
| 514 | entr0=entr |
---|
| 515 | detr0=detr |
---|
| 516 | endif |
---|
| 517 | |
---|
[972] | 518 | !c------------------------------------------------------------------ |
---|
| 519 | ! calcul du transport vertical |
---|
| 520 | !------------------------------------------------------------------ |
---|
| 521 | |
---|
[878] | 522 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 523 | & zthl,zdthladj,zta,lev_out) |
---|
| 524 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 525 | & po,pdoadj,zoa,lev_out) |
---|
| 526 | |
---|
[883] | 527 | !------------------------------------------------------------------ |
---|
| 528 | ! Calcul de la fraction de l'ascendance |
---|
| 529 | !------------------------------------------------------------------ |
---|
| 530 | do ig=1,klon |
---|
| 531 | fraca(ig,1)=0. |
---|
| 532 | fraca(ig,nlay+1)=0. |
---|
| 533 | enddo |
---|
| 534 | do l=2,nlay |
---|
| 535 | do ig=1,klon |
---|
| 536 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 537 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 538 | else |
---|
| 539 | fraca(ig,l)=0. |
---|
| 540 | endif |
---|
| 541 | enddo |
---|
| 542 | enddo |
---|
| 543 | |
---|
| 544 | !------------------------------------------------------------------ |
---|
| 545 | ! calcul du transport vertical du moment horizontal |
---|
| 546 | !------------------------------------------------------------------ |
---|
[878] | 547 | |
---|
[972] | 548 | !IM 090508 |
---|
[883] | 549 | if (1.eq.1) then |
---|
[972] | 550 | !IM 070508 vers. _dq |
---|
| 551 | ! if (1.eq.0) then |
---|
[883] | 552 | |
---|
| 553 | |
---|
[878] | 554 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 555 | ! de pression horizontal avec l'environnement |
---|
| 556 | |
---|
| 557 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 558 | & ,fraca,zmax & |
---|
[972] | 559 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
| 560 | !IM 050508 & ,zu,zv,pduadj,pdvadj,zua,zva,igout,lev_out) |
---|
[878] | 561 | else |
---|
| 562 | |
---|
| 563 | ! calcul purement conservatif pour le transport de V |
---|
| 564 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 565 | & ,zu,pduadj,zua,lev_out) |
---|
| 566 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 567 | & ,zv,pdvadj,zva,lev_out) |
---|
| 568 | endif |
---|
| 569 | |
---|
| 570 | ! print*,'13 OK convect8' |
---|
| 571 | do l=1,nlay |
---|
| 572 | do ig=1,ngrid |
---|
| 573 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 574 | enddo |
---|
| 575 | enddo |
---|
| 576 | |
---|
[972] | 577 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
[878] | 578 | !------------------------------------------------------------------ |
---|
| 579 | ! Calculs de diagnostiques pour les sorties |
---|
| 580 | !------------------------------------------------------------------ |
---|
| 581 | !calcul de fraca pour les sorties |
---|
| 582 | |
---|
| 583 | if (sorties) then |
---|
[972] | 584 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
[878] | 585 | ! calcul du niveau de condensation |
---|
| 586 | ! initialisation |
---|
| 587 | do ig=1,ngrid |
---|
[879] | 588 | nivcon(ig)=0 |
---|
[878] | 589 | zcon(ig)=0. |
---|
| 590 | enddo |
---|
| 591 | !nouveau calcul |
---|
| 592 | do ig=1,ngrid |
---|
| 593 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 594 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 595 | enddo |
---|
| 596 | do k=1,nlay |
---|
| 597 | do ig=1,ngrid |
---|
| 598 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 599 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 600 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 601 | endif |
---|
| 602 | enddo |
---|
| 603 | enddo |
---|
[972] | 604 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
[878] | 605 | do k=nlay,1,-1 |
---|
| 606 | do ig=1,ngrid |
---|
| 607 | if (zqla(ig,k).gt.1e-10) then |
---|
| 608 | nivcon(ig)=k |
---|
| 609 | zcon(ig)=zlev(ig,k) |
---|
| 610 | endif |
---|
| 611 | enddo |
---|
| 612 | enddo |
---|
[972] | 613 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
[878] | 614 | !calcul des moments |
---|
| 615 | !initialisation |
---|
| 616 | do l=1,nlay |
---|
| 617 | do ig=1,ngrid |
---|
| 618 | q2(ig,l)=0. |
---|
| 619 | wth2(ig,l)=0. |
---|
| 620 | wth3(ig,l)=0. |
---|
| 621 | ratqscth(ig,l)=0. |
---|
| 622 | ratqsdiff(ig,l)=0. |
---|
| 623 | enddo |
---|
| 624 | enddo |
---|
[972] | 625 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
| 626 | print*,'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
[878] | 627 | do l=1,nlay |
---|
| 628 | do ig=1,ngrid |
---|
| 629 | zf=fraca(ig,l) |
---|
| 630 | zf2=zf/(1.-zf) |
---|
[972] | 631 | ! |
---|
| 632 | if (prt_level.ge.10) print*,'14e OK convect8 ig,l,zf,zf2',ig,l,zf,zf2 |
---|
| 633 | ! |
---|
| 634 | if (prt_level.ge.10) print*,'14f OK convect8 ig,l,zha zh zpspsk ',ig,l,zha(ig,l),zh(ig,l),zpspsk(ig,l) |
---|
[878] | 635 | thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
[972] | 636 | if(zw2(ig,l).gt.1.e-10) then |
---|
| 637 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 638 | else |
---|
| 639 | wth2(ig,l)=0. |
---|
| 640 | endif |
---|
[878] | 641 | ! print*,'wth2=',wth2(ig,l) |
---|
| 642 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 643 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
[972] | 644 | if (prt_level.ge.10) print*,'14g OK convect8 ig,l,po',ig,l,po(ig,l) |
---|
[878] | 645 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 646 | !test: on calcul q2/po=ratqsc |
---|
| 647 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 648 | enddo |
---|
| 649 | enddo |
---|
[879] | 650 | !calcul de ale_bl et alp_bl |
---|
| 651 | !pour le calcul d'une valeur intégrée entre la surface et lmax |
---|
| 652 | do ig=1,ngrid |
---|
| 653 | alp_int(ig)=0. |
---|
| 654 | ale_int(ig)=0. |
---|
| 655 | n_int(ig)=0 |
---|
| 656 | enddo |
---|
[972] | 657 | ! |
---|
| 658 | do l=1,nlay |
---|
[879] | 659 | do ig=1,ngrid |
---|
[972] | 660 | if(l.LE.lmax(ig)) THEN |
---|
| 661 | alp_int(ig)=alp_int(ig)+0.5*rhobarz(ig,l)*wth3(ig,l) |
---|
| 662 | ale_int(ig)=ale_int(ig)+0.5*zw2(ig,l)**2 |
---|
| 663 | n_int(ig)=n_int(ig)+1 |
---|
| 664 | endif |
---|
[879] | 665 | enddo |
---|
| 666 | enddo |
---|
| 667 | ! print*,'avant calcul ale et alp' |
---|
| 668 | !calcul de ALE et ALP pour la convection |
---|
| 669 | do ig=1,ngrid |
---|
| 670 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix_bis(ig))*wth3(ig,lmix(ig)) |
---|
| 671 | ! Alp_bl(ig)=0.5*rhobarz(ig,nivcon(ig))*wth3(ig,nivcon(ig)) |
---|
| 672 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix(ig))*wth3(ig,lmix(ig)) |
---|
| 673 | ! & *0.1 |
---|
| 674 | !valeur integree de alp_bl * 0.5: |
---|
| 675 | if (n_int(ig).gt.0) then |
---|
| 676 | Alp_bl(ig)=0.5*alp_int(ig)/n_int(ig) |
---|
| 677 | ! if (Alp_bl(ig).lt.0.) then |
---|
| 678 | ! Alp_bl(ig)=0. |
---|
| 679 | endif |
---|
| 680 | ! endif |
---|
| 681 | ! write(18,*),'rhobarz,wth3,Alp',rhobarz(ig,nivcon(ig)), |
---|
| 682 | ! s wth3(ig,nivcon(ig)),Alp_bl(ig) |
---|
| 683 | ! write(18,*),'ALP_BL',Alp_bl(ig),lmix(ig) |
---|
| 684 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 685 | ! if (nivcon(ig).eq.1) then |
---|
| 686 | ! Ale_bl(ig)=0. |
---|
| 687 | ! else |
---|
| 688 | !valeur max de ale_bl: |
---|
| 689 | Ale_bl(ig)=0.5*zw2(ig,lmix(ig))**2 |
---|
| 690 | ! & /2. |
---|
| 691 | ! & *0.1 |
---|
| 692 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 693 | ! if (n_int(ig).gt.0) then |
---|
| 694 | ! Ale_bl(ig)=ale_int(ig)/n_int(ig) |
---|
| 695 | ! Ale_bl(ig)=4. |
---|
| 696 | ! endif |
---|
| 697 | ! endif |
---|
| 698 | ! Ale_bl(ig)=0.5*wth2(ig,lmix_bis(ig)) |
---|
| 699 | ! Ale_bl(ig)=wth2(ig,nivcon(ig)) |
---|
| 700 | ! write(19,*),'wth2,ALE_BL',wth2(ig,nivcon(ig)),Ale_bl(ig) |
---|
| 701 | enddo |
---|
| 702 | !test:calcul de la ponderation des couches pour KE |
---|
| 703 | !initialisations |
---|
| 704 | ! print*,'ponderation' |
---|
| 705 | do ig=1,ngrid |
---|
| 706 | fm_tot(ig)=0. |
---|
| 707 | enddo |
---|
| 708 | do ig=1,ngrid |
---|
| 709 | do k=1,klev |
---|
| 710 | wght_th(ig,k)=1. |
---|
| 711 | enddo |
---|
| 712 | enddo |
---|
| 713 | do ig=1,ngrid |
---|
| 714 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 715 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 716 | lalim_conv(ig)=lalim(ig) |
---|
| 717 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 718 | enddo |
---|
| 719 | do ig=1,ngrid |
---|
| 720 | do k=1,lalim_conv(ig) |
---|
| 721 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 722 | enddo |
---|
| 723 | enddo |
---|
| 724 | do ig=1,ngrid |
---|
| 725 | do k=1,lalim_conv(ig) |
---|
| 726 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 727 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 728 | endif |
---|
| 729 | !on pondere chaque couche par a* |
---|
| 730 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 731 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 732 | else |
---|
| 733 | wght_th(ig,k)=1. |
---|
| 734 | endif |
---|
| 735 | enddo |
---|
| 736 | enddo |
---|
| 737 | ! print*,'apres wght_th' |
---|
| 738 | !test pour prolonger la convection |
---|
| 739 | do ig=1,ngrid |
---|
[926] | 740 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 741 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
[879] | 742 | lalim_conv(ig)=1 |
---|
| 743 | wght_th(ig,1)=1. |
---|
| 744 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 745 | endif |
---|
| 746 | enddo |
---|
| 747 | |
---|
[878] | 748 | !calcul du ratqscdiff |
---|
[972] | 749 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
[878] | 750 | var=0. |
---|
| 751 | vardiff=0. |
---|
| 752 | ratqsdiff(:,:)=0. |
---|
| 753 | do ig=1,ngrid |
---|
| 754 | do l=1,lalim(ig) |
---|
| 755 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 756 | enddo |
---|
| 757 | enddo |
---|
[972] | 758 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
[878] | 759 | do ig=1,ngrid |
---|
| 760 | do l=1,lalim(ig) |
---|
| 761 | zf=fraca(ig,l) |
---|
| 762 | zf2=zf/(1.-zf) |
---|
| 763 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 764 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 765 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 766 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 767 | enddo |
---|
| 768 | enddo |
---|
[972] | 769 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
[878] | 770 | do l=1,nlay |
---|
| 771 | do ig=1,ngrid |
---|
| 772 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 773 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 774 | enddo |
---|
| 775 | enddo |
---|
| 776 | !-------------------------------------------------------------------- |
---|
| 777 | ! |
---|
| 778 | !ecriture des fichiers sortie |
---|
| 779 | ! print*,'15 OK convect8' |
---|
| 780 | |
---|
[938] | 781 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
[1026] | 782 | #ifdef wrgrads_thermcell |
---|
[878] | 783 | #include "thermcell_out3d.h" |
---|
| 784 | #endif |
---|
| 785 | |
---|
| 786 | endif |
---|
| 787 | |
---|
[938] | 788 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 789 | |
---|
[972] | 790 | ! if(icount.eq.501) stop'au pas 301 dans thermcell_main' |
---|
[878] | 791 | return |
---|
| 792 | end |
---|
| 793 | |
---|
| 794 | !----------------------------------------------------------------------------- |
---|
| 795 | |
---|
| 796 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[938] | 797 | IMPLICIT NONE |
---|
| 798 | #include "iniprint.h" |
---|
[878] | 799 | |
---|
[938] | 800 | integer i, k, klon,klev |
---|
[878] | 801 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 802 | real ztv(klon,klev) |
---|
| 803 | real po(klon,klev) |
---|
| 804 | real ztva(klon,klev) |
---|
| 805 | real zqla(klon,klev) |
---|
| 806 | real f_star(klon,klev) |
---|
| 807 | real zw2(klon,klev) |
---|
| 808 | integer long(klon) |
---|
| 809 | real seuil |
---|
| 810 | character*21 comment |
---|
| 811 | |
---|
[938] | 812 | if (prt_level.ge.1) THEN |
---|
| 813 | print*,'WARNING !!! TEST ',comment |
---|
| 814 | endif |
---|
[879] | 815 | return |
---|
| 816 | |
---|
[878] | 817 | ! test sur la hauteur des thermiques ... |
---|
| 818 | do i=1,klon |
---|
[972] | 819 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 820 | if (prt_level.ge.10) then |
---|
[878] | 821 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 822 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 823 | do k=1,klev |
---|
| 824 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 825 | enddo |
---|
| 826 | ! stop |
---|
[972] | 827 | endif |
---|
[878] | 828 | enddo |
---|
| 829 | |
---|
| 830 | |
---|
| 831 | return |
---|
| 832 | end |
---|
| 833 | |
---|