[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE radlwsw(dist, rmu0, fract, |
---|
| 5 | . paprs, pplay,tsol,albedo, alblw, t,q,wo, |
---|
| 6 | . cldfra, cldemi, cldtaupd, |
---|
| 7 | . heat,heat0,cool,cool0,radsol,albpla, |
---|
| 8 | . topsw,toplw,solsw,sollw, |
---|
| 9 | . sollwdown, |
---|
| 10 | . topsw0,toplw0,solsw0,sollw0, |
---|
| 11 | . lwdn0, lwdn, lwup0, lwup, |
---|
| 12 | . swdn0, swdn, swup0, swup, |
---|
| 13 | . ok_ade, ok_aie, |
---|
| 14 | . tau_ae, piz_ae, cg_ae, |
---|
| 15 | . topswad, solswad, |
---|
| 16 | . cldtaupi, topswai, solswai) |
---|
| 17 | c |
---|
| 18 | IMPLICIT none |
---|
| 19 | c====================================================================== |
---|
| 20 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 |
---|
| 21 | c Objet: interface entre le modele et les rayonnements |
---|
| 22 | c Arguments: |
---|
| 23 | c dist-----input-R- distance astronomique terre-soleil |
---|
| 24 | c rmu0-----input-R- cosinus de l'angle zenithal |
---|
| 25 | c fract----input-R- duree d'ensoleillement normalisee |
---|
| 26 | c co2_ppm--input-R- concentration du gaz carbonique (en ppm) |
---|
| 27 | c solaire--input-R- constante solaire (W/m**2) |
---|
| 28 | c paprs----input-R- pression a inter-couche (Pa) |
---|
| 29 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 30 | c tsol-----input-R- temperature du sol (en K) |
---|
| 31 | c albedo---input-R- albedo du sol (entre 0 et 1) |
---|
| 32 | c t--------input-R- temperature (K) |
---|
| 33 | c q--------input-R- vapeur d'eau (en kg/kg) |
---|
[652] | 34 | c wo-------input-R- contenu en ozone (en kg/kg) correction MPL 100505 |
---|
[524] | 35 | c cldfra---input-R- fraction nuageuse (entre 0 et 1) |
---|
| 36 | c cldtaupd---input-R- epaisseur optique des nuages dans le visible (present-day value) |
---|
| 37 | c cldemi---input-R- emissivite des nuages dans l'IR (entre 0 et 1) |
---|
| 38 | c ok_ade---input-L- apply the Aerosol Direct Effect or not? |
---|
| 39 | c ok_aie---input-L- apply the Aerosol Indirect Effect or not? |
---|
| 40 | c tau_ae, piz_ae, cg_ae-input-R- aerosol optical properties (calculated in aeropt.F) |
---|
| 41 | c cldtaupi-input-R- epaisseur optique des nuages dans le visible |
---|
| 42 | c calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller |
---|
| 43 | c droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd |
---|
| 44 | c it is needed for the diagnostics of the aerosol indirect radiative forcing |
---|
| 45 | c |
---|
| 46 | c heat-----output-R- echauffement atmospherique (visible) (K/jour) |
---|
| 47 | c cool-----output-R- refroidissement dans l'IR (K/jour) |
---|
| 48 | c radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas) |
---|
| 49 | c albpla---output-R- albedo planetaire (entre 0 et 1) |
---|
| 50 | c topsw----output-R- flux solaire net au sommet de l'atm. |
---|
| 51 | c toplw----output-R- ray. IR montant au sommet de l'atmosphere |
---|
| 52 | c solsw----output-R- flux solaire net a la surface |
---|
| 53 | c sollw----output-R- ray. IR montant a la surface |
---|
| 54 | c solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir) |
---|
| 55 | c topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir) |
---|
| 56 | c solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind) |
---|
| 57 | c topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind) |
---|
| 58 | c |
---|
| 59 | c ATTENTION: swai and swad have to be interpreted in the following manner: |
---|
| 60 | c --------- |
---|
| 61 | c ok_ade=F & ok_aie=F -both are zero |
---|
| 62 | c ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad |
---|
| 63 | c indirect is zero |
---|
| 64 | c ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
| 65 | c direct is zero |
---|
| 66 | c ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
| 67 | c aerosol direct forcing is F_{AD} = topswai-topswad |
---|
| 68 | c |
---|
| 69 | |
---|
| 70 | c====================================================================== |
---|
| 71 | #include "dimensions.h" |
---|
| 72 | #include "dimphy.h" |
---|
| 73 | #include "raddim.h" |
---|
| 74 | #include "YOETHF.h" |
---|
| 75 | c |
---|
| 76 | real rmu0(klon), fract(klon), dist |
---|
| 77 | cIM real co2_ppm |
---|
| 78 | cIM real solaire |
---|
| 79 | #include "clesphys.h" |
---|
| 80 | c |
---|
| 81 | real paprs(klon,klev+1), pplay(klon,klev) |
---|
| 82 | real albedo(klon), alblw(klon), tsol(klon) |
---|
| 83 | real t(klon,klev), q(klon,klev), wo(klon,klev) |
---|
| 84 | real cldfra(klon,klev), cldemi(klon,klev), cldtaupd(klon,klev) |
---|
| 85 | real heat(klon,klev), cool(klon,klev) |
---|
| 86 | real heat0(klon,klev), cool0(klon,klev) |
---|
| 87 | real radsol(klon), topsw(klon), toplw(klon) |
---|
| 88 | real solsw(klon), sollw(klon), albpla(klon) |
---|
| 89 | real topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) |
---|
| 90 | real sollwdown(klon) |
---|
[644] | 91 | cIM output 3D |
---|
[524] | 92 | REAL*8 ZFSUP(KDLON,KFLEV+1) |
---|
| 93 | REAL*8 ZFSDN(KDLON,KFLEV+1) |
---|
| 94 | REAL*8 ZFSUP0(KDLON,KFLEV+1) |
---|
| 95 | REAL*8 ZFSDN0(KDLON,KFLEV+1) |
---|
[644] | 96 | c |
---|
[524] | 97 | REAL*8 ZFLUP(KDLON,KFLEV+1) |
---|
| 98 | REAL*8 ZFLDN(KDLON,KFLEV+1) |
---|
| 99 | REAL*8 ZFLUP0(KDLON,KFLEV+1) |
---|
| 100 | REAL*8 ZFLDN0(KDLON,KFLEV+1) |
---|
| 101 | c |
---|
| 102 | REAL*8 zx_alpha1, zx_alpha2 |
---|
| 103 | c |
---|
| 104 | #include "YOMCST.h" |
---|
| 105 | c |
---|
| 106 | INTEGER k, kk, i, j, iof, nb_gr |
---|
| 107 | EXTERNAL lw, sw |
---|
| 108 | c |
---|
| 109 | cIM ctes ds clesphys.h REAL*8 RCO2, RCH4, RN2O, RCFC11, RCFC12 |
---|
| 110 | REAL*8 PSCT |
---|
| 111 | c |
---|
| 112 | REAL*8 PALBD(kdlon,2), PALBP(kdlon,2) |
---|
| 113 | REAL*8 PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon) |
---|
| 114 | REAL*8 PPSOL(kdlon), PDP(kdlon,klev) |
---|
| 115 | REAL*8 PTL(kdlon,kflev+1), PPMB(kdlon,kflev+1) |
---|
| 116 | REAL*8 PTAVE(kdlon,kflev) |
---|
| 117 | REAL*8 PWV(kdlon,kflev), PQS(kdlon,kflev), POZON(kdlon,kflev) |
---|
| 118 | REAL*8 PAER(kdlon,kflev,5) |
---|
| 119 | REAL*8 PCLDLD(kdlon,kflev) |
---|
| 120 | REAL*8 PCLDLU(kdlon,kflev) |
---|
| 121 | REAL*8 PCLDSW(kdlon,kflev) |
---|
| 122 | REAL*8 PTAU(kdlon,2,kflev) |
---|
| 123 | REAL*8 POMEGA(kdlon,2,kflev) |
---|
| 124 | REAL*8 PCG(kdlon,2,kflev) |
---|
| 125 | c |
---|
| 126 | REAL*8 zfract(kdlon), zrmu0(kdlon), zdist |
---|
| 127 | c |
---|
| 128 | REAL*8 zheat(kdlon,kflev), zcool(kdlon,kflev) |
---|
| 129 | REAL*8 zheat0(kdlon,kflev), zcool0(kdlon,kflev) |
---|
| 130 | REAL*8 ztopsw(kdlon), ztoplw(kdlon) |
---|
| 131 | REAL*8 zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon) |
---|
[644] | 132 | cIM |
---|
[524] | 133 | REAL*8 zsollwdown(kdlon) |
---|
[644] | 134 | c |
---|
[524] | 135 | REAL*8 ztopsw0(kdlon), ztoplw0(kdlon) |
---|
| 136 | REAL*8 zsolsw0(kdlon), zsollw0(kdlon) |
---|
| 137 | REAL*8 zznormcp |
---|
[644] | 138 | cIM output 3D : SWup, SWdn, LWup, LWdn |
---|
[524] | 139 | REAL swdn(klon,kflev+1),swdn0(klon,kflev+1) |
---|
| 140 | REAL swup(klon,kflev+1),swup0(klon,kflev+1) |
---|
| 141 | REAL lwdn(klon,kflev+1),lwdn0(klon,kflev+1) |
---|
| 142 | REAL lwup(klon,kflev+1),lwup0(klon,kflev+1) |
---|
| 143 | c-OB |
---|
| 144 | cjq the following quantities are needed for the aerosol radiative forcings |
---|
| 145 | |
---|
| 146 | real topswad(klon), solswad(klon) ! output: aerosol direct forcing at TOA and surface |
---|
| 147 | real topswai(klon), solswai(klon) ! output: aerosol indirect forcing atTOA and surface |
---|
| 148 | real tau_ae(klon,klev,2), piz_ae(klon,klev,2), cg_ae(klon,klev,2) ! aerosol optical properties (see aeropt.F) |
---|
| 149 | real cldtaupi(klon,klev) ! cloud optical thickness for pre-industrial aerosol concentrations |
---|
| 150 | ! (i.e., with a smaller droplet concentrationand thus larger droplet radii) |
---|
| 151 | logical ok_ade, ok_aie ! switches whether to use aerosol direct (indirect) effects or not |
---|
| 152 | real*8 tauae(kdlon,kflev,2) ! aer opt properties |
---|
| 153 | real*8 pizae(kdlon,kflev,2) |
---|
| 154 | real*8 cgae(kdlon,kflev,2) |
---|
| 155 | REAL*8 PTAUA(kdlon,2,kflev) ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use |
---|
| 156 | REAL*8 POMEGAA(kdlon,2,kflev) ! dito for single scatt albedo |
---|
| 157 | REAL*8 ztopswad(kdlon), zsolswad(kdlon) ! Aerosol direct forcing at TOAand surface |
---|
| 158 | REAL*8 ztopswai(kdlon), zsolswai(kdlon) ! dito, indirect |
---|
| 159 | cjq-end |
---|
[557] | 160 | !rv |
---|
| 161 | tauae(:,:,:)=0. |
---|
| 162 | pizae(:,:,:)=0. |
---|
| 163 | cgae(:,:,:)=0. |
---|
| 164 | !rv |
---|
[524] | 165 | |
---|
| 166 | c |
---|
| 167 | c------------------------------------------- |
---|
| 168 | nb_gr = klon / kdlon |
---|
| 169 | IF (nb_gr*kdlon .NE. klon) THEN |
---|
| 170 | PRINT*, "kdlon mauvais:", klon, kdlon, nb_gr |
---|
| 171 | CALL abort |
---|
| 172 | ENDIF |
---|
| 173 | IF (kflev .NE. klev) THEN |
---|
| 174 | PRINT*, "kflev differe de klev, kflev, klev" |
---|
| 175 | CALL abort |
---|
| 176 | ENDIF |
---|
| 177 | c------------------------------------------- |
---|
| 178 | DO k = 1, klev |
---|
| 179 | DO i = 1, klon |
---|
| 180 | heat(i,k)=0. |
---|
| 181 | cool(i,k)=0. |
---|
| 182 | heat0(i,k)=0. |
---|
| 183 | cool0(i,k)=0. |
---|
| 184 | ENDDO |
---|
| 185 | ENDDO |
---|
| 186 | c |
---|
| 187 | zdist = dist |
---|
| 188 | c |
---|
| 189 | cIM anciennes valeurs |
---|
| 190 | c RCO2 = co2_ppm * 1.0e-06 * 44.011/28.97 |
---|
| 191 | c |
---|
| 192 | cIM : on met RCO2, RCH4, RN2O, RCFC11 et RCFC12 dans clesphys.h /lecture ds conf_phys.F90 |
---|
| 193 | c RCH4 = 1.65E-06* 16.043/28.97 |
---|
| 194 | c RN2O = 306.E-09* 44.013/28.97 |
---|
| 195 | c RCFC11 = 280.E-12* 137.3686/28.97 |
---|
| 196 | c RCFC12 = 484.E-12* 120.9140/28.97 |
---|
| 197 | cIM anciennes valeurs |
---|
| 198 | c RCH4 = 1.72E-06* 16.043/28.97 |
---|
| 199 | c RN2O = 310.E-09* 44.013/28.97 |
---|
| 200 | c |
---|
| 201 | c PRINT*,'IMradlwsw : solaire, co2= ', solaire, co2_ppm |
---|
| 202 | PSCT = solaire/zdist/zdist |
---|
| 203 | c |
---|
| 204 | DO 99999 j = 1, nb_gr |
---|
| 205 | iof = kdlon*(j-1) |
---|
| 206 | c |
---|
| 207 | DO i = 1, kdlon |
---|
| 208 | zfract(i) = fract(iof+i) |
---|
| 209 | zrmu0(i) = rmu0(iof+i) |
---|
| 210 | PALBD(i,1) = albedo(iof+i) |
---|
| 211 | ! PALBD(i,2) = albedo(iof+i) |
---|
| 212 | PALBD(i,2) = alblw(iof+i) |
---|
| 213 | PALBP(i,1) = albedo(iof+i) |
---|
| 214 | ! PALBP(i,2) = albedo(iof+i) |
---|
| 215 | PALBP(i,2) = alblw(iof+i) |
---|
| 216 | cIM cf. JLD pour etre en accord avec ORCHIDEE il faut mettre PEMIS(i) = 0.96 |
---|
| 217 | PEMIS(i) = 1.0 |
---|
| 218 | PVIEW(i) = 1.66 |
---|
| 219 | PPSOL(i) = paprs(iof+i,1) |
---|
| 220 | zx_alpha1 = (paprs(iof+i,1)-pplay(iof+i,2)) |
---|
| 221 | . / (pplay(iof+i,1)-pplay(iof+i,2)) |
---|
| 222 | zx_alpha2 = 1.0 - zx_alpha1 |
---|
| 223 | PTL(i,1) = t(iof+i,1) * zx_alpha1 + t(iof+i,2) * zx_alpha2 |
---|
| 224 | PTL(i,klev+1) = t(iof+i,klev) |
---|
| 225 | PDT0(i) = tsol(iof+i) - PTL(i,1) |
---|
| 226 | ENDDO |
---|
| 227 | DO k = 2, kflev |
---|
| 228 | DO i = 1, kdlon |
---|
| 229 | PTL(i,k) = (t(iof+i,k)+t(iof+i,k-1))*0.5 |
---|
| 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | DO k = 1, kflev |
---|
| 233 | DO i = 1, kdlon |
---|
| 234 | PDP(i,k) = paprs(iof+i,k)-paprs(iof+i,k+1) |
---|
| 235 | PTAVE(i,k) = t(iof+i,k) |
---|
| 236 | PWV(i,k) = MAX (q(iof+i,k), 1.0e-12) |
---|
| 237 | PQS(i,k) = PWV(i,k) |
---|
| 238 | c wo: cm.atm (epaisseur en cm dans la situation standard) |
---|
| 239 | c POZON: kg/kg |
---|
[652] | 240 | IF (bug_ozone) then |
---|
| 241 | POZON(i,k) = MAX(wo(iof+i,k),1.0e-12)*RG/46.6968 |
---|
[524] | 242 | . /(paprs(iof+i,k)-paprs(iof+i,k+1)) |
---|
| 243 | . *(paprs(iof+i,1)/101325.0) |
---|
[652] | 244 | ELSE |
---|
| 245 | c le calcul qui suit est maintenant fait dans ozonecm (MPL) |
---|
| 246 | POZON(i,k) = wo(i,k) |
---|
| 247 | ENDIF |
---|
[524] | 248 | PCLDLD(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
| 249 | PCLDLU(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
| 250 | PCLDSW(i,k) = cldfra(iof+i,k) |
---|
| 251 | PTAU(i,1,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
| 252 | PTAU(i,2,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
| 253 | POMEGA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i,1,k)) |
---|
| 254 | POMEGA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i,2,k)) |
---|
| 255 | PCG(i,1,k) = 0.865 |
---|
| 256 | PCG(i,2,k) = 0.910 |
---|
| 257 | c-OB |
---|
| 258 | cjq Introduced for aerosol indirect forcings. |
---|
| 259 | cjq The following values use the cloud optical thickness calculated from |
---|
| 260 | cjq present-day aerosol concentrations whereas the quantities without the |
---|
| 261 | cjq "A" at the end are for pre-industial (natural-only) aerosol concentrations |
---|
| 262 | cjq |
---|
| 263 | PTAUA(i,1,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
| 264 | PTAUA(i,2,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
| 265 | POMEGAA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i,1,k)) |
---|
| 266 | POMEGAA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i,2,k)) |
---|
| 267 | cjq-end |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | c |
---|
| 271 | DO k = 1, kflev+1 |
---|
| 272 | DO i = 1, kdlon |
---|
| 273 | PPMB(i,k) = paprs(iof+i,k)/100.0 |
---|
| 274 | ENDDO |
---|
| 275 | ENDDO |
---|
| 276 | c |
---|
| 277 | DO kk = 1, 5 |
---|
| 278 | DO k = 1, kflev |
---|
| 279 | DO i = 1, kdlon |
---|
| 280 | PAER(i,k,kk) = 1.0E-15 |
---|
| 281 | ENDDO |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
| 284 | c-OB |
---|
| 285 | DO k = 1, kflev |
---|
| 286 | DO i = 1, kdlon |
---|
| 287 | tauae(i,k,1)=tau_ae(iof+i,k,1) |
---|
| 288 | pizae(i,k,1)=piz_ae(iof+i,k,1) |
---|
| 289 | cgae(i,k,1) =cg_ae(iof+i,k,1) |
---|
| 290 | tauae(i,k,2)=tau_ae(iof+i,k,2) |
---|
| 291 | pizae(i,k,2)=piz_ae(iof+i,k,2) |
---|
| 292 | cgae(i,k,2) =cg_ae(iof+i,k,2) |
---|
| 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | c |
---|
| 296 | c====================================================================== |
---|
| 297 | cIM ctes ds clesphys.h CALL LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
| 298 | CALL LW( |
---|
| 299 | . PPMB, PDP, |
---|
| 300 | . PPSOL,PDT0,PEMIS, |
---|
| 301 | . PTL, PTAVE, PWV, POZON, PAER, |
---|
| 302 | . PCLDLD,PCLDLU, |
---|
| 303 | . PVIEW, |
---|
| 304 | . zcool, zcool0, |
---|
| 305 | . ztoplw,zsollw,ztoplw0,zsollw0, |
---|
| 306 | . zsollwdown, |
---|
| 307 | . ZFLUP, ZFLDN, ZFLUP0,ZFLDN0) |
---|
| 308 | cIM ctes ds clesphys.h CALL SW(PSCT, RCO2, zrmu0, zfract, |
---|
| 309 | CALL SW(PSCT, zrmu0, zfract, |
---|
| 310 | S PPMB, PDP, |
---|
| 311 | S PPSOL, PALBD, PALBP, |
---|
| 312 | S PTAVE, PWV, PQS, POZON, PAER, |
---|
| 313 | S PCLDSW, PTAU, POMEGA, PCG, |
---|
| 314 | S zheat, zheat0, |
---|
| 315 | S zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0, |
---|
| 316 | S ZFSUP,ZFSDN,ZFSUP0,ZFSDN0, |
---|
| 317 | S tauae, pizae, cgae, ! aerosol optical properties |
---|
| 318 | s PTAUA, POMEGAA, |
---|
| 319 | s ztopswad,zsolswad,ztopswai,zsolswai, ! diagnosed aerosol forcing |
---|
| 320 | J ok_ade, ok_aie) ! apply aerosol effects or not? |
---|
| 321 | |
---|
| 322 | c====================================================================== |
---|
| 323 | DO i = 1, kdlon |
---|
| 324 | radsol(iof+i) = zsolsw(i) + zsollw(i) |
---|
| 325 | topsw(iof+i) = ztopsw(i) |
---|
| 326 | toplw(iof+i) = ztoplw(i) |
---|
| 327 | solsw(iof+i) = zsolsw(i) |
---|
| 328 | sollw(iof+i) = zsollw(i) |
---|
| 329 | sollwdown(iof+i) = zsollwdown(i) |
---|
| 330 | cIM |
---|
| 331 | DO k = 1, kflev+1 |
---|
| 332 | lwdn0 ( iof+i,k) = ZFLDN0 ( i,k) |
---|
| 333 | lwdn ( iof+i,k) = ZFLDN ( i,k) |
---|
| 334 | lwup0 ( iof+i,k) = ZFLUP0 ( i,k) |
---|
| 335 | lwup ( iof+i,k) = ZFLUP ( i,k) |
---|
| 336 | ENDDO |
---|
[644] | 337 | c |
---|
[524] | 338 | topsw0(iof+i) = ztopsw0(i) |
---|
| 339 | toplw0(iof+i) = ztoplw0(i) |
---|
| 340 | solsw0(iof+i) = zsolsw0(i) |
---|
| 341 | sollw0(iof+i) = zsollw0(i) |
---|
| 342 | albpla(iof+i) = zalbpla(i) |
---|
[644] | 343 | cIM |
---|
[524] | 344 | DO k = 1, kflev+1 |
---|
| 345 | swdn0 ( iof+i,k) = ZFSDN0 ( i,k) |
---|
| 346 | swdn ( iof+i,k) = ZFSDN ( i,k) |
---|
| 347 | swup0 ( iof+i,k) = ZFSUP0 ( i,k) |
---|
| 348 | swup ( iof+i,k) = ZFSUP ( i,k) |
---|
| 349 | ENDDO !k=1, kflev+1 |
---|
| 350 | ENDDO |
---|
| 351 | cjq-transform the aerosol forcings, if they have |
---|
| 352 | cjq to be calculated |
---|
| 353 | IF (ok_ade) THEN |
---|
| 354 | DO i = 1, kdlon |
---|
| 355 | topswad(iof+i) = ztopswad(i) |
---|
| 356 | solswad(iof+i) = zsolswad(i) |
---|
| 357 | ENDDO |
---|
| 358 | ELSE |
---|
| 359 | DO i = 1, kdlon |
---|
| 360 | topswad(iof+i) = 0.0 |
---|
| 361 | solswad(iof+i) = 0.0 |
---|
| 362 | ENDDO |
---|
| 363 | ENDIF |
---|
| 364 | IF (ok_aie) THEN |
---|
| 365 | DO i = 1, kdlon |
---|
| 366 | topswai(iof+i) = ztopswai(i) |
---|
| 367 | solswai(iof+i) = zsolswai(i) |
---|
| 368 | ENDDO |
---|
| 369 | ELSE |
---|
| 370 | DO i = 1, kdlon |
---|
| 371 | topswai(iof+i) = 0.0 |
---|
| 372 | solswai(iof+i) = 0.0 |
---|
| 373 | ENDDO |
---|
| 374 | ENDIF |
---|
| 375 | cjq-end |
---|
| 376 | DO k = 1, kflev |
---|
| 377 | c DO i = 1, kdlon |
---|
| 378 | c heat(iof+i,k) = zheat(i,k) |
---|
| 379 | c cool(iof+i,k) = zcool(i,k) |
---|
| 380 | c heat0(iof+i,k) = zheat0(i,k) |
---|
| 381 | c cool0(iof+i,k) = zcool0(i,k) |
---|
| 382 | c ENDDO |
---|
| 383 | DO i = 1, kdlon |
---|
| 384 | C scale factor to take into account the difference between |
---|
| 385 | C dry air and watter vapour scpecific heat capacity |
---|
| 386 | zznormcp=1.0+RVTMP2*PWV(i,k) |
---|
| 387 | heat(iof+i,k) = zheat(i,k)/zznormcp |
---|
| 388 | cool(iof+i,k) = zcool(i,k)/zznormcp |
---|
| 389 | heat0(iof+i,k) = zheat0(i,k)/zznormcp |
---|
| 390 | cool0(iof+i,k) = zcool0(i,k)/zznormcp |
---|
| 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | c |
---|
| 394 | 99999 CONTINUE |
---|
| 395 | RETURN |
---|
| 396 | END |
---|
| 397 | cIM ctes ds clesphys.h SUBROUTINE SW(PSCT, RCO2, PRMU0, PFRAC, |
---|
| 398 | SUBROUTINE SW(PSCT, PRMU0, PFRAC, |
---|
| 399 | S PPMB, PDP, |
---|
| 400 | S PPSOL, PALBD, PALBP, |
---|
| 401 | S PTAVE, PWV, PQS, POZON, PAER, |
---|
| 402 | S PCLDSW, PTAU, POMEGA, PCG, |
---|
| 403 | S PHEAT, PHEAT0, |
---|
| 404 | S PALBPLA,PTOPSW,PSOLSW,PTOPSW0,PSOLSW0, |
---|
| 405 | S ZFSUP,ZFSDN,ZFSUP0,ZFSDN0, |
---|
| 406 | S tauae, pizae, cgae, |
---|
| 407 | s PTAUA, POMEGAA, |
---|
| 408 | S PTOPSWAD,PSOLSWAD,PTOPSWAI,PSOLSWAI, |
---|
| 409 | J ok_ade, ok_aie ) |
---|
| 410 | |
---|
| 411 | IMPLICIT none |
---|
| 412 | |
---|
| 413 | #include "dimensions.h" |
---|
| 414 | #include "dimphy.h" |
---|
| 415 | #include "raddim.h" |
---|
| 416 | #include "YOMCST.h" |
---|
| 417 | C |
---|
| 418 | C ------------------------------------------------------------------ |
---|
| 419 | C |
---|
| 420 | C PURPOSE. |
---|
| 421 | C -------- |
---|
| 422 | C |
---|
| 423 | C THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 424 | C SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 425 | C |
---|
| 426 | C METHOD. |
---|
| 427 | C ------- |
---|
| 428 | C |
---|
| 429 | C 1. COMPUTES ABSORBER AMOUNTS (SWU) |
---|
| 430 | C 2. COMPUTES FLUXES IN 1ST SPECTRAL INTERVAL (SW1S) |
---|
| 431 | C 3. COMPUTES FLUXES IN 2ND SPECTRAL INTERVAL (SW2S) |
---|
| 432 | C |
---|
| 433 | C REFERENCE. |
---|
| 434 | C ---------- |
---|
| 435 | C |
---|
| 436 | C SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 437 | C DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 438 | C |
---|
| 439 | C AUTHOR. |
---|
| 440 | C ------- |
---|
| 441 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 442 | C |
---|
| 443 | C MODIFICATIONS. |
---|
| 444 | C -------------- |
---|
| 445 | C ORIGINAL : 89-07-14 |
---|
| 446 | C 95-01-01 J.-J. MORCRETTE Direct/Diffuse Albedo |
---|
| 447 | c 03-11-27 J. QUAAS Introduce aerosol forcings (based on BOUCHER) |
---|
| 448 | C ------------------------------------------------------------------ |
---|
| 449 | C |
---|
| 450 | C* ARGUMENTS: |
---|
| 451 | C |
---|
| 452 | REAL*8 PSCT ! constante solaire (valeur conseillee: 1370) |
---|
| 453 | cIM ctes ds clesphys.h REAL*8 RCO2 ! concentration CO2 (IPCC: 353.E-06*44.011/28.97) |
---|
| 454 | #include "clesphys.h" |
---|
| 455 | C |
---|
| 456 | REAL*8 PPSOL(KDLON) ! SURFACE PRESSURE (PA) |
---|
| 457 | REAL*8 PDP(KDLON,KFLEV) ! LAYER THICKNESS (PA) |
---|
| 458 | REAL*8 PPMB(KDLON,KFLEV+1) ! HALF-LEVEL PRESSURE (MB) |
---|
| 459 | C |
---|
| 460 | REAL*8 PRMU0(KDLON) ! COSINE OF ZENITHAL ANGLE |
---|
| 461 | REAL*8 PFRAC(KDLON) ! fraction de la journee |
---|
| 462 | C |
---|
| 463 | REAL*8 PTAVE(KDLON,KFLEV) ! LAYER TEMPERATURE (K) |
---|
| 464 | REAL*8 PWV(KDLON,KFLEV) ! SPECIFIC HUMIDITY (KG/KG) |
---|
| 465 | REAL*8 PQS(KDLON,KFLEV) ! SATURATED WATER VAPOUR (KG/KG) |
---|
| 466 | REAL*8 POZON(KDLON,KFLEV) ! OZONE CONCENTRATION (KG/KG) |
---|
| 467 | REAL*8 PAER(KDLON,KFLEV,5) ! AEROSOLS' OPTICAL THICKNESS |
---|
| 468 | C |
---|
| 469 | REAL*8 PALBD(KDLON,2) ! albedo du sol (lumiere diffuse) |
---|
| 470 | REAL*8 PALBP(KDLON,2) ! albedo du sol (lumiere parallele) |
---|
| 471 | C |
---|
| 472 | REAL*8 PCLDSW(KDLON,KFLEV) ! CLOUD FRACTION |
---|
| 473 | REAL*8 PTAU(KDLON,2,KFLEV) ! CLOUD OPTICAL THICKNESS |
---|
| 474 | REAL*8 PCG(KDLON,2,KFLEV) ! ASYMETRY FACTOR |
---|
| 475 | REAL*8 POMEGA(KDLON,2,KFLEV) ! SINGLE SCATTERING ALBEDO |
---|
| 476 | C |
---|
| 477 | REAL*8 PHEAT(KDLON,KFLEV) ! SHORTWAVE HEATING (K/DAY) |
---|
| 478 | REAL*8 PHEAT0(KDLON,KFLEV)! SHORTWAVE HEATING (K/DAY) clear-sky |
---|
| 479 | REAL*8 PALBPLA(KDLON) ! PLANETARY ALBEDO |
---|
| 480 | REAL*8 PTOPSW(KDLON) ! SHORTWAVE FLUX AT T.O.A. |
---|
| 481 | REAL*8 PSOLSW(KDLON) ! SHORTWAVE FLUX AT SURFACE |
---|
| 482 | REAL*8 PTOPSW0(KDLON) ! SHORTWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 483 | REAL*8 PSOLSW0(KDLON) ! SHORTWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
| 484 | C |
---|
| 485 | C* LOCAL VARIABLES: |
---|
| 486 | C |
---|
| 487 | REAL*8 ZOZ(KDLON,KFLEV) |
---|
| 488 | REAL*8 ZAKI(KDLON,2) |
---|
| 489 | REAL*8 ZCLD(KDLON,KFLEV) |
---|
| 490 | REAL*8 ZCLEAR(KDLON) |
---|
| 491 | REAL*8 ZDSIG(KDLON,KFLEV) |
---|
| 492 | REAL*8 ZFACT(KDLON) |
---|
| 493 | REAL*8 ZFD(KDLON,KFLEV+1) |
---|
| 494 | REAL*8 ZFDOWN(KDLON,KFLEV+1) |
---|
| 495 | REAL*8 ZFU(KDLON,KFLEV+1) |
---|
| 496 | REAL*8 ZFUP(KDLON,KFLEV+1) |
---|
| 497 | REAL*8 ZRMU(KDLON) |
---|
| 498 | REAL*8 ZSEC(KDLON) |
---|
| 499 | REAL*8 ZUD(KDLON,5,KFLEV+1) |
---|
| 500 | REAL*8 ZCLDSW0(KDLON,KFLEV) |
---|
| 501 | c |
---|
| 502 | REAL*8 ZFSUP(KDLON,KFLEV+1) |
---|
| 503 | REAL*8 ZFSDN(KDLON,KFLEV+1) |
---|
| 504 | REAL*8 ZFSUP0(KDLON,KFLEV+1) |
---|
| 505 | REAL*8 ZFSDN0(KDLON,KFLEV+1) |
---|
| 506 | C |
---|
| 507 | INTEGER inu, jl, jk, i, k, kpl1 |
---|
| 508 | c |
---|
| 509 | INTEGER swpas ! Every swpas steps, sw is calculated |
---|
| 510 | PARAMETER(swpas=1) |
---|
| 511 | c |
---|
| 512 | INTEGER itapsw |
---|
| 513 | LOGICAL appel1er |
---|
| 514 | DATA itapsw /0/ |
---|
| 515 | DATA appel1er /.TRUE./ |
---|
| 516 | cjq-Introduced for aerosol forcings |
---|
| 517 | real*8 flag_aer |
---|
| 518 | logical ok_ade, ok_aie ! use aerosol forcings or not? |
---|
| 519 | real*8 tauae(kdlon,kflev,2) ! aerosol optical properties |
---|
| 520 | real*8 pizae(kdlon,kflev,2) ! (see aeropt.F) |
---|
| 521 | real*8 cgae(kdlon,kflev,2) ! -"- |
---|
| 522 | REAL*8 PTAUA(KDLON,2,KFLEV) ! CLOUD OPTICAL THICKNESS (pre-industrial value) |
---|
| 523 | REAL*8 POMEGAA(KDLON,2,KFLEV) ! SINGLE SCATTERING ALBEDO |
---|
| 524 | REAL*8 PTOPSWAD(KDLON) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL DIR) |
---|
| 525 | REAL*8 PSOLSWAD(KDLON) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL DIR) |
---|
| 526 | REAL*8 PTOPSWAI(KDLON) ! SHORTWAVE FLUX AT T.O.A.(+AEROSOL IND) |
---|
| 527 | REAL*8 PSOLSWAI(KDLON) ! SHORTWAVE FLUX AT SURFACE(+AEROSOL IND) |
---|
| 528 | cjq - Fluxes including aerosol effects |
---|
| 529 | REAL*8 ZFSUPAD(KDLON,KFLEV+1) |
---|
| 530 | REAL*8 ZFSDNAD(KDLON,KFLEV+1) |
---|
| 531 | REAL*8 ZFSUPAI(KDLON,KFLEV+1) |
---|
| 532 | REAL*8 ZFSDNAI(KDLON,KFLEV+1) |
---|
[557] | 533 | logical initialized |
---|
[524] | 534 | SAVE ZFSUPAD, ZFSDNAD, ZFSUPAI, ZFSDNAI ! aerosol fluxes |
---|
[557] | 535 | !rv |
---|
| 536 | save flag_aer |
---|
| 537 | data initialized/.false./ |
---|
[524] | 538 | cjq-end |
---|
[557] | 539 | if(.not.initialized) then |
---|
| 540 | flag_aer=0. |
---|
| 541 | initialized=.TRUE. |
---|
| 542 | endif |
---|
| 543 | !rv |
---|
[524] | 544 | |
---|
| 545 | c |
---|
| 546 | IF (appel1er) THEN |
---|
| 547 | PRINT*, 'SW calling frequency : ', swpas |
---|
| 548 | PRINT*, " In general, it should be 1" |
---|
| 549 | appel1er = .FALSE. |
---|
| 550 | ENDIF |
---|
| 551 | C ------------------------------------------------------------------ |
---|
| 552 | IF (MOD(itapsw,swpas).EQ.0) THEN |
---|
| 553 | c |
---|
| 554 | DO JK = 1 , KFLEV |
---|
| 555 | DO JL = 1, KDLON |
---|
| 556 | ZCLDSW0(JL,JK) = 0.0 |
---|
[652] | 557 | IF (bug_ozone) then |
---|
| 558 | ZOZ(JL,JK) = POZON(JL,JK)*46.6968/RG |
---|
[524] | 559 | . *PDP(JL,JK)*(101325.0/PPSOL(JL)) |
---|
[652] | 560 | ELSE |
---|
| 561 | c Correction MPL 100505 |
---|
| 562 | ZOZ(JL,JK) = POZON(JL,JK)*RMD/RMO3*46.6968/RG*PDP(JL,JK) |
---|
| 563 | ENDIF |
---|
[524] | 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | C |
---|
| 567 | C |
---|
| 568 | c clear-sky: |
---|
| 569 | cIM ctes ds clesphys.h CALL SWU(PSCT,RCO2,ZCLDSW0,PPMB,PPSOL, |
---|
| 570 | CALL SWU(PSCT,ZCLDSW0,PPMB,PPSOL, |
---|
| 571 | S PRMU0,PFRAC,PTAVE,PWV, |
---|
| 572 | S ZAKI,ZCLD,ZCLEAR,ZDSIG,ZFACT,ZRMU,ZSEC,ZUD) |
---|
| 573 | INU = 1 |
---|
| 574 | CALL SW1S(INU, |
---|
| 575 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 576 | S PALBD, PALBP, PCG, ZCLD, ZCLEAR, ZCLDSW0, |
---|
| 577 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 578 | S ZFD, ZFU) |
---|
| 579 | INU = 2 |
---|
| 580 | CALL SW2S(INU, |
---|
| 581 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 582 | S ZAKI, PALBD, PALBP, PCG, ZCLD, ZCLEAR, ZCLDSW0, |
---|
| 583 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 584 | S PWV, PQS, |
---|
| 585 | S ZFDOWN, ZFUP) |
---|
| 586 | DO JK = 1 , KFLEV+1 |
---|
| 587 | DO JL = 1, KDLON |
---|
| 588 | ZFSUP0(JL,JK) = (ZFUP(JL,JK) + ZFU(JL,JK)) * ZFACT(JL) |
---|
| 589 | ZFSDN0(JL,JK) = (ZFDOWN(JL,JK) + ZFD(JL,JK)) * ZFACT(JL) |
---|
| 590 | ENDDO |
---|
| 591 | ENDDO |
---|
| 592 | |
---|
| 593 | flag_aer=0.0 |
---|
| 594 | CALL SWU(PSCT,PCLDSW,PPMB,PPSOL, |
---|
| 595 | S PRMU0,PFRAC,PTAVE,PWV, |
---|
| 596 | S ZAKI,ZCLD,ZCLEAR,ZDSIG,ZFACT,ZRMU,ZSEC,ZUD) |
---|
| 597 | INU = 1 |
---|
| 598 | CALL SW1S(INU, |
---|
| 599 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 600 | S PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 601 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 602 | S ZFD, ZFU) |
---|
| 603 | INU = 2 |
---|
| 604 | CALL SW2S(INU, |
---|
| 605 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 606 | S ZAKI, PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 607 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 608 | S PWV, PQS, |
---|
| 609 | S ZFDOWN, ZFUP) |
---|
| 610 | |
---|
| 611 | c cloudy-sky: |
---|
| 612 | |
---|
| 613 | DO JK = 1 , KFLEV+1 |
---|
| 614 | DO JL = 1, KDLON |
---|
| 615 | ZFSUP(JL,JK) = (ZFUP(JL,JK) + ZFU(JL,JK)) * ZFACT(JL) |
---|
| 616 | ZFSDN(JL,JK) = (ZFDOWN(JL,JK) + ZFD(JL,JK)) * ZFACT(JL) |
---|
| 617 | ENDDO |
---|
| 618 | ENDDO |
---|
| 619 | |
---|
| 620 | c |
---|
| 621 | IF (ok_ade) THEN |
---|
| 622 | c |
---|
| 623 | c cloudy-sky + aerosol dir OB |
---|
| 624 | flag_aer=1.0 |
---|
| 625 | CALL SWU(PSCT,PCLDSW,PPMB,PPSOL, |
---|
| 626 | S PRMU0,PFRAC,PTAVE,PWV, |
---|
| 627 | S ZAKI,ZCLD,ZCLEAR,ZDSIG,ZFACT,ZRMU,ZSEC,ZUD) |
---|
| 628 | INU = 1 |
---|
| 629 | CALL SW1S(INU, |
---|
| 630 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 631 | S PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 632 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 633 | S ZFD, ZFU) |
---|
| 634 | INU = 2 |
---|
| 635 | CALL SW2S(INU, |
---|
| 636 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 637 | S ZAKI, PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 638 | S ZDSIG, POMEGA, ZOZ, ZRMU, ZSEC, PTAU, ZUD, |
---|
| 639 | S PWV, PQS, |
---|
| 640 | S ZFDOWN, ZFUP) |
---|
| 641 | DO JK = 1 , KFLEV+1 |
---|
| 642 | DO JL = 1, KDLON |
---|
| 643 | ZFSUPAD(JL,JK) = ZFSUP(JL,JK) |
---|
| 644 | ZFSDNAD(JL,JK) = ZFSDN(JL,JK) |
---|
| 645 | ZFSUP(JL,JK) = (ZFUP(JL,JK) + ZFU(JL,JK)) * ZFACT(JL) |
---|
| 646 | ZFSDN(JL,JK) = (ZFDOWN(JL,JK) + ZFD(JL,JK)) * ZFACT(JL) |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | |
---|
| 650 | ENDIF ! ok_ade |
---|
| 651 | |
---|
| 652 | IF (ok_aie) THEN |
---|
| 653 | |
---|
| 654 | cjq cloudy-sky + aerosol direct + aerosol indirect |
---|
| 655 | flag_aer=1.0 |
---|
| 656 | CALL SWU(PSCT,PCLDSW,PPMB,PPSOL, |
---|
| 657 | S PRMU0,PFRAC,PTAVE,PWV, |
---|
| 658 | S ZAKI,ZCLD,ZCLEAR,ZDSIG,ZFACT,ZRMU,ZSEC,ZUD) |
---|
| 659 | INU = 1 |
---|
| 660 | CALL SW1S(INU, |
---|
| 661 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 662 | S PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 663 | S ZDSIG, POMEGAA, ZOZ, ZRMU, ZSEC, PTAUA, ZUD, |
---|
| 664 | S ZFD, ZFU) |
---|
| 665 | INU = 2 |
---|
| 666 | CALL SW2S(INU, |
---|
| 667 | S PAER, flag_aer, tauae, pizae, cgae, |
---|
| 668 | S ZAKI, PALBD, PALBP, PCG, ZCLD, ZCLEAR, PCLDSW, |
---|
| 669 | S ZDSIG, POMEGAA, ZOZ, ZRMU, ZSEC, PTAUA, ZUD, |
---|
| 670 | S PWV, PQS, |
---|
| 671 | S ZFDOWN, ZFUP) |
---|
| 672 | DO JK = 1 , KFLEV+1 |
---|
| 673 | DO JL = 1, KDLON |
---|
| 674 | ZFSUPAI(JL,JK) = ZFSUP(JL,JK) |
---|
| 675 | ZFSDNAI(JL,JK) = ZFSDN(JL,JK) |
---|
| 676 | ZFSUP(JL,JK) = (ZFUP(JL,JK) + ZFU(JL,JK)) * ZFACT(JL) |
---|
| 677 | ZFSDN(JL,JK) = (ZFDOWN(JL,JK) + ZFD(JL,JK)) * ZFACT(JL) |
---|
| 678 | ENDDO |
---|
| 679 | ENDDO |
---|
| 680 | ENDIF ! ok_aie |
---|
| 681 | cjq -end |
---|
| 682 | |
---|
| 683 | itapsw = 0 |
---|
| 684 | ENDIF |
---|
| 685 | itapsw = itapsw + 1 |
---|
| 686 | C |
---|
| 687 | DO k = 1, KFLEV |
---|
| 688 | kpl1 = k+1 |
---|
| 689 | DO i = 1, KDLON |
---|
| 690 | PHEAT(i,k) = -(ZFSUP(i,kpl1)-ZFSUP(i,k)) |
---|
| 691 | . -(ZFSDN(i,k)-ZFSDN(i,kpl1)) |
---|
| 692 | PHEAT(i,k) = PHEAT(i,k) * RDAY*RG/RCPD / PDP(i,k) |
---|
| 693 | PHEAT0(i,k) = -(ZFSUP0(i,kpl1)-ZFSUP0(i,k)) |
---|
| 694 | . -(ZFSDN0(i,k)-ZFSDN0(i,kpl1)) |
---|
| 695 | PHEAT0(i,k) = PHEAT0(i,k) * RDAY*RG/RCPD / PDP(i,k) |
---|
| 696 | ENDDO |
---|
| 697 | ENDDO |
---|
| 698 | DO i = 1, KDLON |
---|
| 699 | PALBPLA(i) = ZFSUP(i,KFLEV+1)/(ZFSDN(i,KFLEV+1)+1.0e-20) |
---|
| 700 | c |
---|
| 701 | PSOLSW(i) = ZFSDN(i,1) - ZFSUP(i,1) |
---|
| 702 | PTOPSW(i) = ZFSDN(i,KFLEV+1) - ZFSUP(i,KFLEV+1) |
---|
| 703 | c |
---|
| 704 | PSOLSW0(i) = ZFSDN0(i,1) - ZFSUP0(i,1) |
---|
| 705 | PTOPSW0(i) = ZFSDN0(i,KFLEV+1) - ZFSUP0(i,KFLEV+1) |
---|
| 706 | c-OB |
---|
| 707 | PSOLSWAD(i) = ZFSDNAD(i,1) - ZFSUPAD(i,1) |
---|
| 708 | PTOPSWAD(i) = ZFSDNAD(i,KFLEV+1) - ZFSUPAD(i,KFLEV+1) |
---|
| 709 | c |
---|
| 710 | PSOLSWAI(i) = ZFSDNAI(i,1) - ZFSUPAI(i,1) |
---|
| 711 | PTOPSWAI(i) = ZFSDNAI(i,KFLEV+1) - ZFSUPAI(i,KFLEV+1) |
---|
| 712 | c-fin |
---|
| 713 | ENDDO |
---|
| 714 | C |
---|
| 715 | RETURN |
---|
| 716 | END |
---|
| 717 | c |
---|
| 718 | cIM ctes ds clesphys.h SUBROUTINE SWU (PSCT,RCO2,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
---|
| 719 | SUBROUTINE SWU (PSCT,PCLDSW,PPMB,PPSOL,PRMU0,PFRAC, |
---|
| 720 | S PTAVE,PWV,PAKI,PCLD,PCLEAR,PDSIG,PFACT, |
---|
| 721 | S PRMU,PSEC,PUD) |
---|
| 722 | IMPLICIT none |
---|
| 723 | #include "dimensions.h" |
---|
| 724 | #include "dimphy.h" |
---|
| 725 | #include "raddim.h" |
---|
| 726 | #include "radepsi.h" |
---|
| 727 | #include "radopt.h" |
---|
| 728 | #include "YOMCST.h" |
---|
| 729 | C |
---|
| 730 | C* ARGUMENTS: |
---|
| 731 | C |
---|
| 732 | REAL*8 PSCT |
---|
| 733 | cIM ctes ds clesphys.h REAL*8 RCO2 |
---|
| 734 | #include "clesphys.h" |
---|
| 735 | REAL*8 PCLDSW(KDLON,KFLEV) |
---|
| 736 | REAL*8 PPMB(KDLON,KFLEV+1) |
---|
| 737 | REAL*8 PPSOL(KDLON) |
---|
| 738 | REAL*8 PRMU0(KDLON) |
---|
| 739 | REAL*8 PFRAC(KDLON) |
---|
| 740 | REAL*8 PTAVE(KDLON,KFLEV) |
---|
| 741 | REAL*8 PWV(KDLON,KFLEV) |
---|
| 742 | C |
---|
| 743 | REAL*8 PAKI(KDLON,2) |
---|
| 744 | REAL*8 PCLD(KDLON,KFLEV) |
---|
| 745 | REAL*8 PCLEAR(KDLON) |
---|
| 746 | REAL*8 PDSIG(KDLON,KFLEV) |
---|
| 747 | REAL*8 PFACT(KDLON) |
---|
| 748 | REAL*8 PRMU(KDLON) |
---|
| 749 | REAL*8 PSEC(KDLON) |
---|
| 750 | REAL*8 PUD(KDLON,5,KFLEV+1) |
---|
| 751 | C |
---|
| 752 | C* LOCAL VARIABLES: |
---|
| 753 | C |
---|
| 754 | INTEGER IIND(2) |
---|
| 755 | REAL*8 ZC1J(KDLON,KFLEV+1) |
---|
| 756 | REAL*8 ZCLEAR(KDLON) |
---|
| 757 | REAL*8 ZCLOUD(KDLON) |
---|
| 758 | REAL*8 ZN175(KDLON) |
---|
| 759 | REAL*8 ZN190(KDLON) |
---|
| 760 | REAL*8 ZO175(KDLON) |
---|
| 761 | REAL*8 ZO190(KDLON) |
---|
| 762 | REAL*8 ZSIGN(KDLON) |
---|
| 763 | REAL*8 ZR(KDLON,2) |
---|
| 764 | REAL*8 ZSIGO(KDLON) |
---|
| 765 | REAL*8 ZUD(KDLON,2) |
---|
| 766 | REAL*8 ZRTH, ZRTU, ZWH2O, ZDSCO2, ZDSH2O, ZFPPW |
---|
| 767 | INTEGER jl, jk, jkp1, jkl, jklp1, ja |
---|
| 768 | C |
---|
| 769 | C* Prescribed Data: |
---|
| 770 | c |
---|
| 771 | REAL*8 ZPDH2O,ZPDUMG |
---|
| 772 | SAVE ZPDH2O,ZPDUMG |
---|
| 773 | REAL*8 ZPRH2O,ZPRUMG |
---|
| 774 | SAVE ZPRH2O,ZPRUMG |
---|
| 775 | REAL*8 RTDH2O,RTDUMG |
---|
| 776 | SAVE RTDH2O,RTDUMG |
---|
| 777 | REAL*8 RTH2O ,RTUMG |
---|
| 778 | SAVE RTH2O ,RTUMG |
---|
| 779 | DATA ZPDH2O,ZPDUMG / 0.8 , 0.75 / |
---|
| 780 | DATA ZPRH2O,ZPRUMG / 30000., 30000. / |
---|
| 781 | DATA RTDH2O,RTDUMG / 0.40 , 0.375 / |
---|
| 782 | DATA RTH2O ,RTUMG / 240. , 240. / |
---|
| 783 | C ------------------------------------------------------------------ |
---|
| 784 | C |
---|
| 785 | C* 1. COMPUTES AMOUNTS OF ABSORBERS |
---|
| 786 | C ----------------------------- |
---|
| 787 | C |
---|
| 788 | 100 CONTINUE |
---|
| 789 | C |
---|
| 790 | IIND(1)=1 |
---|
| 791 | IIND(2)=2 |
---|
| 792 | C |
---|
| 793 | C |
---|
| 794 | C* 1.1 INITIALIZES QUANTITIES |
---|
| 795 | C ---------------------- |
---|
| 796 | C |
---|
| 797 | 110 CONTINUE |
---|
| 798 | C |
---|
| 799 | DO 111 JL = 1, KDLON |
---|
| 800 | PUD(JL,1,KFLEV+1)=0. |
---|
| 801 | PUD(JL,2,KFLEV+1)=0. |
---|
| 802 | PUD(JL,3,KFLEV+1)=0. |
---|
| 803 | PUD(JL,4,KFLEV+1)=0. |
---|
| 804 | PUD(JL,5,KFLEV+1)=0. |
---|
| 805 | PFACT(JL)= PRMU0(JL) * PFRAC(JL) * PSCT |
---|
| 806 | PRMU(JL)=SQRT(1224.* PRMU0(JL) * PRMU0(JL) + 1.) / 35. |
---|
| 807 | PSEC(JL)=1./PRMU(JL) |
---|
| 808 | ZC1J(JL,KFLEV+1)=0. |
---|
| 809 | 111 CONTINUE |
---|
| 810 | C |
---|
| 811 | C* 1.3 AMOUNTS OF ABSORBERS |
---|
| 812 | C -------------------- |
---|
| 813 | C |
---|
| 814 | 130 CONTINUE |
---|
| 815 | C |
---|
| 816 | DO 131 JL= 1, KDLON |
---|
| 817 | ZUD(JL,1) = 0. |
---|
| 818 | ZUD(JL,2) = 0. |
---|
| 819 | ZO175(JL) = PPSOL(JL)** (ZPDUMG+1.) |
---|
| 820 | ZO190(JL) = PPSOL(JL)** (ZPDH2O+1.) |
---|
| 821 | ZSIGO(JL) = PPSOL(JL) |
---|
| 822 | ZCLEAR(JL)=1. |
---|
| 823 | ZCLOUD(JL)=0. |
---|
| 824 | 131 CONTINUE |
---|
| 825 | C |
---|
| 826 | DO 133 JK = 1 , KFLEV |
---|
| 827 | JKP1 = JK + 1 |
---|
| 828 | JKL = KFLEV+1 - JK |
---|
| 829 | JKLP1 = JKL+1 |
---|
| 830 | DO 132 JL = 1, KDLON |
---|
| 831 | ZRTH=(RTH2O/PTAVE(JL,JK))**RTDH2O |
---|
| 832 | ZRTU=(RTUMG/PTAVE(JL,JK))**RTDUMG |
---|
| 833 | ZWH2O = MAX (PWV(JL,JK) , ZEPSCQ ) |
---|
| 834 | ZSIGN(JL) = 100. * PPMB(JL,JKP1) |
---|
| 835 | PDSIG(JL,JK) = (ZSIGO(JL) - ZSIGN(JL))/PPSOL(JL) |
---|
| 836 | ZN175(JL) = ZSIGN(JL) ** (ZPDUMG+1.) |
---|
| 837 | ZN190(JL) = ZSIGN(JL) ** (ZPDH2O+1.) |
---|
| 838 | ZDSCO2 = ZO175(JL) - ZN175(JL) |
---|
| 839 | ZDSH2O = ZO190(JL) - ZN190(JL) |
---|
| 840 | PUD(JL,1,JK) = 1./( 10.* RG * (ZPDH2O+1.) )/(ZPRH2O**ZPDH2O) |
---|
| 841 | . * ZDSH2O * ZWH2O * ZRTH |
---|
| 842 | PUD(JL,2,JK) = 1./( 10.* RG * (ZPDUMG+1.) )/(ZPRUMG**ZPDUMG) |
---|
| 843 | . * ZDSCO2 * RCO2 * ZRTU |
---|
| 844 | ZFPPW=1.6078*ZWH2O/(1.+0.608*ZWH2O) |
---|
| 845 | PUD(JL,4,JK)=PUD(JL,1,JK)*ZFPPW |
---|
| 846 | PUD(JL,5,JK)=PUD(JL,1,JK)*(1.-ZFPPW) |
---|
| 847 | ZUD(JL,1) = ZUD(JL,1) + PUD(JL,1,JK) |
---|
| 848 | ZUD(JL,2) = ZUD(JL,2) + PUD(JL,2,JK) |
---|
| 849 | ZSIGO(JL) = ZSIGN(JL) |
---|
| 850 | ZO175(JL) = ZN175(JL) |
---|
| 851 | ZO190(JL) = ZN190(JL) |
---|
| 852 | C |
---|
| 853 | IF (NOVLP.EQ.1) THEN |
---|
| 854 | ZCLEAR(JL)=ZCLEAR(JL) |
---|
| 855 | S *(1.-MAX(PCLDSW(JL,JKL),ZCLOUD(JL))) |
---|
| 856 | S /(1.-MIN(ZCLOUD(JL),1.-ZEPSEC)) |
---|
| 857 | ZC1J(JL,JKL)= 1.0 - ZCLEAR(JL) |
---|
| 858 | ZCLOUD(JL) = PCLDSW(JL,JKL) |
---|
| 859 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 860 | ZCLOUD(JL) = MAX(PCLDSW(JL,JKL),ZCLOUD(JL)) |
---|
| 861 | ZC1J(JL,JKL) = ZCLOUD(JL) |
---|
| 862 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 863 | ZCLEAR(JL) = ZCLEAR(JL)*(1.-PCLDSW(JL,JKL)) |
---|
| 864 | ZCLOUD(JL) = 1.0 - ZCLEAR(JL) |
---|
| 865 | ZC1J(JL,JKL) = ZCLOUD(JL) |
---|
| 866 | END IF |
---|
| 867 | 132 CONTINUE |
---|
| 868 | 133 CONTINUE |
---|
| 869 | DO 134 JL=1, KDLON |
---|
| 870 | PCLEAR(JL)=1.-ZC1J(JL,1) |
---|
| 871 | 134 CONTINUE |
---|
| 872 | DO 136 JK=1,KFLEV |
---|
| 873 | DO 135 JL=1, KDLON |
---|
| 874 | IF (PCLEAR(JL).LT.1.) THEN |
---|
| 875 | PCLD(JL,JK)=PCLDSW(JL,JK)/(1.-PCLEAR(JL)) |
---|
| 876 | ELSE |
---|
| 877 | PCLD(JL,JK)=0. |
---|
| 878 | END IF |
---|
| 879 | 135 CONTINUE |
---|
| 880 | 136 CONTINUE |
---|
| 881 | C |
---|
| 882 | C |
---|
| 883 | C* 1.4 COMPUTES CLEAR-SKY GREY ABSORPTION COEFFICIENTS |
---|
| 884 | C ----------------------------------------------- |
---|
| 885 | C |
---|
| 886 | 140 CONTINUE |
---|
| 887 | C |
---|
| 888 | DO 142 JA = 1,2 |
---|
| 889 | DO 141 JL = 1, KDLON |
---|
| 890 | ZUD(JL,JA) = ZUD(JL,JA) * PSEC(JL) |
---|
| 891 | 141 CONTINUE |
---|
| 892 | 142 CONTINUE |
---|
| 893 | C |
---|
| 894 | CALL SWTT1(2, 2, IIND, ZUD, ZR) |
---|
| 895 | C |
---|
| 896 | DO 144 JA = 1,2 |
---|
| 897 | DO 143 JL = 1, KDLON |
---|
| 898 | PAKI(JL,JA) = -LOG( ZR(JL,JA) ) / ZUD(JL,JA) |
---|
| 899 | 143 CONTINUE |
---|
| 900 | 144 CONTINUE |
---|
| 901 | C |
---|
| 902 | C |
---|
| 903 | C ------------------------------------------------------------------ |
---|
| 904 | C |
---|
| 905 | RETURN |
---|
| 906 | END |
---|
| 907 | SUBROUTINE SW1S ( KNU |
---|
| 908 | S , PAER , flag_aer, tauae, pizae, cgae |
---|
| 909 | S , PALBD , PALBP, PCG , PCLD , PCLEAR, PCLDSW |
---|
| 910 | S , PDSIG , POMEGA, POZ , PRMU , PSEC , PTAU , PUD |
---|
| 911 | S , PFD , PFU) |
---|
| 912 | IMPLICIT none |
---|
| 913 | #include "dimensions.h" |
---|
| 914 | #include "dimphy.h" |
---|
| 915 | #include "raddim.h" |
---|
| 916 | C |
---|
| 917 | C ------------------------------------------------------------------ |
---|
| 918 | C PURPOSE. |
---|
| 919 | C -------- |
---|
| 920 | C |
---|
| 921 | C THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN TWO |
---|
| 922 | C SPECTRAL INTERVALS FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 923 | C |
---|
| 924 | C METHOD. |
---|
| 925 | C ------- |
---|
| 926 | C |
---|
| 927 | C 1. COMPUTES UPWARD AND DOWNWARD FLUXES CORRESPONDING TO |
---|
| 928 | C CONTINUUM SCATTERING |
---|
| 929 | C 2. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 930 | C |
---|
| 931 | C REFERENCE. |
---|
| 932 | C ---------- |
---|
| 933 | C |
---|
| 934 | C SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 935 | C DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 936 | C |
---|
| 937 | C AUTHOR. |
---|
| 938 | C ------- |
---|
| 939 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 940 | C |
---|
| 941 | C MODIFICATIONS. |
---|
| 942 | C -------------- |
---|
| 943 | C ORIGINAL : 89-07-14 |
---|
| 944 | C 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 945 | C ------------------------------------------------------------------ |
---|
| 946 | C |
---|
| 947 | C* ARGUMENTS: |
---|
| 948 | C |
---|
| 949 | INTEGER KNU |
---|
| 950 | c-OB |
---|
| 951 | real*8 flag_aer |
---|
| 952 | real*8 tauae(kdlon,kflev,2) |
---|
| 953 | real*8 pizae(kdlon,kflev,2) |
---|
| 954 | real*8 cgae(kdlon,kflev,2) |
---|
| 955 | REAL*8 PAER(KDLON,KFLEV,5) |
---|
| 956 | REAL*8 PALBD(KDLON,2) |
---|
| 957 | REAL*8 PALBP(KDLON,2) |
---|
| 958 | REAL*8 PCG(KDLON,2,KFLEV) |
---|
| 959 | REAL*8 PCLD(KDLON,KFLEV) |
---|
| 960 | REAL*8 PCLDSW(KDLON,KFLEV) |
---|
| 961 | REAL*8 PCLEAR(KDLON) |
---|
| 962 | REAL*8 PDSIG(KDLON,KFLEV) |
---|
| 963 | REAL*8 POMEGA(KDLON,2,KFLEV) |
---|
| 964 | REAL*8 POZ(KDLON,KFLEV) |
---|
| 965 | REAL*8 PRMU(KDLON) |
---|
| 966 | REAL*8 PSEC(KDLON) |
---|
| 967 | REAL*8 PTAU(KDLON,2,KFLEV) |
---|
| 968 | REAL*8 PUD(KDLON,5,KFLEV+1) |
---|
| 969 | C |
---|
| 970 | REAL*8 PFD(KDLON,KFLEV+1) |
---|
| 971 | REAL*8 PFU(KDLON,KFLEV+1) |
---|
| 972 | C |
---|
| 973 | C* LOCAL VARIABLES: |
---|
| 974 | C |
---|
| 975 | INTEGER IIND(4) |
---|
| 976 | C |
---|
| 977 | REAL*8 ZCGAZ(KDLON,KFLEV) |
---|
| 978 | REAL*8 ZDIFF(KDLON) |
---|
| 979 | REAL*8 ZDIRF(KDLON) |
---|
| 980 | REAL*8 ZPIZAZ(KDLON,KFLEV) |
---|
| 981 | REAL*8 ZRAYL(KDLON) |
---|
| 982 | REAL*8 ZRAY1(KDLON,KFLEV+1) |
---|
| 983 | REAL*8 ZRAY2(KDLON,KFLEV+1) |
---|
| 984 | REAL*8 ZREFZ(KDLON,2,KFLEV+1) |
---|
| 985 | REAL*8 ZRJ(KDLON,6,KFLEV+1) |
---|
| 986 | REAL*8 ZRJ0(KDLON,6,KFLEV+1) |
---|
| 987 | REAL*8 ZRK(KDLON,6,KFLEV+1) |
---|
| 988 | REAL*8 ZRK0(KDLON,6,KFLEV+1) |
---|
| 989 | REAL*8 ZRMUE(KDLON,KFLEV+1) |
---|
| 990 | REAL*8 ZRMU0(KDLON,KFLEV+1) |
---|
| 991 | REAL*8 ZR(KDLON,4) |
---|
| 992 | REAL*8 ZTAUAZ(KDLON,KFLEV) |
---|
| 993 | REAL*8 ZTRA1(KDLON,KFLEV+1) |
---|
| 994 | REAL*8 ZTRA2(KDLON,KFLEV+1) |
---|
| 995 | REAL*8 ZW(KDLON,4) |
---|
| 996 | C |
---|
| 997 | INTEGER jl, jk, k, jaj, ikm1, ikl |
---|
| 998 | c |
---|
| 999 | c Prescribed Data: |
---|
| 1000 | c |
---|
| 1001 | REAL*8 RSUN(2) |
---|
| 1002 | SAVE RSUN |
---|
| 1003 | REAL*8 RRAY(2,6) |
---|
| 1004 | SAVE RRAY |
---|
| 1005 | DATA RSUN(1) / 0.441676 / |
---|
| 1006 | DATA RSUN(2) / 0.558324 / |
---|
| 1007 | DATA (RRAY(1,K),K=1,6) / |
---|
| 1008 | S .428937E-01, .890743E+00,-.288555E+01, |
---|
| 1009 | S .522744E+01,-.469173E+01, .161645E+01/ |
---|
| 1010 | DATA (RRAY(2,K),K=1,6) / |
---|
| 1011 | S .697200E-02, .173297E-01,-.850903E-01, |
---|
| 1012 | S .248261E+00,-.302031E+00, .129662E+00/ |
---|
| 1013 | C ------------------------------------------------------------------ |
---|
| 1014 | C |
---|
| 1015 | C* 1. FIRST SPECTRAL INTERVAL (0.25-0.68 MICRON) |
---|
| 1016 | C ----------------------- ------------------ |
---|
| 1017 | C |
---|
| 1018 | 100 CONTINUE |
---|
| 1019 | C |
---|
| 1020 | C |
---|
| 1021 | C* 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 1022 | C ----------------------------------------- |
---|
| 1023 | C |
---|
| 1024 | 110 CONTINUE |
---|
| 1025 | C |
---|
| 1026 | DO 111 JL = 1, KDLON |
---|
| 1027 | ZRAYL(JL) = RRAY(KNU,1) + PRMU(JL) * (RRAY(KNU,2) + PRMU(JL) |
---|
| 1028 | S * (RRAY(KNU,3) + PRMU(JL) * (RRAY(KNU,4) + PRMU(JL) |
---|
| 1029 | S * (RRAY(KNU,5) + PRMU(JL) * RRAY(KNU,6) )))) |
---|
| 1030 | 111 CONTINUE |
---|
| 1031 | C |
---|
| 1032 | C |
---|
| 1033 | C ------------------------------------------------------------------ |
---|
| 1034 | C |
---|
| 1035 | C* 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 1036 | C --------------------------------- |
---|
| 1037 | C |
---|
| 1038 | 200 CONTINUE |
---|
| 1039 | C |
---|
| 1040 | C* 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 1041 | C -------------------------------- |
---|
| 1042 | C |
---|
| 1043 | 210 CONTINUE |
---|
| 1044 | C |
---|
| 1045 | CALL SWCLR ( KNU |
---|
| 1046 | S , PAER , flag_aer, tauae, pizae, cgae |
---|
| 1047 | S , PALBP , PDSIG , ZRAYL, PSEC |
---|
| 1048 | S , ZCGAZ , ZPIZAZ, ZRAY1 , ZRAY2, ZREFZ, ZRJ0 |
---|
| 1049 | S , ZRK0 , ZRMU0 , ZTAUAZ, ZTRA1, ZTRA2) |
---|
| 1050 | C |
---|
| 1051 | C |
---|
| 1052 | C* 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 1053 | C ----------------------------- |
---|
| 1054 | C |
---|
| 1055 | 220 CONTINUE |
---|
| 1056 | C |
---|
| 1057 | CALL SWR ( KNU |
---|
| 1058 | S , PALBD ,PCG ,PCLD ,PDSIG ,POMEGA,ZRAYL |
---|
| 1059 | S , PSEC ,PTAU |
---|
| 1060 | S , ZCGAZ ,ZPIZAZ,ZRAY1 ,ZRAY2 ,ZREFZ ,ZRJ ,ZRK,ZRMUE |
---|
| 1061 | S , ZTAUAZ,ZTRA1 ,ZTRA2) |
---|
| 1062 | C |
---|
| 1063 | C |
---|
| 1064 | C ------------------------------------------------------------------ |
---|
| 1065 | C |
---|
| 1066 | C* 3. OZONE ABSORPTION |
---|
| 1067 | C ---------------- |
---|
| 1068 | C |
---|
| 1069 | 300 CONTINUE |
---|
| 1070 | C |
---|
| 1071 | IIND(1)=1 |
---|
| 1072 | IIND(2)=3 |
---|
| 1073 | IIND(3)=1 |
---|
| 1074 | IIND(4)=3 |
---|
| 1075 | C |
---|
| 1076 | C |
---|
| 1077 | C* 3.1 DOWNWARD FLUXES |
---|
| 1078 | C --------------- |
---|
| 1079 | C |
---|
| 1080 | 310 CONTINUE |
---|
| 1081 | C |
---|
| 1082 | JAJ = 2 |
---|
| 1083 | C |
---|
| 1084 | DO 311 JL = 1, KDLON |
---|
| 1085 | ZW(JL,1)=0. |
---|
| 1086 | ZW(JL,2)=0. |
---|
| 1087 | ZW(JL,3)=0. |
---|
| 1088 | ZW(JL,4)=0. |
---|
| 1089 | PFD(JL,KFLEV+1)=((1.-PCLEAR(JL))*ZRJ(JL,JAJ,KFLEV+1) |
---|
| 1090 | S + PCLEAR(JL) *ZRJ0(JL,JAJ,KFLEV+1)) * RSUN(KNU) |
---|
| 1091 | 311 CONTINUE |
---|
| 1092 | DO 314 JK = 1 , KFLEV |
---|
| 1093 | IKL = KFLEV+1-JK |
---|
| 1094 | DO 312 JL = 1, KDLON |
---|
| 1095 | ZW(JL,1)=ZW(JL,1)+PUD(JL,1,IKL)/ZRMUE(JL,IKL) |
---|
| 1096 | ZW(JL,2)=ZW(JL,2)+POZ(JL, IKL)/ZRMUE(JL,IKL) |
---|
| 1097 | ZW(JL,3)=ZW(JL,3)+PUD(JL,1,IKL)/ZRMU0(JL,IKL) |
---|
| 1098 | ZW(JL,4)=ZW(JL,4)+POZ(JL, IKL)/ZRMU0(JL,IKL) |
---|
| 1099 | 312 CONTINUE |
---|
| 1100 | C |
---|
| 1101 | CALL SWTT1(KNU, 4, IIND, ZW, ZR) |
---|
| 1102 | C |
---|
| 1103 | DO 313 JL = 1, KDLON |
---|
| 1104 | ZDIFF(JL) = ZR(JL,1)*ZR(JL,2)*ZRJ(JL,JAJ,IKL) |
---|
| 1105 | ZDIRF(JL) = ZR(JL,3)*ZR(JL,4)*ZRJ0(JL,JAJ,IKL) |
---|
| 1106 | PFD(JL,IKL) = ((1.-PCLEAR(JL)) * ZDIFF(JL) |
---|
| 1107 | S +PCLEAR(JL) * ZDIRF(JL)) * RSUN(KNU) |
---|
| 1108 | 313 CONTINUE |
---|
| 1109 | 314 CONTINUE |
---|
| 1110 | C |
---|
| 1111 | C |
---|
| 1112 | C* 3.2 UPWARD FLUXES |
---|
| 1113 | C ------------- |
---|
| 1114 | C |
---|
| 1115 | 320 CONTINUE |
---|
| 1116 | C |
---|
| 1117 | DO 325 JL = 1, KDLON |
---|
| 1118 | PFU(JL,1) = ((1.-PCLEAR(JL))*ZDIFF(JL)*PALBD(JL,KNU) |
---|
| 1119 | S + PCLEAR(JL) *ZDIRF(JL)*PALBP(JL,KNU)) |
---|
| 1120 | S * RSUN(KNU) |
---|
| 1121 | 325 CONTINUE |
---|
| 1122 | C |
---|
| 1123 | DO 328 JK = 2 , KFLEV+1 |
---|
| 1124 | IKM1=JK-1 |
---|
| 1125 | DO 326 JL = 1, KDLON |
---|
| 1126 | ZW(JL,1)=ZW(JL,1)+PUD(JL,1,IKM1)*1.66 |
---|
| 1127 | ZW(JL,2)=ZW(JL,2)+POZ(JL, IKM1)*1.66 |
---|
| 1128 | ZW(JL,3)=ZW(JL,3)+PUD(JL,1,IKM1)*1.66 |
---|
| 1129 | ZW(JL,4)=ZW(JL,4)+POZ(JL, IKM1)*1.66 |
---|
| 1130 | 326 CONTINUE |
---|
| 1131 | C |
---|
| 1132 | CALL SWTT1(KNU, 4, IIND, ZW, ZR) |
---|
| 1133 | C |
---|
| 1134 | DO 327 JL = 1, KDLON |
---|
| 1135 | ZDIFF(JL) = ZR(JL,1)*ZR(JL,2)*ZRK(JL,JAJ,JK) |
---|
| 1136 | ZDIRF(JL) = ZR(JL,3)*ZR(JL,4)*ZRK0(JL,JAJ,JK) |
---|
| 1137 | PFU(JL,JK) = ((1.-PCLEAR(JL)) * ZDIFF(JL) |
---|
| 1138 | S +PCLEAR(JL) * ZDIRF(JL)) * RSUN(KNU) |
---|
| 1139 | 327 CONTINUE |
---|
| 1140 | 328 CONTINUE |
---|
| 1141 | C |
---|
| 1142 | C ------------------------------------------------------------------ |
---|
| 1143 | C |
---|
| 1144 | RETURN |
---|
| 1145 | END |
---|
| 1146 | SUBROUTINE SW2S ( KNU |
---|
| 1147 | S , PAER , flag_aer, tauae, pizae, cgae |
---|
| 1148 | S , PAKI, PALBD, PALBP, PCG , PCLD, PCLEAR, PCLDSW |
---|
| 1149 | S , PDSIG ,POMEGA,POZ , PRMU , PSEC , PTAU |
---|
| 1150 | S , PUD ,PWV , PQS |
---|
| 1151 | S , PFDOWN,PFUP ) |
---|
| 1152 | IMPLICIT none |
---|
| 1153 | #include "dimensions.h" |
---|
| 1154 | #include "dimphy.h" |
---|
| 1155 | #include "raddim.h" |
---|
| 1156 | #include "radepsi.h" |
---|
| 1157 | C |
---|
| 1158 | C ------------------------------------------------------------------ |
---|
| 1159 | C PURPOSE. |
---|
| 1160 | C -------- |
---|
| 1161 | C |
---|
| 1162 | C THIS ROUTINE COMPUTES THE SHORTWAVE RADIATION FLUXES IN THE |
---|
| 1163 | C SECOND SPECTRAL INTERVAL FOLLOWING FOUQUART AND BONNEL (1980). |
---|
| 1164 | C |
---|
| 1165 | C METHOD. |
---|
| 1166 | C ------- |
---|
| 1167 | C |
---|
| 1168 | C 1. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING TO |
---|
| 1169 | C CONTINUUM SCATTERING |
---|
| 1170 | C 2. COMPUTES REFLECTIVITY/TRANSMISSIVITY CORRESPONDING FOR |
---|
| 1171 | C A GREY MOLECULAR ABSORPTION |
---|
| 1172 | C 3. LAPLACE TRANSFORM ON THE PREVIOUS TO GET EFFECTIVE AMOUNTS |
---|
| 1173 | C OF ABSORBERS |
---|
| 1174 | C 4. APPLY H2O AND U.M.G. TRANSMISSION FUNCTIONS |
---|
| 1175 | C 5. MULTIPLY BY OZONE TRANSMISSION FUNCTION |
---|
| 1176 | C |
---|
| 1177 | C REFERENCE. |
---|
| 1178 | C ---------- |
---|
| 1179 | C |
---|
| 1180 | C SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1181 | C DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1182 | C |
---|
| 1183 | C AUTHOR. |
---|
| 1184 | C ------- |
---|
| 1185 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1186 | C |
---|
| 1187 | C MODIFICATIONS. |
---|
| 1188 | C -------------- |
---|
| 1189 | C ORIGINAL : 89-07-14 |
---|
| 1190 | C 94-11-15 J.-J. MORCRETTE DIRECT/DIFFUSE ALBEDO |
---|
| 1191 | C ------------------------------------------------------------------ |
---|
| 1192 | C* ARGUMENTS: |
---|
| 1193 | C |
---|
| 1194 | INTEGER KNU |
---|
| 1195 | c-OB |
---|
| 1196 | real*8 flag_aer |
---|
| 1197 | real*8 tauae(kdlon,kflev,2) |
---|
| 1198 | real*8 pizae(kdlon,kflev,2) |
---|
| 1199 | real*8 cgae(kdlon,kflev,2) |
---|
| 1200 | REAL*8 PAER(KDLON,KFLEV,5) |
---|
| 1201 | REAL*8 PAKI(KDLON,2) |
---|
| 1202 | REAL*8 PALBD(KDLON,2) |
---|
| 1203 | REAL*8 PALBP(KDLON,2) |
---|
| 1204 | REAL*8 PCG(KDLON,2,KFLEV) |
---|
| 1205 | REAL*8 PCLD(KDLON,KFLEV) |
---|
| 1206 | REAL*8 PCLDSW(KDLON,KFLEV) |
---|
| 1207 | REAL*8 PCLEAR(KDLON) |
---|
| 1208 | REAL*8 PDSIG(KDLON,KFLEV) |
---|
| 1209 | REAL*8 POMEGA(KDLON,2,KFLEV) |
---|
| 1210 | REAL*8 POZ(KDLON,KFLEV) |
---|
| 1211 | REAL*8 PQS(KDLON,KFLEV) |
---|
| 1212 | REAL*8 PRMU(KDLON) |
---|
| 1213 | REAL*8 PSEC(KDLON) |
---|
| 1214 | REAL*8 PTAU(KDLON,2,KFLEV) |
---|
| 1215 | REAL*8 PUD(KDLON,5,KFLEV+1) |
---|
| 1216 | REAL*8 PWV(KDLON,KFLEV) |
---|
| 1217 | C |
---|
| 1218 | REAL*8 PFDOWN(KDLON,KFLEV+1) |
---|
| 1219 | REAL*8 PFUP(KDLON,KFLEV+1) |
---|
| 1220 | C |
---|
| 1221 | C* LOCAL VARIABLES: |
---|
| 1222 | C |
---|
| 1223 | INTEGER IIND2(2), IIND3(3) |
---|
| 1224 | REAL*8 ZCGAZ(KDLON,KFLEV) |
---|
| 1225 | REAL*8 ZFD(KDLON,KFLEV+1) |
---|
| 1226 | REAL*8 ZFU(KDLON,KFLEV+1) |
---|
| 1227 | REAL*8 ZG(KDLON) |
---|
| 1228 | REAL*8 ZGG(KDLON) |
---|
| 1229 | REAL*8 ZPIZAZ(KDLON,KFLEV) |
---|
| 1230 | REAL*8 ZRAYL(KDLON) |
---|
| 1231 | REAL*8 ZRAY1(KDLON,KFLEV+1) |
---|
| 1232 | REAL*8 ZRAY2(KDLON,KFLEV+1) |
---|
| 1233 | REAL*8 ZREF(KDLON) |
---|
| 1234 | REAL*8 ZREFZ(KDLON,2,KFLEV+1) |
---|
| 1235 | REAL*8 ZRE1(KDLON) |
---|
| 1236 | REAL*8 ZRE2(KDLON) |
---|
| 1237 | REAL*8 ZRJ(KDLON,6,KFLEV+1) |
---|
| 1238 | REAL*8 ZRJ0(KDLON,6,KFLEV+1) |
---|
| 1239 | REAL*8 ZRK(KDLON,6,KFLEV+1) |
---|
| 1240 | REAL*8 ZRK0(KDLON,6,KFLEV+1) |
---|
| 1241 | REAL*8 ZRL(KDLON,8) |
---|
| 1242 | REAL*8 ZRMUE(KDLON,KFLEV+1) |
---|
| 1243 | REAL*8 ZRMU0(KDLON,KFLEV+1) |
---|
| 1244 | REAL*8 ZRMUZ(KDLON) |
---|
| 1245 | REAL*8 ZRNEB(KDLON) |
---|
| 1246 | REAL*8 ZRUEF(KDLON,8) |
---|
| 1247 | REAL*8 ZR1(KDLON) |
---|
| 1248 | REAL*8 ZR2(KDLON,2) |
---|
| 1249 | REAL*8 ZR3(KDLON,3) |
---|
| 1250 | REAL*8 ZR4(KDLON) |
---|
| 1251 | REAL*8 ZR21(KDLON) |
---|
| 1252 | REAL*8 ZR22(KDLON) |
---|
| 1253 | REAL*8 ZS(KDLON) |
---|
| 1254 | REAL*8 ZTAUAZ(KDLON,KFLEV) |
---|
| 1255 | REAL*8 ZTO1(KDLON) |
---|
| 1256 | REAL*8 ZTR(KDLON,2,KFLEV+1) |
---|
| 1257 | REAL*8 ZTRA1(KDLON,KFLEV+1) |
---|
| 1258 | REAL*8 ZTRA2(KDLON,KFLEV+1) |
---|
| 1259 | REAL*8 ZTR1(KDLON) |
---|
| 1260 | REAL*8 ZTR2(KDLON) |
---|
| 1261 | REAL*8 ZW(KDLON) |
---|
| 1262 | REAL*8 ZW1(KDLON) |
---|
| 1263 | REAL*8 ZW2(KDLON,2) |
---|
| 1264 | REAL*8 ZW3(KDLON,3) |
---|
| 1265 | REAL*8 ZW4(KDLON) |
---|
| 1266 | REAL*8 ZW5(KDLON) |
---|
| 1267 | C |
---|
| 1268 | INTEGER jl, jk, k, jaj, ikm1, ikl, jn, jabs, jkm1 |
---|
| 1269 | INTEGER jref, jkl, jklp1, jajp, jkki, jkkp4, jn2j, iabs |
---|
| 1270 | REAL*8 ZRMUM1, ZWH2O, ZCNEB, ZAA, ZBB, ZRKI, ZRE11 |
---|
| 1271 | C |
---|
| 1272 | C* Prescribed Data: |
---|
| 1273 | C |
---|
| 1274 | REAL*8 RSUN(2) |
---|
| 1275 | SAVE RSUN |
---|
| 1276 | REAL*8 RRAY(2,6) |
---|
| 1277 | SAVE RRAY |
---|
| 1278 | DATA RSUN(1) / 0.441676 / |
---|
| 1279 | DATA RSUN(2) / 0.558324 / |
---|
| 1280 | DATA (RRAY(1,K),K=1,6) / |
---|
| 1281 | S .428937E-01, .890743E+00,-.288555E+01, |
---|
| 1282 | S .522744E+01,-.469173E+01, .161645E+01/ |
---|
| 1283 | DATA (RRAY(2,K),K=1,6) / |
---|
| 1284 | S .697200E-02, .173297E-01,-.850903E-01, |
---|
| 1285 | S .248261E+00,-.302031E+00, .129662E+00/ |
---|
| 1286 | C |
---|
| 1287 | C ------------------------------------------------------------------ |
---|
| 1288 | C |
---|
| 1289 | C* 1. SECOND SPECTRAL INTERVAL (0.68-4.00 MICRON) |
---|
| 1290 | C ------------------------------------------- |
---|
| 1291 | C |
---|
| 1292 | 100 CONTINUE |
---|
| 1293 | C |
---|
| 1294 | C |
---|
| 1295 | C* 1.1 OPTICAL THICKNESS FOR RAYLEIGH SCATTERING |
---|
| 1296 | C ----------------------------------------- |
---|
| 1297 | C |
---|
| 1298 | 110 CONTINUE |
---|
| 1299 | C |
---|
| 1300 | DO 111 JL = 1, KDLON |
---|
| 1301 | ZRMUM1 = 1. - PRMU(JL) |
---|
| 1302 | ZRAYL(JL) = RRAY(KNU,1) + ZRMUM1 * (RRAY(KNU,2) + ZRMUM1 |
---|
| 1303 | S * (RRAY(KNU,3) + ZRMUM1 * (RRAY(KNU,4) + ZRMUM1 |
---|
| 1304 | S * (RRAY(KNU,5) + ZRMUM1 * RRAY(KNU,6) )))) |
---|
| 1305 | 111 CONTINUE |
---|
| 1306 | C |
---|
| 1307 | C |
---|
| 1308 | C ------------------------------------------------------------------ |
---|
| 1309 | C |
---|
| 1310 | C* 2. CONTINUUM SCATTERING CALCULATIONS |
---|
| 1311 | C --------------------------------- |
---|
| 1312 | C |
---|
| 1313 | 200 CONTINUE |
---|
| 1314 | C |
---|
| 1315 | C* 2.1 CLEAR-SKY FRACTION OF THE COLUMN |
---|
| 1316 | C -------------------------------- |
---|
| 1317 | C |
---|
| 1318 | 210 CONTINUE |
---|
| 1319 | C |
---|
| 1320 | CALL SWCLR ( KNU |
---|
| 1321 | S , PAER , flag_aer, tauae, pizae, cgae |
---|
| 1322 | S , PALBP , PDSIG , ZRAYL, PSEC |
---|
| 1323 | S , ZCGAZ , ZPIZAZ, ZRAY1 , ZRAY2, ZREFZ, ZRJ0 |
---|
| 1324 | S , ZRK0 , ZRMU0 , ZTAUAZ, ZTRA1, ZTRA2) |
---|
| 1325 | C |
---|
| 1326 | C |
---|
| 1327 | C* 2.2 CLOUDY FRACTION OF THE COLUMN |
---|
| 1328 | C ----------------------------- |
---|
| 1329 | C |
---|
| 1330 | 220 CONTINUE |
---|
| 1331 | C |
---|
| 1332 | CALL SWR ( KNU |
---|
| 1333 | S , PALBD , PCG , PCLD , PDSIG, POMEGA, ZRAYL |
---|
| 1334 | S , PSEC , PTAU |
---|
| 1335 | S , ZCGAZ , ZPIZAZ, ZRAY1, ZRAY2, ZREFZ , ZRJ , ZRK, ZRMUE |
---|
| 1336 | S , ZTAUAZ, ZTRA1 , ZTRA2) |
---|
| 1337 | C |
---|
| 1338 | C |
---|
| 1339 | C ------------------------------------------------------------------ |
---|
| 1340 | C |
---|
| 1341 | C* 3. SCATTERING CALCULATIONS WITH GREY MOLECULAR ABSORPTION |
---|
| 1342 | C ------------------------------------------------------ |
---|
| 1343 | C |
---|
| 1344 | 300 CONTINUE |
---|
| 1345 | C |
---|
| 1346 | JN = 2 |
---|
| 1347 | C |
---|
| 1348 | DO 361 JABS=1,2 |
---|
| 1349 | C |
---|
| 1350 | C |
---|
| 1351 | C* 3.1 SURFACE CONDITIONS |
---|
| 1352 | C ------------------ |
---|
| 1353 | C |
---|
| 1354 | 310 CONTINUE |
---|
| 1355 | C |
---|
| 1356 | DO 311 JL = 1, KDLON |
---|
| 1357 | ZREFZ(JL,2,1) = PALBD(JL,KNU) |
---|
| 1358 | ZREFZ(JL,1,1) = PALBD(JL,KNU) |
---|
| 1359 | 311 CONTINUE |
---|
| 1360 | C |
---|
| 1361 | C |
---|
| 1362 | C* 3.2 INTRODUCING CLOUD EFFECTS |
---|
| 1363 | C ------------------------- |
---|
| 1364 | C |
---|
| 1365 | 320 CONTINUE |
---|
| 1366 | C |
---|
| 1367 | DO 324 JK = 2 , KFLEV+1 |
---|
| 1368 | JKM1 = JK - 1 |
---|
| 1369 | IKL=KFLEV+1-JKM1 |
---|
| 1370 | DO 322 JL = 1, KDLON |
---|
| 1371 | ZRNEB(JL) = PCLD(JL,JKM1) |
---|
| 1372 | IF (JABS.EQ.1 .AND. ZRNEB(JL).GT.2.*ZEELOG) THEN |
---|
| 1373 | ZWH2O=MAX(PWV(JL,JKM1),ZEELOG) |
---|
| 1374 | ZCNEB=MAX(ZEELOG,MIN(ZRNEB(JL),1.-ZEELOG)) |
---|
| 1375 | ZBB=PUD(JL,JABS,JKM1)*PQS(JL,JKM1)/ZWH2O |
---|
| 1376 | ZAA=MAX((PUD(JL,JABS,JKM1)-ZCNEB*ZBB)/(1.-ZCNEB),ZEELOG) |
---|
| 1377 | ELSE |
---|
| 1378 | ZAA=PUD(JL,JABS,JKM1) |
---|
| 1379 | ZBB=ZAA |
---|
| 1380 | END IF |
---|
| 1381 | ZRKI = PAKI(JL,JABS) |
---|
| 1382 | ZS(JL) = EXP(-ZRKI * ZAA * 1.66) |
---|
| 1383 | ZG(JL) = EXP(-ZRKI * ZAA / ZRMUE(JL,JK)) |
---|
| 1384 | ZTR1(JL) = 0. |
---|
| 1385 | ZRE1(JL) = 0. |
---|
| 1386 | ZTR2(JL) = 0. |
---|
| 1387 | ZRE2(JL) = 0. |
---|
| 1388 | C |
---|
| 1389 | ZW(JL)= POMEGA(JL,KNU,JKM1) |
---|
| 1390 | ZTO1(JL) = PTAU(JL,KNU,JKM1) / ZW(JL) |
---|
| 1391 | S + ZTAUAZ(JL,JKM1) / ZPIZAZ(JL,JKM1) |
---|
| 1392 | S + ZBB * ZRKI |
---|
| 1393 | |
---|
| 1394 | ZR21(JL) = PTAU(JL,KNU,JKM1) + ZTAUAZ(JL,JKM1) |
---|
| 1395 | ZR22(JL) = PTAU(JL,KNU,JKM1) / ZR21(JL) |
---|
| 1396 | ZGG(JL) = ZR22(JL) * PCG(JL,KNU,JKM1) |
---|
| 1397 | S + (1. - ZR22(JL)) * ZCGAZ(JL,JKM1) |
---|
| 1398 | ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
| 1399 | ZREF(JL) = ZREFZ(JL,1,JKM1) |
---|
| 1400 | ZRMUZ(JL) = ZRMUE(JL,JK) |
---|
| 1401 | 322 CONTINUE |
---|
| 1402 | C |
---|
| 1403 | CALL SWDE(ZGG, ZREF, ZRMUZ, ZTO1, ZW, |
---|
| 1404 | S ZRE1, ZRE2, ZTR1, ZTR2) |
---|
| 1405 | C |
---|
| 1406 | DO 323 JL = 1, KDLON |
---|
| 1407 | C |
---|
| 1408 | ZREFZ(JL,2,JK) = (1.-ZRNEB(JL)) * (ZRAY1(JL,JKM1) |
---|
| 1409 | S + ZREFZ(JL,2,JKM1) * ZTRA1(JL,JKM1) |
---|
| 1410 | S * ZTRA2(JL,JKM1) ) * ZG(JL) * ZS(JL) |
---|
| 1411 | S + ZRNEB(JL) * ZRE1(JL) |
---|
| 1412 | C |
---|
| 1413 | ZTR(JL,2,JKM1)=ZRNEB(JL)*ZTR1(JL) |
---|
| 1414 | S + (ZTRA1(JL,JKM1)) * ZG(JL) * (1.-ZRNEB(JL)) |
---|
| 1415 | C |
---|
| 1416 | ZREFZ(JL,1,JK)=(1.-ZRNEB(JL))*(ZRAY1(JL,JKM1) |
---|
| 1417 | S +ZREFZ(JL,1,JKM1)*ZTRA1(JL,JKM1)*ZTRA2(JL,JKM1) |
---|
| 1418 | S /(1.-ZRAY2(JL,JKM1)*ZREFZ(JL,1,JKM1)))*ZG(JL)*ZS(JL) |
---|
| 1419 | S + ZRNEB(JL) * ZRE2(JL) |
---|
| 1420 | C |
---|
| 1421 | ZTR(JL,1,JKM1)= ZRNEB(JL) * ZTR2(JL) |
---|
| 1422 | S + (ZTRA1(JL,JKM1)/(1.-ZRAY2(JL,JKM1) |
---|
| 1423 | S * ZREFZ(JL,1,JKM1))) |
---|
| 1424 | S * ZG(JL) * (1. -ZRNEB(JL)) |
---|
| 1425 | C |
---|
| 1426 | 323 CONTINUE |
---|
| 1427 | 324 CONTINUE |
---|
| 1428 | C |
---|
| 1429 | C* 3.3 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 1430 | C ------------------------------------------------- |
---|
| 1431 | C |
---|
| 1432 | 330 CONTINUE |
---|
| 1433 | C |
---|
| 1434 | DO 351 JREF=1,2 |
---|
| 1435 | C |
---|
| 1436 | JN = JN + 1 |
---|
| 1437 | C |
---|
| 1438 | DO 331 JL = 1, KDLON |
---|
| 1439 | ZRJ(JL,JN,KFLEV+1) = 1. |
---|
| 1440 | ZRK(JL,JN,KFLEV+1) = ZREFZ(JL,JREF,KFLEV+1) |
---|
| 1441 | 331 CONTINUE |
---|
| 1442 | C |
---|
| 1443 | DO 333 JK = 1 , KFLEV |
---|
| 1444 | JKL = KFLEV+1 - JK |
---|
| 1445 | JKLP1 = JKL + 1 |
---|
| 1446 | DO 332 JL = 1, KDLON |
---|
| 1447 | ZRE11 = ZRJ(JL,JN,JKLP1) * ZTR(JL,JREF,JKL) |
---|
| 1448 | ZRJ(JL,JN,JKL) = ZRE11 |
---|
| 1449 | ZRK(JL,JN,JKL) = ZRE11 * ZREFZ(JL,JREF,JKL) |
---|
| 1450 | 332 CONTINUE |
---|
| 1451 | 333 CONTINUE |
---|
| 1452 | 351 CONTINUE |
---|
| 1453 | 361 CONTINUE |
---|
| 1454 | C |
---|
| 1455 | C |
---|
| 1456 | C ------------------------------------------------------------------ |
---|
| 1457 | C |
---|
| 1458 | C* 4. INVERT GREY AND CONTINUUM FLUXES |
---|
| 1459 | C -------------------------------- |
---|
| 1460 | C |
---|
| 1461 | 400 CONTINUE |
---|
| 1462 | C |
---|
| 1463 | C |
---|
| 1464 | C* 4.1 UPWARD (ZRK) AND DOWNWARD (ZRJ) PSEUDO-FLUXES |
---|
| 1465 | C --------------------------------------------- |
---|
| 1466 | C |
---|
| 1467 | 410 CONTINUE |
---|
| 1468 | C |
---|
| 1469 | DO 414 JK = 1 , KFLEV+1 |
---|
| 1470 | DO 413 JAJ = 1 , 5 , 2 |
---|
| 1471 | JAJP = JAJ + 1 |
---|
| 1472 | DO 412 JL = 1, KDLON |
---|
| 1473 | ZRJ(JL,JAJ,JK)= ZRJ(JL,JAJ,JK) - ZRJ(JL,JAJP,JK) |
---|
| 1474 | ZRK(JL,JAJ,JK)= ZRK(JL,JAJ,JK) - ZRK(JL,JAJP,JK) |
---|
| 1475 | ZRJ(JL,JAJ,JK)= MAX( ZRJ(JL,JAJ,JK) , ZEELOG ) |
---|
| 1476 | ZRK(JL,JAJ,JK)= MAX( ZRK(JL,JAJ,JK) , ZEELOG ) |
---|
| 1477 | 412 CONTINUE |
---|
| 1478 | 413 CONTINUE |
---|
| 1479 | 414 CONTINUE |
---|
| 1480 | C |
---|
| 1481 | DO 417 JK = 1 , KFLEV+1 |
---|
| 1482 | DO 416 JAJ = 2 , 6 , 2 |
---|
| 1483 | DO 415 JL = 1, KDLON |
---|
| 1484 | ZRJ(JL,JAJ,JK)= MAX( ZRJ(JL,JAJ,JK) , ZEELOG ) |
---|
| 1485 | ZRK(JL,JAJ,JK)= MAX( ZRK(JL,JAJ,JK) , ZEELOG ) |
---|
| 1486 | 415 CONTINUE |
---|
| 1487 | 416 CONTINUE |
---|
| 1488 | 417 CONTINUE |
---|
| 1489 | C |
---|
| 1490 | C* 4.2 EFFECTIVE ABSORBER AMOUNTS BY INVERSE LAPLACE |
---|
| 1491 | C --------------------------------------------- |
---|
| 1492 | C |
---|
| 1493 | 420 CONTINUE |
---|
| 1494 | C |
---|
| 1495 | DO 437 JK = 1 , KFLEV+1 |
---|
| 1496 | JKKI = 1 |
---|
| 1497 | DO 425 JAJ = 1 , 2 |
---|
| 1498 | IIND2(1)=JAJ |
---|
| 1499 | IIND2(2)=JAJ |
---|
| 1500 | DO 424 JN = 1 , 2 |
---|
| 1501 | JN2J = JN + 2 * JAJ |
---|
| 1502 | JKKP4 = JKKI + 4 |
---|
| 1503 | C |
---|
| 1504 | C* 4.2.1 EFFECTIVE ABSORBER AMOUNTS |
---|
| 1505 | C -------------------------- |
---|
| 1506 | C |
---|
| 1507 | 4210 CONTINUE |
---|
| 1508 | C |
---|
| 1509 | DO 4211 JL = 1, KDLON |
---|
| 1510 | ZW2(JL,1) = LOG( ZRJ(JL,JN,JK) / ZRJ(JL,JN2J,JK)) |
---|
| 1511 | S / PAKI(JL,JAJ) |
---|
| 1512 | ZW2(JL,2) = LOG( ZRK(JL,JN,JK) / ZRK(JL,JN2J,JK)) |
---|
| 1513 | S / PAKI(JL,JAJ) |
---|
| 1514 | 4211 CONTINUE |
---|
| 1515 | C |
---|
| 1516 | C* 4.2.2 TRANSMISSION FUNCTION |
---|
| 1517 | C --------------------- |
---|
| 1518 | C |
---|
| 1519 | 4220 CONTINUE |
---|
| 1520 | C |
---|
| 1521 | CALL SWTT1(KNU, 2, IIND2, ZW2, ZR2) |
---|
| 1522 | C |
---|
| 1523 | DO 4221 JL = 1, KDLON |
---|
| 1524 | ZRL(JL,JKKI) = ZR2(JL,1) |
---|
| 1525 | ZRUEF(JL,JKKI) = ZW2(JL,1) |
---|
| 1526 | ZRL(JL,JKKP4) = ZR2(JL,2) |
---|
| 1527 | ZRUEF(JL,JKKP4) = ZW2(JL,2) |
---|
| 1528 | 4221 CONTINUE |
---|
| 1529 | C |
---|
| 1530 | JKKI=JKKI+1 |
---|
| 1531 | 424 CONTINUE |
---|
| 1532 | 425 CONTINUE |
---|
| 1533 | C |
---|
| 1534 | C* 4.3 UPWARD AND DOWNWARD FLUXES WITH H2O AND UMG ABSORPTION |
---|
| 1535 | C ------------------------------------------------------ |
---|
| 1536 | C |
---|
| 1537 | 430 CONTINUE |
---|
| 1538 | C |
---|
| 1539 | DO 431 JL = 1, KDLON |
---|
| 1540 | PFDOWN(JL,JK) = ZRJ(JL,1,JK) * ZRL(JL,1) * ZRL(JL,3) |
---|
| 1541 | S + ZRJ(JL,2,JK) * ZRL(JL,2) * ZRL(JL,4) |
---|
| 1542 | PFUP(JL,JK) = ZRK(JL,1,JK) * ZRL(JL,5) * ZRL(JL,7) |
---|
| 1543 | S + ZRK(JL,2,JK) * ZRL(JL,6) * ZRL(JL,8) |
---|
| 1544 | 431 CONTINUE |
---|
| 1545 | 437 CONTINUE |
---|
| 1546 | C |
---|
| 1547 | C |
---|
| 1548 | C ------------------------------------------------------------------ |
---|
| 1549 | C |
---|
| 1550 | C* 5. MOLECULAR ABSORPTION ON CLEAR-SKY FLUXES |
---|
| 1551 | C ---------------------------------------- |
---|
| 1552 | C |
---|
| 1553 | 500 CONTINUE |
---|
| 1554 | C |
---|
| 1555 | C |
---|
| 1556 | C* 5.1 DOWNWARD FLUXES |
---|
| 1557 | C --------------- |
---|
| 1558 | C |
---|
| 1559 | 510 CONTINUE |
---|
| 1560 | C |
---|
| 1561 | JAJ = 2 |
---|
| 1562 | IIND3(1)=1 |
---|
| 1563 | IIND3(2)=2 |
---|
| 1564 | IIND3(3)=3 |
---|
| 1565 | C |
---|
| 1566 | DO 511 JL = 1, KDLON |
---|
| 1567 | ZW3(JL,1)=0. |
---|
| 1568 | ZW3(JL,2)=0. |
---|
| 1569 | ZW3(JL,3)=0. |
---|
| 1570 | ZW4(JL) =0. |
---|
| 1571 | ZW5(JL) =0. |
---|
| 1572 | ZR4(JL) =1. |
---|
| 1573 | ZFD(JL,KFLEV+1)= ZRJ0(JL,JAJ,KFLEV+1) |
---|
| 1574 | 511 CONTINUE |
---|
| 1575 | DO 514 JK = 1 , KFLEV |
---|
| 1576 | IKL = KFLEV+1-JK |
---|
| 1577 | DO 512 JL = 1, KDLON |
---|
| 1578 | ZW3(JL,1)=ZW3(JL,1)+PUD(JL,1,IKL)/ZRMU0(JL,IKL) |
---|
| 1579 | ZW3(JL,2)=ZW3(JL,2)+PUD(JL,2,IKL)/ZRMU0(JL,IKL) |
---|
| 1580 | ZW3(JL,3)=ZW3(JL,3)+POZ(JL, IKL)/ZRMU0(JL,IKL) |
---|
| 1581 | ZW4(JL) =ZW4(JL) +PUD(JL,4,IKL)/ZRMU0(JL,IKL) |
---|
| 1582 | ZW5(JL) =ZW5(JL) +PUD(JL,5,IKL)/ZRMU0(JL,IKL) |
---|
| 1583 | 512 CONTINUE |
---|
| 1584 | C |
---|
| 1585 | CALL SWTT1(KNU, 3, IIND3, ZW3, ZR3) |
---|
| 1586 | C |
---|
| 1587 | DO 513 JL = 1, KDLON |
---|
| 1588 | C ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1589 | ZFD(JL,IKL) = ZR3(JL,1)*ZR3(JL,2)*ZR3(JL,3)*ZR4(JL) |
---|
| 1590 | S * ZRJ0(JL,JAJ,IKL) |
---|
| 1591 | 513 CONTINUE |
---|
| 1592 | 514 CONTINUE |
---|
| 1593 | C |
---|
| 1594 | C |
---|
| 1595 | C* 5.2 UPWARD FLUXES |
---|
| 1596 | C ------------- |
---|
| 1597 | C |
---|
| 1598 | 520 CONTINUE |
---|
| 1599 | C |
---|
| 1600 | DO 525 JL = 1, KDLON |
---|
| 1601 | ZFU(JL,1) = ZFD(JL,1)*PALBP(JL,KNU) |
---|
| 1602 | 525 CONTINUE |
---|
| 1603 | C |
---|
| 1604 | DO 528 JK = 2 , KFLEV+1 |
---|
| 1605 | IKM1=JK-1 |
---|
| 1606 | DO 526 JL = 1, KDLON |
---|
| 1607 | ZW3(JL,1)=ZW3(JL,1)+PUD(JL,1,IKM1)*1.66 |
---|
| 1608 | ZW3(JL,2)=ZW3(JL,2)+PUD(JL,2,IKM1)*1.66 |
---|
| 1609 | ZW3(JL,3)=ZW3(JL,3)+POZ(JL, IKM1)*1.66 |
---|
| 1610 | ZW4(JL) =ZW4(JL) +PUD(JL,4,IKM1)*1.66 |
---|
| 1611 | ZW5(JL) =ZW5(JL) +PUD(JL,5,IKM1)*1.66 |
---|
| 1612 | 526 CONTINUE |
---|
| 1613 | C |
---|
| 1614 | CALL SWTT1(KNU, 3, IIND3, ZW3, ZR3) |
---|
| 1615 | C |
---|
| 1616 | DO 527 JL = 1, KDLON |
---|
| 1617 | C ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1618 | ZFU(JL,JK) = ZR3(JL,1)*ZR3(JL,2)*ZR3(JL,3)*ZR4(JL) |
---|
| 1619 | S * ZRK0(JL,JAJ,JK) |
---|
| 1620 | 527 CONTINUE |
---|
| 1621 | 528 CONTINUE |
---|
| 1622 | C |
---|
| 1623 | C |
---|
| 1624 | C ------------------------------------------------------------------ |
---|
| 1625 | C |
---|
| 1626 | C* 6. INTRODUCTION OF OZONE AND H2O CONTINUUM ABSORPTION |
---|
| 1627 | C -------------------------------------------------- |
---|
| 1628 | C |
---|
| 1629 | 600 CONTINUE |
---|
| 1630 | IABS=3 |
---|
| 1631 | C |
---|
| 1632 | C* 6.1 DOWNWARD FLUXES |
---|
| 1633 | C --------------- |
---|
| 1634 | C |
---|
| 1635 | 610 CONTINUE |
---|
| 1636 | DO 611 JL = 1, KDLON |
---|
| 1637 | ZW1(JL)=0. |
---|
| 1638 | ZW4(JL)=0. |
---|
| 1639 | ZW5(JL)=0. |
---|
| 1640 | ZR1(JL)=0. |
---|
| 1641 | PFDOWN(JL,KFLEV+1) = ((1.-PCLEAR(JL))*PFDOWN(JL,KFLEV+1) |
---|
| 1642 | S + PCLEAR(JL) * ZFD(JL,KFLEV+1)) * RSUN(KNU) |
---|
| 1643 | 611 CONTINUE |
---|
| 1644 | C |
---|
| 1645 | DO 614 JK = 1 , KFLEV |
---|
| 1646 | IKL=KFLEV+1-JK |
---|
| 1647 | DO 612 JL = 1, KDLON |
---|
| 1648 | ZW1(JL) = ZW1(JL)+POZ(JL, IKL)/ZRMUE(JL,IKL) |
---|
| 1649 | ZW4(JL) = ZW4(JL)+PUD(JL,4,IKL)/ZRMUE(JL,IKL) |
---|
| 1650 | ZW5(JL) = ZW5(JL)+PUD(JL,5,IKL)/ZRMUE(JL,IKL) |
---|
| 1651 | C ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1652 | 612 CONTINUE |
---|
| 1653 | C |
---|
| 1654 | CALL SWTT(KNU, IABS, ZW1, ZR1) |
---|
| 1655 | C |
---|
| 1656 | DO 613 JL = 1, KDLON |
---|
| 1657 | PFDOWN(JL,IKL) = ((1.-PCLEAR(JL))*ZR1(JL)*ZR4(JL)*PFDOWN(JL,IKL) |
---|
| 1658 | S +PCLEAR(JL)*ZFD(JL,IKL)) * RSUN(KNU) |
---|
| 1659 | 613 CONTINUE |
---|
| 1660 | 614 CONTINUE |
---|
| 1661 | C |
---|
| 1662 | C |
---|
| 1663 | C* 6.2 UPWARD FLUXES |
---|
| 1664 | C ------------- |
---|
| 1665 | C |
---|
| 1666 | 620 CONTINUE |
---|
| 1667 | DO 621 JL = 1, KDLON |
---|
| 1668 | PFUP(JL,1) = ((1.-PCLEAR(JL))*ZR1(JL)*ZR4(JL) * PFUP(JL,1) |
---|
| 1669 | S +PCLEAR(JL)*ZFU(JL,1)) * RSUN(KNU) |
---|
| 1670 | 621 CONTINUE |
---|
| 1671 | C |
---|
| 1672 | DO 624 JK = 2 , KFLEV+1 |
---|
| 1673 | IKM1=JK-1 |
---|
| 1674 | DO 622 JL = 1, KDLON |
---|
| 1675 | ZW1(JL) = ZW1(JL)+POZ(JL ,IKM1)*1.66 |
---|
| 1676 | ZW4(JL) = ZW4(JL)+PUD(JL,4,IKM1)*1.66 |
---|
| 1677 | ZW5(JL) = ZW5(JL)+PUD(JL,5,IKM1)*1.66 |
---|
| 1678 | C ZR4(JL) = EXP(-RSWCE*ZW4(JL)-RSWCP*ZW5(JL)) |
---|
| 1679 | 622 CONTINUE |
---|
| 1680 | C |
---|
| 1681 | CALL SWTT(KNU, IABS, ZW1, ZR1) |
---|
| 1682 | C |
---|
| 1683 | DO 623 JL = 1, KDLON |
---|
| 1684 | PFUP(JL,JK) = ((1.-PCLEAR(JL))*ZR1(JL)*ZR4(JL) * PFUP(JL,JK) |
---|
| 1685 | S +PCLEAR(JL)*ZFU(JL,JK)) * RSUN(KNU) |
---|
| 1686 | 623 CONTINUE |
---|
| 1687 | 624 CONTINUE |
---|
| 1688 | C |
---|
| 1689 | C ------------------------------------------------------------------ |
---|
| 1690 | C |
---|
| 1691 | RETURN |
---|
| 1692 | END |
---|
| 1693 | SUBROUTINE SWCLR ( KNU |
---|
| 1694 | S , PAER , flag_aer, tauae, pizae, cgae |
---|
| 1695 | S , PALBP , PDSIG , PRAYL , PSEC |
---|
| 1696 | S , PCGAZ , PPIZAZ, PRAY1 , PRAY2 , PREFZ , PRJ |
---|
| 1697 | S , PRK , PRMU0 , PTAUAZ, PTRA1 , PTRA2 ) |
---|
| 1698 | IMPLICIT none |
---|
| 1699 | #include "dimensions.h" |
---|
| 1700 | #include "dimphy.h" |
---|
| 1701 | #include "raddim.h" |
---|
| 1702 | #include "radepsi.h" |
---|
| 1703 | #include "radopt.h" |
---|
| 1704 | C |
---|
| 1705 | C ------------------------------------------------------------------ |
---|
| 1706 | C PURPOSE. |
---|
| 1707 | C -------- |
---|
| 1708 | C COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 1709 | C CLEAR-SKY COLUMN |
---|
| 1710 | C |
---|
| 1711 | C REFERENCE. |
---|
| 1712 | C ---------- |
---|
| 1713 | C |
---|
| 1714 | C SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 1715 | C DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 1716 | C |
---|
| 1717 | C AUTHOR. |
---|
| 1718 | C ------- |
---|
| 1719 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 1720 | C |
---|
| 1721 | C MODIFICATIONS. |
---|
| 1722 | C -------------- |
---|
| 1723 | C ORIGINAL : 94-11-15 |
---|
| 1724 | C ------------------------------------------------------------------ |
---|
| 1725 | C* ARGUMENTS: |
---|
| 1726 | C |
---|
| 1727 | INTEGER KNU |
---|
| 1728 | c-OB |
---|
| 1729 | real*8 flag_aer |
---|
| 1730 | real*8 tauae(kdlon,kflev,2) |
---|
| 1731 | real*8 pizae(kdlon,kflev,2) |
---|
| 1732 | real*8 cgae(kdlon,kflev,2) |
---|
| 1733 | REAL*8 PAER(KDLON,KFLEV,5) |
---|
| 1734 | REAL*8 PALBP(KDLON,2) |
---|
| 1735 | REAL*8 PDSIG(KDLON,KFLEV) |
---|
| 1736 | REAL*8 PRAYL(KDLON) |
---|
| 1737 | REAL*8 PSEC(KDLON) |
---|
| 1738 | C |
---|
| 1739 | REAL*8 PCGAZ(KDLON,KFLEV) |
---|
| 1740 | REAL*8 PPIZAZ(KDLON,KFLEV) |
---|
| 1741 | REAL*8 PRAY1(KDLON,KFLEV+1) |
---|
| 1742 | REAL*8 PRAY2(KDLON,KFLEV+1) |
---|
| 1743 | REAL*8 PREFZ(KDLON,2,KFLEV+1) |
---|
| 1744 | REAL*8 PRJ(KDLON,6,KFLEV+1) |
---|
| 1745 | REAL*8 PRK(KDLON,6,KFLEV+1) |
---|
| 1746 | REAL*8 PRMU0(KDLON,KFLEV+1) |
---|
| 1747 | REAL*8 PTAUAZ(KDLON,KFLEV) |
---|
| 1748 | REAL*8 PTRA1(KDLON,KFLEV+1) |
---|
| 1749 | REAL*8 PTRA2(KDLON,KFLEV+1) |
---|
| 1750 | C |
---|
| 1751 | C* LOCAL VARIABLES: |
---|
| 1752 | C |
---|
| 1753 | REAL*8 ZC0I(KDLON,KFLEV+1) |
---|
| 1754 | REAL*8 ZCLE0(KDLON,KFLEV) |
---|
| 1755 | REAL*8 ZCLEAR(KDLON) |
---|
| 1756 | REAL*8 ZR21(KDLON) |
---|
| 1757 | REAL*8 ZR23(KDLON) |
---|
| 1758 | REAL*8 ZSS0(KDLON) |
---|
| 1759 | REAL*8 ZSCAT(KDLON) |
---|
| 1760 | REAL*8 ZTR(KDLON,2,KFLEV+1) |
---|
| 1761 | C |
---|
| 1762 | INTEGER jl, jk, ja, jae, jkl, jklp1, jaj, jkm1, in |
---|
| 1763 | REAL*8 ZTRAY, ZGAR, ZRATIO, ZFF, ZFACOA, ZCORAE |
---|
| 1764 | REAL*8 ZMUE, ZGAP, ZWW, ZTO, ZDEN, ZMU1, ZDEN1 |
---|
| 1765 | REAL*8 ZBMU0, ZBMU1, ZRE11 |
---|
| 1766 | C |
---|
| 1767 | C* Prescribed Data for Aerosols: |
---|
| 1768 | C |
---|
| 1769 | REAL*8 TAUA(2,5), RPIZA(2,5), RCGA(2,5) |
---|
| 1770 | SAVE TAUA, RPIZA, RCGA |
---|
| 1771 | DATA ((TAUA(IN,JA),JA=1,5),IN=1,2) / |
---|
| 1772 | S .730719, .912819, .725059, .745405, .682188 , |
---|
| 1773 | S .730719, .912819, .725059, .745405, .682188 / |
---|
| 1774 | DATA ((RPIZA(IN,JA),JA=1,5),IN=1,2) / |
---|
| 1775 | S .872212, .982545, .623143, .944887, .997975 , |
---|
| 1776 | S .872212, .982545, .623143, .944887, .997975 / |
---|
| 1777 | DATA ((RCGA (IN,JA),JA=1,5),IN=1,2) / |
---|
| 1778 | S .647596, .739002, .580845, .662657, .624246 , |
---|
| 1779 | S .647596, .739002, .580845, .662657, .624246 / |
---|
| 1780 | C ------------------------------------------------------------------ |
---|
| 1781 | C |
---|
| 1782 | C* 1. OPTICAL PARAMETERS FOR AEROSOLS AND RAYLEIGH |
---|
| 1783 | C -------------------------------------------- |
---|
| 1784 | C |
---|
| 1785 | 100 CONTINUE |
---|
| 1786 | C |
---|
| 1787 | DO 103 JK = 1 , KFLEV+1 |
---|
| 1788 | DO 102 JA = 1 , 6 |
---|
| 1789 | DO 101 JL = 1, KDLON |
---|
| 1790 | PRJ(JL,JA,JK) = 0. |
---|
| 1791 | PRK(JL,JA,JK) = 0. |
---|
| 1792 | 101 CONTINUE |
---|
| 1793 | 102 CONTINUE |
---|
| 1794 | 103 CONTINUE |
---|
| 1795 | C |
---|
| 1796 | DO 108 JK = 1 , KFLEV |
---|
| 1797 | c-OB |
---|
| 1798 | c DO 104 JL = 1, KDLON |
---|
| 1799 | c PCGAZ(JL,JK) = 0. |
---|
| 1800 | c PPIZAZ(JL,JK) = 0. |
---|
| 1801 | c PTAUAZ(JL,JK) = 0. |
---|
| 1802 | c 104 CONTINUE |
---|
| 1803 | c-OB |
---|
| 1804 | c DO 106 JAE=1,5 |
---|
| 1805 | c DO 105 JL = 1, KDLON |
---|
| 1806 | c PTAUAZ(JL,JK)=PTAUAZ(JL,JK) |
---|
| 1807 | c S +PAER(JL,JK,JAE)*TAUA(KNU,JAE) |
---|
| 1808 | c PPIZAZ(JL,JK)=PPIZAZ(JL,JK)+PAER(JL,JK,JAE) |
---|
| 1809 | c S * TAUA(KNU,JAE)*RPIZA(KNU,JAE) |
---|
| 1810 | c PCGAZ(JL,JK) = PCGAZ(JL,JK) +PAER(JL,JK,JAE) |
---|
| 1811 | c S * TAUA(KNU,JAE)*RPIZA(KNU,JAE)*RCGA(KNU,JAE) |
---|
| 1812 | c 105 CONTINUE |
---|
| 1813 | c 106 CONTINUE |
---|
| 1814 | c-OB |
---|
| 1815 | DO 105 JL = 1, KDLON |
---|
| 1816 | PTAUAZ(JL,JK)=flag_aer * tauae(JL,JK,KNU) |
---|
| 1817 | PPIZAZ(JL,JK)=flag_aer * pizae(JL,JK,KNU) |
---|
| 1818 | PCGAZ (JL,JK)=flag_aer * cgae(JL,JK,KNU) |
---|
| 1819 | 105 CONTINUE |
---|
| 1820 | C |
---|
| 1821 | IF (flag_aer.GT.0) THEN |
---|
| 1822 | c-OB |
---|
| 1823 | DO 107 JL = 1, KDLON |
---|
| 1824 | c PCGAZ(JL,JK)=PCGAZ(JL,JK)/PPIZAZ(JL,JK) |
---|
| 1825 | c PPIZAZ(JL,JK)=PPIZAZ(JL,JK)/PTAUAZ(JL,JK) |
---|
| 1826 | ZTRAY = PRAYL(JL) * PDSIG(JL,JK) |
---|
| 1827 | ZRATIO = ZTRAY / (ZTRAY + PTAUAZ(JL,JK)) |
---|
| 1828 | ZGAR = PCGAZ(JL,JK) |
---|
| 1829 | ZFF = ZGAR * ZGAR |
---|
| 1830 | PTAUAZ(JL,JK)=ZTRAY+PTAUAZ(JL,JK)*(1.-PPIZAZ(JL,JK)*ZFF) |
---|
| 1831 | PCGAZ(JL,JK) = ZGAR * (1. - ZRATIO) / (1. + ZGAR) |
---|
| 1832 | PPIZAZ(JL,JK) =ZRATIO+(1.-ZRATIO)*PPIZAZ(JL,JK)*(1.-ZFF) |
---|
| 1833 | S / (1. - PPIZAZ(JL,JK) * ZFF) |
---|
| 1834 | 107 CONTINUE |
---|
| 1835 | ELSE |
---|
| 1836 | DO JL = 1, KDLON |
---|
| 1837 | ZTRAY = PRAYL(JL) * PDSIG(JL,JK) |
---|
| 1838 | PTAUAZ(JL,JK) = ZTRAY |
---|
| 1839 | PCGAZ(JL,JK) = 0. |
---|
| 1840 | PPIZAZ(JL,JK) = 1.-REPSCT |
---|
| 1841 | END DO |
---|
| 1842 | END IF ! check flag_aer |
---|
| 1843 | c 107 CONTINUE |
---|
| 1844 | c PRINT 9107,JK,((PAER(JL,JK,JAE),JAE=1,5) |
---|
| 1845 | c $ ,PTAUAZ(JL,JK),PPIZAZ(JL,JK),PCGAZ(JL,JK),JL=1,KDLON) |
---|
| 1846 | c 9107 FORMAT(1X,'SWCLR_107',I3,8E12.5) |
---|
| 1847 | C |
---|
| 1848 | 108 CONTINUE |
---|
| 1849 | C |
---|
| 1850 | C ------------------------------------------------------------------ |
---|
| 1851 | C |
---|
| 1852 | C* 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 1853 | C ---------------------------------------------- |
---|
| 1854 | C |
---|
| 1855 | 200 CONTINUE |
---|
| 1856 | C |
---|
| 1857 | DO 201 JL = 1, KDLON |
---|
| 1858 | ZR23(JL) = 0. |
---|
| 1859 | ZC0I(JL,KFLEV+1) = 0. |
---|
| 1860 | ZCLEAR(JL) = 1. |
---|
| 1861 | ZSCAT(JL) = 0. |
---|
| 1862 | 201 CONTINUE |
---|
| 1863 | C |
---|
| 1864 | JK = 1 |
---|
| 1865 | JKL = KFLEV+1 - JK |
---|
| 1866 | JKLP1 = JKL + 1 |
---|
| 1867 | DO 202 JL = 1, KDLON |
---|
| 1868 | ZFACOA = 1. - PPIZAZ(JL,JKL)*PCGAZ(JL,JKL)*PCGAZ(JL,JKL) |
---|
| 1869 | ZCORAE = ZFACOA * PTAUAZ(JL,JKL) * PSEC(JL) |
---|
| 1870 | ZR21(JL) = EXP(-ZCORAE ) |
---|
| 1871 | ZSS0(JL) = 1.-ZR21(JL) |
---|
| 1872 | ZCLE0(JL,JKL) = ZSS0(JL) |
---|
| 1873 | C |
---|
| 1874 | IF (NOVLP.EQ.1) THEN |
---|
| 1875 | c* maximum-random |
---|
| 1876 | ZCLEAR(JL) = ZCLEAR(JL) |
---|
| 1877 | S *(1.0-MAX(ZSS0(JL),ZSCAT(JL))) |
---|
| 1878 | S /(1.0-MIN(ZSCAT(JL),1.-ZEPSEC)) |
---|
| 1879 | ZC0I(JL,JKL) = 1.0 - ZCLEAR(JL) |
---|
| 1880 | ZSCAT(JL) = ZSS0(JL) |
---|
| 1881 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 1882 | C* maximum |
---|
| 1883 | ZSCAT(JL) = MAX( ZSS0(JL) , ZSCAT(JL) ) |
---|
| 1884 | ZC0I(JL,JKL) = ZSCAT(JL) |
---|
| 1885 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 1886 | c* random |
---|
| 1887 | ZCLEAR(JL)=ZCLEAR(JL)*(1.0-ZSS0(JL)) |
---|
| 1888 | ZSCAT(JL) = 1.0 - ZCLEAR(JL) |
---|
| 1889 | ZC0I(JL,JKL) = ZSCAT(JL) |
---|
| 1890 | END IF |
---|
| 1891 | 202 CONTINUE |
---|
| 1892 | C |
---|
| 1893 | DO 205 JK = 2 , KFLEV |
---|
| 1894 | JKL = KFLEV+1 - JK |
---|
| 1895 | JKLP1 = JKL + 1 |
---|
| 1896 | DO 204 JL = 1, KDLON |
---|
| 1897 | ZFACOA = 1. - PPIZAZ(JL,JKL)*PCGAZ(JL,JKL)*PCGAZ(JL,JKL) |
---|
| 1898 | ZCORAE = ZFACOA * PTAUAZ(JL,JKL) * PSEC(JL) |
---|
| 1899 | ZR21(JL) = EXP(-ZCORAE ) |
---|
| 1900 | ZSS0(JL) = 1.-ZR21(JL) |
---|
| 1901 | ZCLE0(JL,JKL) = ZSS0(JL) |
---|
| 1902 | c |
---|
| 1903 | IF (NOVLP.EQ.1) THEN |
---|
| 1904 | c* maximum-random |
---|
| 1905 | ZCLEAR(JL) = ZCLEAR(JL) |
---|
| 1906 | S *(1.0-MAX(ZSS0(JL),ZSCAT(JL))) |
---|
| 1907 | S /(1.0-MIN(ZSCAT(JL),1.-ZEPSEC)) |
---|
| 1908 | ZC0I(JL,JKL) = 1.0 - ZCLEAR(JL) |
---|
| 1909 | ZSCAT(JL) = ZSS0(JL) |
---|
| 1910 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 1911 | C* maximum |
---|
| 1912 | ZSCAT(JL) = MAX( ZSS0(JL) , ZSCAT(JL) ) |
---|
| 1913 | ZC0I(JL,JKL) = ZSCAT(JL) |
---|
| 1914 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 1915 | c* random |
---|
| 1916 | ZCLEAR(JL)=ZCLEAR(JL)*(1.0-ZSS0(JL)) |
---|
| 1917 | ZSCAT(JL) = 1.0 - ZCLEAR(JL) |
---|
| 1918 | ZC0I(JL,JKL) = ZSCAT(JL) |
---|
| 1919 | END IF |
---|
| 1920 | 204 CONTINUE |
---|
| 1921 | 205 CONTINUE |
---|
| 1922 | C |
---|
| 1923 | C ------------------------------------------------------------------ |
---|
| 1924 | C |
---|
| 1925 | C* 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 1926 | C ----------------------------------------------- |
---|
| 1927 | C |
---|
| 1928 | 300 CONTINUE |
---|
| 1929 | C |
---|
| 1930 | DO 301 JL = 1, KDLON |
---|
| 1931 | PRAY1(JL,KFLEV+1) = 0. |
---|
| 1932 | PRAY2(JL,KFLEV+1) = 0. |
---|
| 1933 | PREFZ(JL,2,1) = PALBP(JL,KNU) |
---|
| 1934 | PREFZ(JL,1,1) = PALBP(JL,KNU) |
---|
| 1935 | PTRA1(JL,KFLEV+1) = 1. |
---|
| 1936 | PTRA2(JL,KFLEV+1) = 1. |
---|
| 1937 | 301 CONTINUE |
---|
| 1938 | C |
---|
| 1939 | DO 346 JK = 2 , KFLEV+1 |
---|
| 1940 | JKM1 = JK-1 |
---|
| 1941 | DO 342 JL = 1, KDLON |
---|
| 1942 | C |
---|
| 1943 | C |
---|
| 1944 | C ------------------------------------------------------------------ |
---|
| 1945 | C |
---|
| 1946 | C* 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 1947 | C ----------------------- |
---|
| 1948 | C |
---|
| 1949 | 310 CONTINUE |
---|
| 1950 | C |
---|
| 1951 | ZMUE = (1.-ZC0I(JL,JK)) * PSEC(JL) |
---|
| 1952 | S + ZC0I(JL,JK) * 1.66 |
---|
| 1953 | PRMU0(JL,JK) = 1./ZMUE |
---|
| 1954 | C |
---|
| 1955 | C |
---|
| 1956 | C ------------------------------------------------------------------ |
---|
| 1957 | C |
---|
| 1958 | C* 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 1959 | C ---------------------------------------------------- |
---|
| 1960 | C |
---|
| 1961 | 320 CONTINUE |
---|
| 1962 | C |
---|
| 1963 | ZGAP = PCGAZ(JL,JKM1) |
---|
| 1964 | ZBMU0 = 0.5 - 0.75 * ZGAP / ZMUE |
---|
| 1965 | ZWW = PPIZAZ(JL,JKM1) |
---|
| 1966 | ZTO = PTAUAZ(JL,JKM1) |
---|
| 1967 | ZDEN = 1. + (1. - ZWW + ZBMU0 * ZWW) * ZTO * ZMUE |
---|
| 1968 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU0*ZWW)*ZTO*ZTO*ZMUE*ZMUE |
---|
| 1969 | PRAY1(JL,JKM1) = ZBMU0 * ZWW * ZTO * ZMUE / ZDEN |
---|
| 1970 | PTRA1(JL,JKM1) = 1. / ZDEN |
---|
| 1971 | C |
---|
| 1972 | ZMU1 = 0.5 |
---|
| 1973 | ZBMU1 = 0.5 - 0.75 * ZGAP * ZMU1 |
---|
| 1974 | ZDEN1= 1. + (1. - ZWW + ZBMU1 * ZWW) * ZTO / ZMU1 |
---|
| 1975 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU1*ZWW)*ZTO*ZTO/ZMU1/ZMU1 |
---|
| 1976 | PRAY2(JL,JKM1) = ZBMU1 * ZWW * ZTO / ZMU1 / ZDEN1 |
---|
| 1977 | PTRA2(JL,JKM1) = 1. / ZDEN1 |
---|
| 1978 | C |
---|
| 1979 | C |
---|
| 1980 | C |
---|
| 1981 | PREFZ(JL,1,JK) = (PRAY1(JL,JKM1) |
---|
| 1982 | S + PREFZ(JL,1,JKM1) * PTRA1(JL,JKM1) |
---|
| 1983 | S * PTRA2(JL,JKM1) |
---|
| 1984 | S / (1.-PRAY2(JL,JKM1)*PREFZ(JL,1,JKM1))) |
---|
| 1985 | C |
---|
| 1986 | ZTR(JL,1,JKM1) = (PTRA1(JL,JKM1) |
---|
| 1987 | S / (1.-PRAY2(JL,JKM1)*PREFZ(JL,1,JKM1))) |
---|
| 1988 | C |
---|
| 1989 | PREFZ(JL,2,JK) = (PRAY1(JL,JKM1) |
---|
| 1990 | S + PREFZ(JL,2,JKM1) * PTRA1(JL,JKM1) |
---|
| 1991 | S * PTRA2(JL,JKM1) ) |
---|
| 1992 | C |
---|
| 1993 | ZTR(JL,2,JKM1) = PTRA1(JL,JKM1) |
---|
| 1994 | C |
---|
| 1995 | 342 CONTINUE |
---|
| 1996 | 346 CONTINUE |
---|
| 1997 | DO 347 JL = 1, KDLON |
---|
| 1998 | ZMUE = (1.-ZC0I(JL,1))*PSEC(JL)+ZC0I(JL,1)*1.66 |
---|
| 1999 | PRMU0(JL,1)=1./ZMUE |
---|
| 2000 | 347 CONTINUE |
---|
| 2001 | C |
---|
| 2002 | C |
---|
| 2003 | C ------------------------------------------------------------------ |
---|
| 2004 | C |
---|
| 2005 | C* 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 2006 | C ------------------------------------------------- |
---|
| 2007 | C |
---|
| 2008 | 350 CONTINUE |
---|
| 2009 | C |
---|
| 2010 | IF (KNU.EQ.1) THEN |
---|
| 2011 | JAJ = 2 |
---|
| 2012 | DO 351 JL = 1, KDLON |
---|
| 2013 | PRJ(JL,JAJ,KFLEV+1) = 1. |
---|
| 2014 | PRK(JL,JAJ,KFLEV+1) = PREFZ(JL, 1,KFLEV+1) |
---|
| 2015 | 351 CONTINUE |
---|
| 2016 | C |
---|
| 2017 | DO 353 JK = 1 , KFLEV |
---|
| 2018 | JKL = KFLEV+1 - JK |
---|
| 2019 | JKLP1 = JKL + 1 |
---|
| 2020 | DO 352 JL = 1, KDLON |
---|
| 2021 | ZRE11= PRJ(JL,JAJ,JKLP1) * ZTR(JL, 1,JKL) |
---|
| 2022 | PRJ(JL,JAJ,JKL) = ZRE11 |
---|
| 2023 | PRK(JL,JAJ,JKL) = ZRE11 * PREFZ(JL, 1,JKL) |
---|
| 2024 | 352 CONTINUE |
---|
| 2025 | 353 CONTINUE |
---|
| 2026 | 354 CONTINUE |
---|
| 2027 | C |
---|
| 2028 | ELSE |
---|
| 2029 | C |
---|
| 2030 | DO 358 JAJ = 1 , 2 |
---|
| 2031 | DO 355 JL = 1, KDLON |
---|
| 2032 | PRJ(JL,JAJ,KFLEV+1) = 1. |
---|
| 2033 | PRK(JL,JAJ,KFLEV+1) = PREFZ(JL,JAJ,KFLEV+1) |
---|
| 2034 | 355 CONTINUE |
---|
| 2035 | C |
---|
| 2036 | DO 357 JK = 1 , KFLEV |
---|
| 2037 | JKL = KFLEV+1 - JK |
---|
| 2038 | JKLP1 = JKL + 1 |
---|
| 2039 | DO 356 JL = 1, KDLON |
---|
| 2040 | ZRE11= PRJ(JL,JAJ,JKLP1) * ZTR(JL,JAJ,JKL) |
---|
| 2041 | PRJ(JL,JAJ,JKL) = ZRE11 |
---|
| 2042 | PRK(JL,JAJ,JKL) = ZRE11 * PREFZ(JL,JAJ,JKL) |
---|
| 2043 | 356 CONTINUE |
---|
| 2044 | 357 CONTINUE |
---|
| 2045 | 358 CONTINUE |
---|
| 2046 | C |
---|
| 2047 | END IF |
---|
| 2048 | C |
---|
| 2049 | C ------------------------------------------------------------------ |
---|
| 2050 | C |
---|
| 2051 | RETURN |
---|
| 2052 | END |
---|
| 2053 | SUBROUTINE SWR ( KNU |
---|
| 2054 | S , PALBD , PCG , PCLD , PDSIG, POMEGA, PRAYL |
---|
| 2055 | S , PSEC , PTAU |
---|
| 2056 | S , PCGAZ , PPIZAZ, PRAY1, PRAY2, PREFZ , PRJ , PRK , PRMUE |
---|
| 2057 | S , PTAUAZ, PTRA1 , PTRA2 ) |
---|
| 2058 | IMPLICIT none |
---|
| 2059 | #include "dimensions.h" |
---|
| 2060 | #include "dimphy.h" |
---|
| 2061 | #include "raddim.h" |
---|
| 2062 | #include "radepsi.h" |
---|
| 2063 | #include "radopt.h" |
---|
| 2064 | C |
---|
| 2065 | C ------------------------------------------------------------------ |
---|
| 2066 | C PURPOSE. |
---|
| 2067 | C -------- |
---|
| 2068 | C COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY IN CASE OF |
---|
| 2069 | C CONTINUUM SCATTERING |
---|
| 2070 | C |
---|
| 2071 | C METHOD. |
---|
| 2072 | C ------- |
---|
| 2073 | C |
---|
| 2074 | C 1. COMPUTES CONTINUUM FLUXES CORRESPONDING TO AEROSOL |
---|
| 2075 | C OR/AND RAYLEIGH SCATTERING (NO MOLECULAR GAS ABSORPTION) |
---|
| 2076 | C |
---|
| 2077 | C REFERENCE. |
---|
| 2078 | C ---------- |
---|
| 2079 | C |
---|
| 2080 | C SEE RADIATION'S PART OF THE ECMWF RESEARCH DEPARTMENT |
---|
| 2081 | C DOCUMENTATION, AND FOUQUART AND BONNEL (1980) |
---|
| 2082 | C |
---|
| 2083 | C AUTHOR. |
---|
| 2084 | C ------- |
---|
| 2085 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2086 | C |
---|
| 2087 | C MODIFICATIONS. |
---|
| 2088 | C -------------- |
---|
| 2089 | C ORIGINAL : 89-07-14 |
---|
| 2090 | C ------------------------------------------------------------------ |
---|
| 2091 | C* ARGUMENTS: |
---|
| 2092 | C |
---|
| 2093 | INTEGER KNU |
---|
| 2094 | REAL*8 PALBD(KDLON,2) |
---|
| 2095 | REAL*8 PCG(KDLON,2,KFLEV) |
---|
| 2096 | REAL*8 PCLD(KDLON,KFLEV) |
---|
| 2097 | REAL*8 PDSIG(KDLON,KFLEV) |
---|
| 2098 | REAL*8 POMEGA(KDLON,2,KFLEV) |
---|
| 2099 | REAL*8 PRAYL(KDLON) |
---|
| 2100 | REAL*8 PSEC(KDLON) |
---|
| 2101 | REAL*8 PTAU(KDLON,2,KFLEV) |
---|
| 2102 | C |
---|
| 2103 | REAL*8 PRAY1(KDLON,KFLEV+1) |
---|
| 2104 | REAL*8 PRAY2(KDLON,KFLEV+1) |
---|
| 2105 | REAL*8 PREFZ(KDLON,2,KFLEV+1) |
---|
| 2106 | REAL*8 PRJ(KDLON,6,KFLEV+1) |
---|
| 2107 | REAL*8 PRK(KDLON,6,KFLEV+1) |
---|
| 2108 | REAL*8 PRMUE(KDLON,KFLEV+1) |
---|
| 2109 | REAL*8 PCGAZ(KDLON,KFLEV) |
---|
| 2110 | REAL*8 PPIZAZ(KDLON,KFLEV) |
---|
| 2111 | REAL*8 PTAUAZ(KDLON,KFLEV) |
---|
| 2112 | REAL*8 PTRA1(KDLON,KFLEV+1) |
---|
| 2113 | REAL*8 PTRA2(KDLON,KFLEV+1) |
---|
| 2114 | C |
---|
| 2115 | C* LOCAL VARIABLES: |
---|
| 2116 | C |
---|
| 2117 | REAL*8 ZC1I(KDLON,KFLEV+1) |
---|
| 2118 | REAL*8 ZCLEQ(KDLON,KFLEV) |
---|
| 2119 | REAL*8 ZCLEAR(KDLON) |
---|
| 2120 | REAL*8 ZCLOUD(KDLON) |
---|
| 2121 | REAL*8 ZGG(KDLON) |
---|
| 2122 | REAL*8 ZREF(KDLON) |
---|
| 2123 | REAL*8 ZRE1(KDLON) |
---|
| 2124 | REAL*8 ZRE2(KDLON) |
---|
| 2125 | REAL*8 ZRMUZ(KDLON) |
---|
| 2126 | REAL*8 ZRNEB(KDLON) |
---|
| 2127 | REAL*8 ZR21(KDLON) |
---|
| 2128 | REAL*8 ZR22(KDLON) |
---|
| 2129 | REAL*8 ZR23(KDLON) |
---|
| 2130 | REAL*8 ZSS1(KDLON) |
---|
| 2131 | REAL*8 ZTO1(KDLON) |
---|
| 2132 | REAL*8 ZTR(KDLON,2,KFLEV+1) |
---|
| 2133 | REAL*8 ZTR1(KDLON) |
---|
| 2134 | REAL*8 ZTR2(KDLON) |
---|
| 2135 | REAL*8 ZW(KDLON) |
---|
| 2136 | C |
---|
| 2137 | INTEGER jk, jl, ja, jkl, jklp1, jkm1, jaj |
---|
| 2138 | REAL*8 ZFACOA, ZFACOC, ZCORAE, ZCORCD |
---|
| 2139 | REAL*8 ZMUE, ZGAP, ZWW, ZTO, ZDEN, ZDEN1 |
---|
| 2140 | REAL*8 ZMU1, ZRE11, ZBMU0, ZBMU1 |
---|
| 2141 | C |
---|
| 2142 | C ------------------------------------------------------------------ |
---|
| 2143 | C |
---|
| 2144 | C* 1. INITIALIZATION |
---|
| 2145 | C -------------- |
---|
| 2146 | C |
---|
| 2147 | 100 CONTINUE |
---|
| 2148 | C |
---|
| 2149 | DO 103 JK = 1 , KFLEV+1 |
---|
| 2150 | DO 102 JA = 1 , 6 |
---|
| 2151 | DO 101 JL = 1, KDLON |
---|
| 2152 | PRJ(JL,JA,JK) = 0. |
---|
| 2153 | PRK(JL,JA,JK) = 0. |
---|
| 2154 | 101 CONTINUE |
---|
| 2155 | 102 CONTINUE |
---|
| 2156 | 103 CONTINUE |
---|
| 2157 | C |
---|
| 2158 | C |
---|
| 2159 | C ------------------------------------------------------------------ |
---|
| 2160 | C |
---|
| 2161 | C* 2. TOTAL EFFECTIVE CLOUDINESS ABOVE A GIVEN LEVEL |
---|
| 2162 | C ---------------------------------------------- |
---|
| 2163 | C |
---|
| 2164 | 200 CONTINUE |
---|
| 2165 | C |
---|
| 2166 | DO 201 JL = 1, KDLON |
---|
| 2167 | ZR23(JL) = 0. |
---|
| 2168 | ZC1I(JL,KFLEV+1) = 0. |
---|
| 2169 | ZCLEAR(JL) = 1. |
---|
| 2170 | ZCLOUD(JL) = 0. |
---|
| 2171 | 201 CONTINUE |
---|
| 2172 | C |
---|
| 2173 | JK = 1 |
---|
| 2174 | JKL = KFLEV+1 - JK |
---|
| 2175 | JKLP1 = JKL + 1 |
---|
| 2176 | DO 202 JL = 1, KDLON |
---|
| 2177 | ZFACOA = 1. - PPIZAZ(JL,JKL)*PCGAZ(JL,JKL)*PCGAZ(JL,JKL) |
---|
| 2178 | ZFACOC = 1. - POMEGA(JL,KNU,JKL) * PCG(JL,KNU,JKL) |
---|
| 2179 | S * PCG(JL,KNU,JKL) |
---|
| 2180 | ZCORAE = ZFACOA * PTAUAZ(JL,JKL) * PSEC(JL) |
---|
| 2181 | ZCORCD = ZFACOC * PTAU(JL,KNU,JKL) * PSEC(JL) |
---|
| 2182 | ZR21(JL) = EXP(-ZCORAE ) |
---|
| 2183 | ZR22(JL) = EXP(-ZCORCD ) |
---|
| 2184 | ZSS1(JL) = PCLD(JL,JKL)*(1.0-ZR21(JL)*ZR22(JL)) |
---|
| 2185 | S + (1.0-PCLD(JL,JKL))*(1.0-ZR21(JL)) |
---|
| 2186 | ZCLEQ(JL,JKL) = ZSS1(JL) |
---|
| 2187 | C |
---|
| 2188 | IF (NOVLP.EQ.1) THEN |
---|
| 2189 | c* maximum-random |
---|
| 2190 | ZCLEAR(JL) = ZCLEAR(JL) |
---|
| 2191 | S *(1.0-MAX(ZSS1(JL),ZCLOUD(JL))) |
---|
| 2192 | S /(1.0-MIN(ZCLOUD(JL),1.-ZEPSEC)) |
---|
| 2193 | ZC1I(JL,JKL) = 1.0 - ZCLEAR(JL) |
---|
| 2194 | ZCLOUD(JL) = ZSS1(JL) |
---|
| 2195 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 2196 | C* maximum |
---|
| 2197 | ZCLOUD(JL) = MAX( ZSS1(JL) , ZCLOUD(JL) ) |
---|
| 2198 | ZC1I(JL,JKL) = ZCLOUD(JL) |
---|
| 2199 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 2200 | c* random |
---|
| 2201 | ZCLEAR(JL) = ZCLEAR(JL)*(1.0 - ZSS1(JL)) |
---|
| 2202 | ZCLOUD(JL) = 1.0 - ZCLEAR(JL) |
---|
| 2203 | ZC1I(JL,JKL) = ZCLOUD(JL) |
---|
| 2204 | END IF |
---|
| 2205 | 202 CONTINUE |
---|
| 2206 | C |
---|
| 2207 | DO 205 JK = 2 , KFLEV |
---|
| 2208 | JKL = KFLEV+1 - JK |
---|
| 2209 | JKLP1 = JKL + 1 |
---|
| 2210 | DO 204 JL = 1, KDLON |
---|
| 2211 | ZFACOA = 1. - PPIZAZ(JL,JKL)*PCGAZ(JL,JKL)*PCGAZ(JL,JKL) |
---|
| 2212 | ZFACOC = 1. - POMEGA(JL,KNU,JKL) * PCG(JL,KNU,JKL) |
---|
| 2213 | S * PCG(JL,KNU,JKL) |
---|
| 2214 | ZCORAE = ZFACOA * PTAUAZ(JL,JKL) * PSEC(JL) |
---|
| 2215 | ZCORCD = ZFACOC * PTAU(JL,KNU,JKL) * PSEC(JL) |
---|
| 2216 | ZR21(JL) = EXP(-ZCORAE ) |
---|
| 2217 | ZR22(JL) = EXP(-ZCORCD ) |
---|
| 2218 | ZSS1(JL) = PCLD(JL,JKL)*(1.0-ZR21(JL)*ZR22(JL)) |
---|
| 2219 | S + (1.0-PCLD(JL,JKL))*(1.0-ZR21(JL)) |
---|
| 2220 | ZCLEQ(JL,JKL) = ZSS1(JL) |
---|
| 2221 | c |
---|
| 2222 | IF (NOVLP.EQ.1) THEN |
---|
| 2223 | c* maximum-random |
---|
| 2224 | ZCLEAR(JL) = ZCLEAR(JL) |
---|
| 2225 | S *(1.0-MAX(ZSS1(JL),ZCLOUD(JL))) |
---|
| 2226 | S /(1.0-MIN(ZCLOUD(JL),1.-ZEPSEC)) |
---|
| 2227 | ZC1I(JL,JKL) = 1.0 - ZCLEAR(JL) |
---|
| 2228 | ZCLOUD(JL) = ZSS1(JL) |
---|
| 2229 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 2230 | C* maximum |
---|
| 2231 | ZCLOUD(JL) = MAX( ZSS1(JL) , ZCLOUD(JL) ) |
---|
| 2232 | ZC1I(JL,JKL) = ZCLOUD(JL) |
---|
| 2233 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 2234 | c* random |
---|
| 2235 | ZCLEAR(JL) = ZCLEAR(JL)*(1.0 - ZSS1(JL)) |
---|
| 2236 | ZCLOUD(JL) = 1.0 - ZCLEAR(JL) |
---|
| 2237 | ZC1I(JL,JKL) = ZCLOUD(JL) |
---|
| 2238 | END IF |
---|
| 2239 | 204 CONTINUE |
---|
| 2240 | 205 CONTINUE |
---|
| 2241 | C |
---|
| 2242 | C ------------------------------------------------------------------ |
---|
| 2243 | C |
---|
| 2244 | C* 3. REFLECTIVITY/TRANSMISSIVITY FOR PURE SCATTERING |
---|
| 2245 | C ----------------------------------------------- |
---|
| 2246 | C |
---|
| 2247 | 300 CONTINUE |
---|
| 2248 | C |
---|
| 2249 | DO 301 JL = 1, KDLON |
---|
| 2250 | PRAY1(JL,KFLEV+1) = 0. |
---|
| 2251 | PRAY2(JL,KFLEV+1) = 0. |
---|
| 2252 | PREFZ(JL,2,1) = PALBD(JL,KNU) |
---|
| 2253 | PREFZ(JL,1,1) = PALBD(JL,KNU) |
---|
| 2254 | PTRA1(JL,KFLEV+1) = 1. |
---|
| 2255 | PTRA2(JL,KFLEV+1) = 1. |
---|
| 2256 | 301 CONTINUE |
---|
| 2257 | C |
---|
| 2258 | DO 346 JK = 2 , KFLEV+1 |
---|
| 2259 | JKM1 = JK-1 |
---|
| 2260 | DO 342 JL = 1, KDLON |
---|
| 2261 | ZRNEB(JL)= PCLD(JL,JKM1) |
---|
| 2262 | ZRE1(JL)=0. |
---|
| 2263 | ZTR1(JL)=0. |
---|
| 2264 | ZRE2(JL)=0. |
---|
| 2265 | ZTR2(JL)=0. |
---|
| 2266 | C |
---|
| 2267 | C |
---|
| 2268 | C ------------------------------------------------------------------ |
---|
| 2269 | C |
---|
| 2270 | C* 3.1 EQUIVALENT ZENITH ANGLE |
---|
| 2271 | C ----------------------- |
---|
| 2272 | C |
---|
| 2273 | 310 CONTINUE |
---|
| 2274 | C |
---|
| 2275 | ZMUE = (1.-ZC1I(JL,JK)) * PSEC(JL) |
---|
| 2276 | S + ZC1I(JL,JK) * 1.66 |
---|
| 2277 | PRMUE(JL,JK) = 1./ZMUE |
---|
| 2278 | C |
---|
| 2279 | C |
---|
| 2280 | C ------------------------------------------------------------------ |
---|
| 2281 | C |
---|
| 2282 | C* 3.2 REFLECT./TRANSMISSIVITY DUE TO RAYLEIGH AND AEROSOLS |
---|
| 2283 | C ---------------------------------------------------- |
---|
| 2284 | C |
---|
| 2285 | 320 CONTINUE |
---|
| 2286 | C |
---|
| 2287 | ZGAP = PCGAZ(JL,JKM1) |
---|
| 2288 | ZBMU0 = 0.5 - 0.75 * ZGAP / ZMUE |
---|
| 2289 | ZWW = PPIZAZ(JL,JKM1) |
---|
| 2290 | ZTO = PTAUAZ(JL,JKM1) |
---|
| 2291 | ZDEN = 1. + (1. - ZWW + ZBMU0 * ZWW) * ZTO * ZMUE |
---|
| 2292 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU0*ZWW)*ZTO*ZTO*ZMUE*ZMUE |
---|
| 2293 | PRAY1(JL,JKM1) = ZBMU0 * ZWW * ZTO * ZMUE / ZDEN |
---|
| 2294 | PTRA1(JL,JKM1) = 1. / ZDEN |
---|
| 2295 | c PRINT *,' LOOP 342 ** 3 ** JL=',JL,PRAY1(JL,JKM1),PTRA1(JL,JKM1) |
---|
| 2296 | C |
---|
| 2297 | ZMU1 = 0.5 |
---|
| 2298 | ZBMU1 = 0.5 - 0.75 * ZGAP * ZMU1 |
---|
| 2299 | ZDEN1= 1. + (1. - ZWW + ZBMU1 * ZWW) * ZTO / ZMU1 |
---|
| 2300 | S + (1-ZWW) * (1. - ZWW +2.*ZBMU1*ZWW)*ZTO*ZTO/ZMU1/ZMU1 |
---|
| 2301 | PRAY2(JL,JKM1) = ZBMU1 * ZWW * ZTO / ZMU1 / ZDEN1 |
---|
| 2302 | PTRA2(JL,JKM1) = 1. / ZDEN1 |
---|
| 2303 | C |
---|
| 2304 | C |
---|
| 2305 | C ------------------------------------------------------------------ |
---|
| 2306 | C |
---|
| 2307 | C* 3.3 EFFECT OF CLOUD LAYER |
---|
| 2308 | C --------------------- |
---|
| 2309 | C |
---|
| 2310 | 330 CONTINUE |
---|
| 2311 | C |
---|
| 2312 | ZW(JL) = POMEGA(JL,KNU,JKM1) |
---|
| 2313 | ZTO1(JL) = PTAU(JL,KNU,JKM1)/ZW(JL) |
---|
| 2314 | S + PTAUAZ(JL,JKM1)/PPIZAZ(JL,JKM1) |
---|
| 2315 | ZR21(JL) = PTAU(JL,KNU,JKM1) + PTAUAZ(JL,JKM1) |
---|
| 2316 | ZR22(JL) = PTAU(JL,KNU,JKM1) / ZR21(JL) |
---|
| 2317 | ZGG(JL) = ZR22(JL) * PCG(JL,KNU,JKM1) |
---|
| 2318 | S + (1. - ZR22(JL)) * PCGAZ(JL,JKM1) |
---|
| 2319 | C Modif PhD - JJM 19/03/96 pour erreurs arrondis |
---|
| 2320 | C machine |
---|
| 2321 | C PHD PROTECTION ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
| 2322 | IF (ZW(JL).EQ.1. .AND. PPIZAZ(JL,JKM1).EQ.1.) THEN |
---|
| 2323 | ZW(JL)=1. |
---|
| 2324 | ELSE |
---|
| 2325 | ZW(JL) = ZR21(JL) / ZTO1(JL) |
---|
| 2326 | END IF |
---|
| 2327 | ZREF(JL) = PREFZ(JL,1,JKM1) |
---|
| 2328 | ZRMUZ(JL) = PRMUE(JL,JK) |
---|
| 2329 | 342 CONTINUE |
---|
| 2330 | C |
---|
| 2331 | CALL SWDE(ZGG , ZREF , ZRMUZ , ZTO1 , ZW, |
---|
| 2332 | S ZRE1 , ZRE2 , ZTR1 , ZTR2) |
---|
| 2333 | C |
---|
| 2334 | DO 345 JL = 1, KDLON |
---|
| 2335 | C |
---|
| 2336 | PREFZ(JL,1,JK) = (1.-ZRNEB(JL)) * (PRAY1(JL,JKM1) |
---|
| 2337 | S + PREFZ(JL,1,JKM1) * PTRA1(JL,JKM1) |
---|
| 2338 | S * PTRA2(JL,JKM1) |
---|
| 2339 | S / (1.-PRAY2(JL,JKM1)*PREFZ(JL,1,JKM1))) |
---|
| 2340 | S + ZRNEB(JL) * ZRE2(JL) |
---|
| 2341 | C |
---|
| 2342 | ZTR(JL,1,JKM1) = ZRNEB(JL) * ZTR2(JL) + (PTRA1(JL,JKM1) |
---|
| 2343 | S / (1.-PRAY2(JL,JKM1)*PREFZ(JL,1,JKM1))) |
---|
| 2344 | S * (1.-ZRNEB(JL)) |
---|
| 2345 | C |
---|
| 2346 | PREFZ(JL,2,JK) = (1.-ZRNEB(JL)) * (PRAY1(JL,JKM1) |
---|
| 2347 | S + PREFZ(JL,2,JKM1) * PTRA1(JL,JKM1) |
---|
| 2348 | S * PTRA2(JL,JKM1) ) |
---|
| 2349 | S + ZRNEB(JL) * ZRE1(JL) |
---|
| 2350 | C |
---|
| 2351 | ZTR(JL,2,JKM1) = ZRNEB(JL) * ZTR1(JL) |
---|
| 2352 | S + PTRA1(JL,JKM1) * (1.-ZRNEB(JL)) |
---|
| 2353 | C |
---|
| 2354 | 345 CONTINUE |
---|
| 2355 | 346 CONTINUE |
---|
| 2356 | DO 347 JL = 1, KDLON |
---|
| 2357 | ZMUE = (1.-ZC1I(JL,1))*PSEC(JL)+ZC1I(JL,1)*1.66 |
---|
| 2358 | PRMUE(JL,1)=1./ZMUE |
---|
| 2359 | 347 CONTINUE |
---|
| 2360 | C |
---|
| 2361 | C |
---|
| 2362 | C ------------------------------------------------------------------ |
---|
| 2363 | C |
---|
| 2364 | C* 3.5 REFLECT./TRANSMISSIVITY BETWEEN SURFACE AND LEVEL |
---|
| 2365 | C ------------------------------------------------- |
---|
| 2366 | C |
---|
| 2367 | 350 CONTINUE |
---|
| 2368 | C |
---|
| 2369 | IF (KNU.EQ.1) THEN |
---|
| 2370 | JAJ = 2 |
---|
| 2371 | DO 351 JL = 1, KDLON |
---|
| 2372 | PRJ(JL,JAJ,KFLEV+1) = 1. |
---|
| 2373 | PRK(JL,JAJ,KFLEV+1) = PREFZ(JL, 1,KFLEV+1) |
---|
| 2374 | 351 CONTINUE |
---|
| 2375 | C |
---|
| 2376 | DO 353 JK = 1 , KFLEV |
---|
| 2377 | JKL = KFLEV+1 - JK |
---|
| 2378 | JKLP1 = JKL + 1 |
---|
| 2379 | DO 352 JL = 1, KDLON |
---|
| 2380 | ZRE11= PRJ(JL,JAJ,JKLP1) * ZTR(JL, 1,JKL) |
---|
| 2381 | PRJ(JL,JAJ,JKL) = ZRE11 |
---|
| 2382 | PRK(JL,JAJ,JKL) = ZRE11 * PREFZ(JL, 1,JKL) |
---|
| 2383 | 352 CONTINUE |
---|
| 2384 | 353 CONTINUE |
---|
| 2385 | 354 CONTINUE |
---|
| 2386 | C |
---|
| 2387 | ELSE |
---|
| 2388 | C |
---|
| 2389 | DO 358 JAJ = 1 , 2 |
---|
| 2390 | DO 355 JL = 1, KDLON |
---|
| 2391 | PRJ(JL,JAJ,KFLEV+1) = 1. |
---|
| 2392 | PRK(JL,JAJ,KFLEV+1) = PREFZ(JL,JAJ,KFLEV+1) |
---|
| 2393 | 355 CONTINUE |
---|
| 2394 | C |
---|
| 2395 | DO 357 JK = 1 , KFLEV |
---|
| 2396 | JKL = KFLEV+1 - JK |
---|
| 2397 | JKLP1 = JKL + 1 |
---|
| 2398 | DO 356 JL = 1, KDLON |
---|
| 2399 | ZRE11= PRJ(JL,JAJ,JKLP1) * ZTR(JL,JAJ,JKL) |
---|
| 2400 | PRJ(JL,JAJ,JKL) = ZRE11 |
---|
| 2401 | PRK(JL,JAJ,JKL) = ZRE11 * PREFZ(JL,JAJ,JKL) |
---|
| 2402 | 356 CONTINUE |
---|
| 2403 | 357 CONTINUE |
---|
| 2404 | 358 CONTINUE |
---|
| 2405 | C |
---|
| 2406 | END IF |
---|
| 2407 | C |
---|
| 2408 | C ------------------------------------------------------------------ |
---|
| 2409 | C |
---|
| 2410 | RETURN |
---|
| 2411 | END |
---|
| 2412 | SUBROUTINE SWDE (PGG,PREF,PRMUZ,PTO1,PW, |
---|
| 2413 | S PRE1,PRE2,PTR1,PTR2) |
---|
| 2414 | IMPLICIT none |
---|
| 2415 | #include "dimensions.h" |
---|
| 2416 | #include "dimphy.h" |
---|
| 2417 | #include "raddim.h" |
---|
| 2418 | C |
---|
| 2419 | C ------------------------------------------------------------------ |
---|
| 2420 | C PURPOSE. |
---|
| 2421 | C -------- |
---|
| 2422 | C COMPUTES THE REFLECTIVITY AND TRANSMISSIVITY OF A CLOUDY |
---|
| 2423 | C LAYER USING THE DELTA-EDDINGTON'S APPROXIMATION. |
---|
| 2424 | C |
---|
| 2425 | C METHOD. |
---|
| 2426 | C ------- |
---|
| 2427 | C |
---|
| 2428 | C STANDARD DELTA-EDDINGTON LAYER CALCULATIONS. |
---|
| 2429 | C |
---|
| 2430 | C REFERENCE. |
---|
| 2431 | C ---------- |
---|
| 2432 | C |
---|
| 2433 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2434 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2435 | C |
---|
| 2436 | C AUTHOR. |
---|
| 2437 | C ------- |
---|
| 2438 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2439 | C |
---|
| 2440 | C MODIFICATIONS. |
---|
| 2441 | C -------------- |
---|
| 2442 | C ORIGINAL : 88-12-15 |
---|
| 2443 | C ------------------------------------------------------------------ |
---|
| 2444 | C* ARGUMENTS: |
---|
| 2445 | C |
---|
| 2446 | REAL*8 PGG(KDLON) ! ASSYMETRY FACTOR |
---|
| 2447 | REAL*8 PREF(KDLON) ! REFLECTIVITY OF THE UNDERLYING LAYER |
---|
| 2448 | REAL*8 PRMUZ(KDLON) ! COSINE OF SOLAR ZENITH ANGLE |
---|
| 2449 | REAL*8 PTO1(KDLON) ! OPTICAL THICKNESS |
---|
| 2450 | REAL*8 PW(KDLON) ! SINGLE SCATTERING ALBEDO |
---|
| 2451 | REAL*8 PRE1(KDLON) ! LAYER REFLECTIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 2452 | REAL*8 PRE2(KDLON) ! LAYER REFLECTIVITY |
---|
| 2453 | REAL*8 PTR1(KDLON) ! LAYER TRANSMISSIVITY (NO UNDERLYING-LAYER REFLECTION) |
---|
| 2454 | REAL*8 PTR2(KDLON) ! LAYER TRANSMISSIVITY |
---|
| 2455 | C |
---|
| 2456 | C* LOCAL VARIABLES: |
---|
| 2457 | C |
---|
| 2458 | INTEGER jl |
---|
| 2459 | REAL*8 ZFF, ZGP, ZTOP, ZWCP, ZDT, ZX1, ZWM |
---|
| 2460 | REAL*8 ZRM2, ZRK, ZX2, ZRP, ZALPHA, ZBETA, ZARG |
---|
| 2461 | REAL*8 ZEXMU0, ZARG2, ZEXKP, ZEXKM, ZXP2P, ZXM2P, ZAP2B, ZAM2B |
---|
| 2462 | REAL*8 ZA11, ZA12, ZA13, ZA21, ZA22, ZA23 |
---|
| 2463 | REAL*8 ZDENA, ZC1A, ZC2A, ZRI0A, ZRI1A |
---|
| 2464 | REAL*8 ZRI0B, ZRI1B |
---|
| 2465 | REAL*8 ZB21, ZB22, ZB23, ZDENB, ZC1B, ZC2B |
---|
| 2466 | REAL*8 ZRI0C, ZRI1C, ZRI0D, ZRI1D |
---|
| 2467 | C ------------------------------------------------------------------ |
---|
| 2468 | C |
---|
| 2469 | C* 1. DELTA-EDDINGTON CALCULATIONS |
---|
| 2470 | C |
---|
| 2471 | 100 CONTINUE |
---|
| 2472 | C |
---|
| 2473 | DO 131 JL = 1, KDLON |
---|
| 2474 | C |
---|
| 2475 | C* 1.1 SET UP THE DELTA-MODIFIED PARAMETERS |
---|
| 2476 | C |
---|
| 2477 | 110 CONTINUE |
---|
| 2478 | C |
---|
| 2479 | ZFF = PGG(JL)*PGG(JL) |
---|
| 2480 | ZGP = PGG(JL)/(1.+PGG(JL)) |
---|
| 2481 | ZTOP = (1.- PW(JL) * ZFF) * PTO1(JL) |
---|
| 2482 | ZWCP = (1-ZFF)* PW(JL) /(1.- PW(JL) * ZFF) |
---|
| 2483 | ZDT = 2./3. |
---|
| 2484 | ZX1 = 1.-ZWCP*ZGP |
---|
| 2485 | ZWM = 1.-ZWCP |
---|
| 2486 | ZRM2 = PRMUZ(JL) * PRMUZ(JL) |
---|
| 2487 | ZRK = SQRT(3.*ZWM*ZX1) |
---|
| 2488 | ZX2 = 4.*(1.-ZRK*ZRK*ZRM2) |
---|
| 2489 | ZRP=ZRK/ZX1 |
---|
| 2490 | ZALPHA = 3.*ZWCP*ZRM2*(1.+ZGP*ZWM)/ZX2 |
---|
| 2491 | ZBETA = 3.*ZWCP* PRMUZ(JL) *(1.+3.*ZGP*ZRM2*ZWM)/ZX2 |
---|
| 2492 | CMAF ZARG=MIN(ZTOP/PRMUZ(JL),200.) |
---|
| 2493 | ZARG=MIN(ZTOP/PRMUZ(JL),2.0d+2) |
---|
| 2494 | ZEXMU0=EXP(-ZARG) |
---|
| 2495 | CMAF ZARG2=MIN(ZRK*ZTOP,200.) |
---|
| 2496 | ZARG2=MIN(ZRK*ZTOP,2.0d+2) |
---|
| 2497 | ZEXKP=EXP(ZARG2) |
---|
| 2498 | ZEXKM = 1./ZEXKP |
---|
| 2499 | ZXP2P = 1.+ZDT*ZRP |
---|
| 2500 | ZXM2P = 1.-ZDT*ZRP |
---|
| 2501 | ZAP2B = ZALPHA+ZDT*ZBETA |
---|
| 2502 | ZAM2B = ZALPHA-ZDT*ZBETA |
---|
| 2503 | C |
---|
| 2504 | C* 1.2 WITHOUT REFLECTION FROM THE UNDERLYING LAYER |
---|
| 2505 | C |
---|
| 2506 | 120 CONTINUE |
---|
| 2507 | C |
---|
| 2508 | ZA11 = ZXP2P |
---|
| 2509 | ZA12 = ZXM2P |
---|
| 2510 | ZA13 = ZAP2B |
---|
| 2511 | ZA22 = ZXP2P*ZEXKP |
---|
| 2512 | ZA21 = ZXM2P*ZEXKM |
---|
| 2513 | ZA23 = ZAM2B*ZEXMU0 |
---|
| 2514 | ZDENA = ZA11 * ZA22 - ZA21 * ZA12 |
---|
| 2515 | ZC1A = (ZA22*ZA13-ZA12*ZA23)/ZDENA |
---|
| 2516 | ZC2A = (ZA11*ZA23-ZA21*ZA13)/ZDENA |
---|
| 2517 | ZRI0A = ZC1A+ZC2A-ZALPHA |
---|
| 2518 | ZRI1A = ZRP*(ZC1A-ZC2A)-ZBETA |
---|
| 2519 | PRE1(JL) = (ZRI0A-ZDT*ZRI1A)/ PRMUZ(JL) |
---|
| 2520 | ZRI0B = ZC1A*ZEXKM+ZC2A*ZEXKP-ZALPHA*ZEXMU0 |
---|
| 2521 | ZRI1B = ZRP*(ZC1A*ZEXKM-ZC2A*ZEXKP)-ZBETA*ZEXMU0 |
---|
| 2522 | PTR1(JL) = ZEXMU0+(ZRI0B+ZDT*ZRI1B)/ PRMUZ(JL) |
---|
| 2523 | C |
---|
| 2524 | C* 1.3 WITH REFLECTION FROM THE UNDERLYING LAYER |
---|
| 2525 | C |
---|
| 2526 | 130 CONTINUE |
---|
| 2527 | C |
---|
| 2528 | ZB21 = ZA21- PREF(JL) *ZXP2P*ZEXKM |
---|
| 2529 | ZB22 = ZA22- PREF(JL) *ZXM2P*ZEXKP |
---|
| 2530 | ZB23 = ZA23- PREF(JL) *ZEXMU0*(ZAP2B - PRMUZ(JL) ) |
---|
| 2531 | ZDENB = ZA11 * ZB22 - ZB21 * ZA12 |
---|
| 2532 | ZC1B = (ZB22*ZA13-ZA12*ZB23)/ZDENB |
---|
| 2533 | ZC2B = (ZA11*ZB23-ZB21*ZA13)/ZDENB |
---|
| 2534 | ZRI0C = ZC1B+ZC2B-ZALPHA |
---|
| 2535 | ZRI1C = ZRP*(ZC1B-ZC2B)-ZBETA |
---|
| 2536 | PRE2(JL) = (ZRI0C-ZDT*ZRI1C) / PRMUZ(JL) |
---|
| 2537 | ZRI0D = ZC1B*ZEXKM + ZC2B*ZEXKP - ZALPHA*ZEXMU0 |
---|
| 2538 | ZRI1D = ZRP * (ZC1B*ZEXKM - ZC2B*ZEXKP) - ZBETA*ZEXMU0 |
---|
| 2539 | PTR2(JL) = ZEXMU0 + (ZRI0D + ZDT*ZRI1D) / PRMUZ(JL) |
---|
| 2540 | C |
---|
| 2541 | 131 CONTINUE |
---|
| 2542 | RETURN |
---|
| 2543 | END |
---|
| 2544 | SUBROUTINE SWTT (KNU,KA,PU,PTR) |
---|
| 2545 | IMPLICIT none |
---|
| 2546 | #include "dimensions.h" |
---|
| 2547 | #include "dimphy.h" |
---|
| 2548 | #include "raddim.h" |
---|
| 2549 | C |
---|
| 2550 | C----------------------------------------------------------------------- |
---|
| 2551 | C PURPOSE. |
---|
| 2552 | C -------- |
---|
| 2553 | C THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 2554 | C ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 2555 | C INTERVALS. |
---|
| 2556 | C |
---|
| 2557 | C METHOD. |
---|
| 2558 | C ------- |
---|
| 2559 | C |
---|
| 2560 | C TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 2561 | C AND HORNER'S ALGORITHM. |
---|
| 2562 | C |
---|
| 2563 | C REFERENCE. |
---|
| 2564 | C ---------- |
---|
| 2565 | C |
---|
| 2566 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2567 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2568 | C |
---|
| 2569 | C AUTHOR. |
---|
| 2570 | C ------- |
---|
| 2571 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2572 | C |
---|
| 2573 | C MODIFICATIONS. |
---|
| 2574 | C -------------- |
---|
| 2575 | C ORIGINAL : 88-12-15 |
---|
| 2576 | C----------------------------------------------------------------------- |
---|
| 2577 | C |
---|
| 2578 | C* ARGUMENTS |
---|
| 2579 | C |
---|
| 2580 | INTEGER KNU ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 2581 | INTEGER KA ! INDEX OF THE ABSORBER |
---|
| 2582 | REAL*8 PU(KDLON) ! ABSORBER AMOUNT |
---|
| 2583 | C |
---|
| 2584 | REAL*8 PTR(KDLON) ! TRANSMISSION FUNCTION |
---|
| 2585 | C |
---|
| 2586 | C* LOCAL VARIABLES: |
---|
| 2587 | C |
---|
| 2588 | REAL*8 ZR1(KDLON), ZR2(KDLON) |
---|
| 2589 | INTEGER jl, i,j |
---|
| 2590 | C |
---|
| 2591 | C* Prescribed Data: |
---|
| 2592 | C |
---|
| 2593 | REAL*8 APAD(2,3,7), BPAD(2,3,7), D(2,3) |
---|
| 2594 | SAVE APAD, BPAD, D |
---|
| 2595 | DATA ((APAD(1,I,J),I=1,3),J=1,7) / |
---|
| 2596 | S 0.912418292E+05, 0.000000000E-00, 0.925887084E-04, |
---|
| 2597 | S 0.723613782E+05, 0.000000000E-00, 0.129353723E-01, |
---|
| 2598 | S 0.596037057E+04, 0.000000000E-00, 0.800821928E+00, |
---|
| 2599 | S 0.000000000E-00, 0.000000000E-00, 0.242715973E+02, |
---|
| 2600 | S 0.000000000E-00, 0.000000000E-00, 0.878331486E+02, |
---|
| 2601 | S 0.000000000E-00, 0.000000000E-00, 0.191559725E+02, |
---|
| 2602 | S 0.000000000E-00, 0.000000000E-00, 0.000000000E+00 / |
---|
| 2603 | DATA ((APAD(2,I,J),I=1,3),J=1,7) / |
---|
| 2604 | S 0.376655383E-08, 0.739646016E-08, 0.410177786E+03, |
---|
| 2605 | S 0.978576773E-04, 0.131849595E-03, 0.672595424E+02, |
---|
| 2606 | S 0.387714006E+00, 0.437772681E+00, 0.000000000E-00, |
---|
| 2607 | S 0.118461660E+03, 0.151345118E+03, 0.000000000E-00, |
---|
| 2608 | S 0.119079797E+04, 0.233628890E+04, 0.000000000E-00, |
---|
| 2609 | S 0.293353397E+03, 0.797219934E+03, 0.000000000E-00, |
---|
| 2610 | S 0.000000000E+00, 0.000000000E+00, 0.000000000E+00 / |
---|
| 2611 | C |
---|
| 2612 | DATA ((BPAD(1,I,J),I=1,3),J=1,7) / |
---|
| 2613 | S 0.912418292E+05, 0.000000000E-00, 0.925887084E-04, |
---|
| 2614 | S 0.724555318E+05, 0.000000000E-00, 0.131812683E-01, |
---|
| 2615 | S 0.602593328E+04, 0.000000000E-00, 0.812706117E+00, |
---|
| 2616 | S 0.100000000E+01, 0.000000000E-00, 0.249863591E+02, |
---|
| 2617 | S 0.000000000E-00, 0.000000000E-00, 0.931071925E+02, |
---|
| 2618 | S 0.000000000E-00, 0.000000000E-00, 0.252233437E+02, |
---|
| 2619 | S 0.000000000E-00, 0.000000000E-00, 0.100000000E+01 / |
---|
| 2620 | DATA ((BPAD(2,I,J),I=1,3),J=1,7) / |
---|
| 2621 | S 0.376655383E-08, 0.739646016E-08, 0.410177786E+03, |
---|
| 2622 | S 0.979023421E-04, 0.131861712E-03, 0.731185438E+02, |
---|
| 2623 | S 0.388611139E+00, 0.437949001E+00, 0.100000000E+01, |
---|
| 2624 | S 0.120291383E+03, 0.151692730E+03, 0.000000000E+00, |
---|
| 2625 | S 0.130531005E+04, 0.237071130E+04, 0.000000000E+00, |
---|
| 2626 | S 0.415049409E+03, 0.867914360E+03, 0.000000000E+00, |
---|
| 2627 | S 0.100000000E+01, 0.100000000E+01, 0.000000000E+00 / |
---|
| 2628 | c |
---|
| 2629 | DATA (D(1,I),I=1,3) / 0.00, 0.00, 0.00 / |
---|
| 2630 | DATA (D(2,I),I=1,3) / 0.000000000, 0.000000000, 0.800000000 / |
---|
| 2631 | C |
---|
| 2632 | C----------------------------------------------------------------------- |
---|
| 2633 | C |
---|
| 2634 | C* 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 2635 | C |
---|
| 2636 | 100 CONTINUE |
---|
| 2637 | C |
---|
| 2638 | DO 201 JL = 1, KDLON |
---|
| 2639 | ZR1(JL) = APAD(KNU,KA,1) + PU(JL) * (APAD(KNU,KA,2) + PU(JL) |
---|
| 2640 | S * ( APAD(KNU,KA,3) + PU(JL) * (APAD(KNU,KA,4) + PU(JL) |
---|
| 2641 | S * ( APAD(KNU,KA,5) + PU(JL) * (APAD(KNU,KA,6) + PU(JL) |
---|
| 2642 | S * ( APAD(KNU,KA,7) )))))) |
---|
| 2643 | C |
---|
| 2644 | ZR2(JL) = BPAD(KNU,KA,1) + PU(JL) * (BPAD(KNU,KA,2) + PU(JL) |
---|
| 2645 | S * ( BPAD(KNU,KA,3) + PU(JL) * (BPAD(KNU,KA,4) + PU(JL) |
---|
| 2646 | S * ( BPAD(KNU,KA,5) + PU(JL) * (BPAD(KNU,KA,6) + PU(JL) |
---|
| 2647 | S * ( BPAD(KNU,KA,7) )))))) |
---|
| 2648 | C |
---|
| 2649 | C |
---|
| 2650 | C* 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 2651 | C |
---|
| 2652 | 200 CONTINUE |
---|
| 2653 | C |
---|
| 2654 | C |
---|
| 2655 | PTR(JL) = (ZR1(JL) / ZR2(JL)) * (1. - D(KNU,KA)) + D(KNU,KA) |
---|
| 2656 | 201 CONTINUE |
---|
| 2657 | C |
---|
| 2658 | RETURN |
---|
| 2659 | END |
---|
| 2660 | SUBROUTINE SWTT1(KNU,KABS,KIND, PU, PTR) |
---|
| 2661 | IMPLICIT none |
---|
| 2662 | #include "dimensions.h" |
---|
| 2663 | #include "dimphy.h" |
---|
| 2664 | #include "raddim.h" |
---|
| 2665 | C |
---|
| 2666 | C----------------------------------------------------------------------- |
---|
| 2667 | C PURPOSE. |
---|
| 2668 | C -------- |
---|
| 2669 | C THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 2670 | C ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN THE TWO SPECTRAL |
---|
| 2671 | C INTERVALS. |
---|
| 2672 | C |
---|
| 2673 | C METHOD. |
---|
| 2674 | C ------- |
---|
| 2675 | C |
---|
| 2676 | C TRANSMISSION FUNCTION ARE COMPUTED USING PADE APPROXIMANTS |
---|
| 2677 | C AND HORNER'S ALGORITHM. |
---|
| 2678 | C |
---|
| 2679 | C REFERENCE. |
---|
| 2680 | C ---------- |
---|
| 2681 | C |
---|
| 2682 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2683 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2684 | C |
---|
| 2685 | C AUTHOR. |
---|
| 2686 | C ------- |
---|
| 2687 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2688 | C |
---|
| 2689 | C MODIFICATIONS. |
---|
| 2690 | C -------------- |
---|
| 2691 | C ORIGINAL : 95-01-20 |
---|
| 2692 | C----------------------------------------------------------------------- |
---|
| 2693 | C* ARGUMENTS: |
---|
| 2694 | C |
---|
| 2695 | INTEGER KNU ! INDEX OF THE SPECTRAL INTERVAL |
---|
| 2696 | INTEGER KABS ! NUMBER OF ABSORBERS |
---|
| 2697 | INTEGER KIND(KABS) ! INDICES OF THE ABSORBERS |
---|
| 2698 | REAL*8 PU(KDLON,KABS) ! ABSORBER AMOUNT |
---|
| 2699 | C |
---|
| 2700 | REAL*8 PTR(KDLON,KABS) ! TRANSMISSION FUNCTION |
---|
| 2701 | C |
---|
| 2702 | C* LOCAL VARIABLES: |
---|
| 2703 | C |
---|
| 2704 | REAL*8 ZR1(KDLON) |
---|
| 2705 | REAL*8 ZR2(KDLON) |
---|
| 2706 | REAL*8 ZU(KDLON) |
---|
| 2707 | INTEGER jl, ja, i, j, ia |
---|
| 2708 | C |
---|
| 2709 | C* Prescribed Data: |
---|
| 2710 | C |
---|
| 2711 | REAL*8 APAD(2,3,7), BPAD(2,3,7), D(2,3) |
---|
| 2712 | SAVE APAD, BPAD, D |
---|
| 2713 | DATA ((APAD(1,I,J),I=1,3),J=1,7) / |
---|
| 2714 | S 0.912418292E+05, 0.000000000E-00, 0.925887084E-04, |
---|
| 2715 | S 0.723613782E+05, 0.000000000E-00, 0.129353723E-01, |
---|
| 2716 | S 0.596037057E+04, 0.000000000E-00, 0.800821928E+00, |
---|
| 2717 | S 0.000000000E-00, 0.000000000E-00, 0.242715973E+02, |
---|
| 2718 | S 0.000000000E-00, 0.000000000E-00, 0.878331486E+02, |
---|
| 2719 | S 0.000000000E-00, 0.000000000E-00, 0.191559725E+02, |
---|
| 2720 | S 0.000000000E-00, 0.000000000E-00, 0.000000000E+00 / |
---|
| 2721 | DATA ((APAD(2,I,J),I=1,3),J=1,7) / |
---|
| 2722 | S 0.376655383E-08, 0.739646016E-08, 0.410177786E+03, |
---|
| 2723 | S 0.978576773E-04, 0.131849595E-03, 0.672595424E+02, |
---|
| 2724 | S 0.387714006E+00, 0.437772681E+00, 0.000000000E-00, |
---|
| 2725 | S 0.118461660E+03, 0.151345118E+03, 0.000000000E-00, |
---|
| 2726 | S 0.119079797E+04, 0.233628890E+04, 0.000000000E-00, |
---|
| 2727 | S 0.293353397E+03, 0.797219934E+03, 0.000000000E-00, |
---|
| 2728 | S 0.000000000E+00, 0.000000000E+00, 0.000000000E+00 / |
---|
| 2729 | C |
---|
| 2730 | DATA ((BPAD(1,I,J),I=1,3),J=1,7) / |
---|
| 2731 | S 0.912418292E+05, 0.000000000E-00, 0.925887084E-04, |
---|
| 2732 | S 0.724555318E+05, 0.000000000E-00, 0.131812683E-01, |
---|
| 2733 | S 0.602593328E+04, 0.000000000E-00, 0.812706117E+00, |
---|
| 2734 | S 0.100000000E+01, 0.000000000E-00, 0.249863591E+02, |
---|
| 2735 | S 0.000000000E-00, 0.000000000E-00, 0.931071925E+02, |
---|
| 2736 | S 0.000000000E-00, 0.000000000E-00, 0.252233437E+02, |
---|
| 2737 | S 0.000000000E-00, 0.000000000E-00, 0.100000000E+01 / |
---|
| 2738 | DATA ((BPAD(2,I,J),I=1,3),J=1,7) / |
---|
| 2739 | S 0.376655383E-08, 0.739646016E-08, 0.410177786E+03, |
---|
| 2740 | S 0.979023421E-04, 0.131861712E-03, 0.731185438E+02, |
---|
| 2741 | S 0.388611139E+00, 0.437949001E+00, 0.100000000E+01, |
---|
| 2742 | S 0.120291383E+03, 0.151692730E+03, 0.000000000E+00, |
---|
| 2743 | S 0.130531005E+04, 0.237071130E+04, 0.000000000E+00, |
---|
| 2744 | S 0.415049409E+03, 0.867914360E+03, 0.000000000E+00, |
---|
| 2745 | S 0.100000000E+01, 0.100000000E+01, 0.000000000E+00 / |
---|
| 2746 | c |
---|
| 2747 | DATA (D(1,I),I=1,3) / 0.00, 0.00, 0.00 / |
---|
| 2748 | DATA (D(2,I),I=1,3) / 0.000000000, 0.000000000, 0.800000000 / |
---|
| 2749 | C----------------------------------------------------------------------- |
---|
| 2750 | C |
---|
| 2751 | C* 1. HORNER'S ALGORITHM TO COMPUTE TRANSMISSION FUNCTION |
---|
| 2752 | C |
---|
| 2753 | 100 CONTINUE |
---|
| 2754 | C |
---|
| 2755 | DO 202 JA = 1,KABS |
---|
| 2756 | IA=KIND(JA) |
---|
| 2757 | DO 201 JL = 1, KDLON |
---|
| 2758 | ZU(JL) = PU(JL,JA) |
---|
| 2759 | ZR1(JL) = APAD(KNU,IA,1) + ZU(JL) * (APAD(KNU,IA,2) + ZU(JL) |
---|
| 2760 | S * ( APAD(KNU,IA,3) + ZU(JL) * (APAD(KNU,IA,4) + ZU(JL) |
---|
| 2761 | S * ( APAD(KNU,IA,5) + ZU(JL) * (APAD(KNU,IA,6) + ZU(JL) |
---|
| 2762 | S * ( APAD(KNU,IA,7) )))))) |
---|
| 2763 | C |
---|
| 2764 | ZR2(JL) = BPAD(KNU,IA,1) + ZU(JL) * (BPAD(KNU,IA,2) + ZU(JL) |
---|
| 2765 | S * ( BPAD(KNU,IA,3) + ZU(JL) * (BPAD(KNU,IA,4) + ZU(JL) |
---|
| 2766 | S * ( BPAD(KNU,IA,5) + ZU(JL) * (BPAD(KNU,IA,6) + ZU(JL) |
---|
| 2767 | S * ( BPAD(KNU,IA,7) )))))) |
---|
| 2768 | C |
---|
| 2769 | C |
---|
| 2770 | C* 2. ADD THE BACKGROUND TRANSMISSION |
---|
| 2771 | C |
---|
| 2772 | 200 CONTINUE |
---|
| 2773 | C |
---|
| 2774 | PTR(JL,JA) = (ZR1(JL)/ZR2(JL)) * (1.-D(KNU,IA)) + D(KNU,IA) |
---|
| 2775 | 201 CONTINUE |
---|
| 2776 | 202 CONTINUE |
---|
| 2777 | C |
---|
| 2778 | RETURN |
---|
| 2779 | END |
---|
| 2780 | cIM ctes ds clesphys.h SUBROUTINE LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
| 2781 | SUBROUTINE LW( |
---|
| 2782 | . PPMB, PDP, |
---|
| 2783 | . PPSOL,PDT0,PEMIS, |
---|
| 2784 | . PTL, PTAVE, PWV, POZON, PAER, |
---|
| 2785 | . PCLDLD,PCLDLU, |
---|
| 2786 | . PVIEW, |
---|
| 2787 | . PCOLR, PCOLR0, |
---|
| 2788 | . PTOPLW,PSOLLW,PTOPLW0,PSOLLW0, |
---|
| 2789 | . psollwdown, |
---|
| 2790 | . plwup, plwdn, plwup0, plwdn0) |
---|
| 2791 | IMPLICIT none |
---|
| 2792 | #include "dimensions.h" |
---|
| 2793 | #include "dimphy.h" |
---|
| 2794 | #include "raddim.h" |
---|
| 2795 | #include "raddimlw.h" |
---|
| 2796 | #include "YOMCST.h" |
---|
| 2797 | C |
---|
| 2798 | C----------------------------------------------------------------------- |
---|
| 2799 | C METHOD. |
---|
| 2800 | C ------- |
---|
| 2801 | C |
---|
| 2802 | C 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2803 | C ABSORBERS. |
---|
| 2804 | C 2. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 2805 | C GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 2806 | C 3. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 2807 | C TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 2808 | C BOUNDARIES. |
---|
| 2809 | C 4. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 2810 | C 5. INTRODUCES THE EFFECTS OF THE CLOUDS ON THE FLUXES. |
---|
| 2811 | C |
---|
| 2812 | C |
---|
| 2813 | C REFERENCE. |
---|
| 2814 | C ---------- |
---|
| 2815 | C |
---|
| 2816 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2817 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2818 | C |
---|
| 2819 | C AUTHOR. |
---|
| 2820 | C ------- |
---|
| 2821 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2822 | C |
---|
| 2823 | C MODIFICATIONS. |
---|
| 2824 | C -------------- |
---|
| 2825 | C ORIGINAL : 89-07-14 |
---|
| 2826 | C----------------------------------------------------------------------- |
---|
| 2827 | cIM ctes ds clesphys.h |
---|
| 2828 | c REAL*8 RCO2 ! CO2 CONCENTRATION (IPCC:353.E-06* 44.011/28.97) |
---|
| 2829 | c REAL*8 RCH4 ! CH4 CONCENTRATION (IPCC: 1.72E-06* 16.043/28.97) |
---|
| 2830 | c REAL*8 RN2O ! N2O CONCENTRATION (IPCC: 310.E-09* 44.013/28.97) |
---|
| 2831 | c REAL*8 RCFC11 ! CFC11 CONCENTRATION (IPCC: 280.E-12* 137.3686/28.97) |
---|
| 2832 | c REAL*8 RCFC12 ! CFC12 CONCENTRATION (IPCC: 484.E-12* 120.9140/28.97) |
---|
| 2833 | #include "clesphys.h" |
---|
| 2834 | REAL*8 PCLDLD(KDLON,KFLEV) ! DOWNWARD EFFECTIVE CLOUD COVER |
---|
| 2835 | REAL*8 PCLDLU(KDLON,KFLEV) ! UPWARD EFFECTIVE CLOUD COVER |
---|
| 2836 | REAL*8 PDP(KDLON,KFLEV) ! LAYER PRESSURE THICKNESS (Pa) |
---|
| 2837 | REAL*8 PDT0(KDLON) ! SURFACE TEMPERATURE DISCONTINUITY (K) |
---|
| 2838 | REAL*8 PEMIS(KDLON) ! SURFACE EMISSIVITY |
---|
| 2839 | REAL*8 PPMB(KDLON,KFLEV+1) ! HALF LEVEL PRESSURE (mb) |
---|
| 2840 | REAL*8 PPSOL(KDLON) ! SURFACE PRESSURE (Pa) |
---|
| 2841 | REAL*8 POZON(KDLON,KFLEV) ! O3 CONCENTRATION (kg/kg) |
---|
| 2842 | REAL*8 PTL(KDLON,KFLEV+1) ! HALF LEVEL TEMPERATURE (K) |
---|
| 2843 | REAL*8 PAER(KDLON,KFLEV,5) ! OPTICAL THICKNESS OF THE AEROSOLS |
---|
| 2844 | REAL*8 PTAVE(KDLON,KFLEV) ! LAYER TEMPERATURE (K) |
---|
| 2845 | REAL*8 PVIEW(KDLON) ! COSECANT OF VIEWING ANGLE |
---|
| 2846 | REAL*8 PWV(KDLON,KFLEV) ! SPECIFIC HUMIDITY (kg/kg) |
---|
| 2847 | C |
---|
| 2848 | REAL*8 PCOLR(KDLON,KFLEV) ! LONG-WAVE TENDENCY (K/day) |
---|
| 2849 | REAL*8 PCOLR0(KDLON,KFLEV) ! LONG-WAVE TENDENCY (K/day) clear-sky |
---|
| 2850 | REAL*8 PTOPLW(KDLON) ! LONGWAVE FLUX AT T.O.A. |
---|
| 2851 | REAL*8 PSOLLW(KDLON) ! LONGWAVE FLUX AT SURFACE |
---|
| 2852 | REAL*8 PTOPLW0(KDLON) ! LONGWAVE FLUX AT T.O.A. (CLEAR-SKY) |
---|
| 2853 | REAL*8 PSOLLW0(KDLON) ! LONGWAVE FLUX AT SURFACE (CLEAR-SKY) |
---|
| 2854 | c Rajout LF |
---|
| 2855 | real*8 psollwdown(kdlon) ! LONGWAVE downwards flux at surface |
---|
| 2856 | cIM |
---|
| 2857 | REAL*8 plwup(KDLON,KFLEV+1) ! LW up total sky |
---|
| 2858 | REAL*8 plwup0(KDLON,KFLEV+1) ! LW up clear sky |
---|
| 2859 | REAL*8 plwdn(KDLON,KFLEV+1) ! LW down total sky |
---|
| 2860 | REAL*8 plwdn0(KDLON,KFLEV+1) ! LW down clear sky |
---|
| 2861 | C------------------------------------------------------------------------- |
---|
| 2862 | REAL*8 ZABCU(KDLON,NUA,3*KFLEV+1) |
---|
| 2863 | REAL*8 ZOZ(KDLON,KFLEV) |
---|
| 2864 | c |
---|
| 2865 | REAL*8 ZFLUX(KDLON,2,KFLEV+1) ! RADIATIVE FLUXES (1:up; 2:down) |
---|
| 2866 | REAL*8 ZFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 2867 | REAL*8 ZBINT(KDLON,KFLEV+1) ! Intermediate variable |
---|
| 2868 | REAL*8 ZBSUI(KDLON) ! Intermediate variable |
---|
| 2869 | REAL*8 ZCTS(KDLON,KFLEV) ! Intermediate variable |
---|
| 2870 | REAL*8 ZCNTRB(KDLON,KFLEV+1,KFLEV+1) ! Intermediate variable |
---|
| 2871 | SAVE ZFLUX, ZFLUC, ZBINT, ZBSUI, ZCTS, ZCNTRB |
---|
| 2872 | c |
---|
| 2873 | INTEGER ilim, i, k, kpl1 |
---|
| 2874 | C |
---|
| 2875 | INTEGER lw0pas ! Every lw0pas steps, clear-sky is done |
---|
| 2876 | PARAMETER (lw0pas=1) |
---|
| 2877 | INTEGER lwpas ! Every lwpas steps, cloudy-sky is done |
---|
| 2878 | PARAMETER (lwpas=1) |
---|
| 2879 | c |
---|
| 2880 | INTEGER itaplw0, itaplw |
---|
| 2881 | LOGICAL appel1er |
---|
| 2882 | SAVE appel1er, itaplw0, itaplw |
---|
| 2883 | DATA appel1er /.TRUE./ |
---|
| 2884 | DATA itaplw0,itaplw /0,0/ |
---|
| 2885 | C ------------------------------------------------------------------ |
---|
| 2886 | IF (appel1er) THEN |
---|
| 2887 | PRINT*, "LW clear-sky calling frequency: ", lw0pas |
---|
| 2888 | PRINT*, "LW cloudy-sky calling frequency: ", lwpas |
---|
| 2889 | PRINT*, " In general, they should be 1" |
---|
| 2890 | appel1er=.FALSE. |
---|
| 2891 | ENDIF |
---|
| 2892 | C |
---|
| 2893 | IF (MOD(itaplw0,lw0pas).EQ.0) THEN |
---|
| 2894 | DO k = 1, KFLEV ! convertir ozone de kg/kg en pa/pa |
---|
| 2895 | DO i = 1, KDLON |
---|
[652] | 2896 | c convertir ozone de kg/kg en pa (modif MPL 100505) |
---|
| 2897 | ZOZ(i,k) = POZON(i,k)*PDP(i,k) * RMD/RMO3 |
---|
| 2898 | c print *,'LW: ZOZ*10**6=',ZOZ(i,k)*1000000. |
---|
[524] | 2899 | ENDDO |
---|
| 2900 | ENDDO |
---|
| 2901 | cIM ctes ds clesphys.h CALL LWU(RCO2,RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2902 | CALL LWU( |
---|
| 2903 | S PAER,PDP,PPMB,PPSOL,ZOZ,PTAVE,PVIEW,PWV,ZABCU) |
---|
| 2904 | CALL LWBV(ILIM,PDP,PDT0,PEMIS,PPMB,PTL,PTAVE,ZABCU, |
---|
| 2905 | S ZFLUC,ZBINT,ZBSUI,ZCTS,ZCNTRB) |
---|
| 2906 | itaplw0 = 0 |
---|
| 2907 | ENDIF |
---|
| 2908 | itaplw0 = itaplw0 + 1 |
---|
| 2909 | C |
---|
| 2910 | IF (MOD(itaplw,lwpas).EQ.0) THEN |
---|
| 2911 | CALL LWC(ILIM,PCLDLD,PCLDLU,PEMIS, |
---|
| 2912 | S ZFLUC,ZBINT,ZBSUI,ZCTS,ZCNTRB, |
---|
| 2913 | S ZFLUX) |
---|
| 2914 | itaplw = 0 |
---|
| 2915 | ENDIF |
---|
| 2916 | itaplw = itaplw + 1 |
---|
| 2917 | C |
---|
| 2918 | DO k = 1, KFLEV |
---|
| 2919 | kpl1 = k+1 |
---|
| 2920 | DO i = 1, KDLON |
---|
| 2921 | PCOLR(i,k) = ZFLUX(i,1,kpl1)+ZFLUX(i,2,kpl1) |
---|
| 2922 | . - ZFLUX(i,1,k)- ZFLUX(i,2,k) |
---|
| 2923 | PCOLR(i,k) = PCOLR(i,k) * RDAY*RG/RCPD / PDP(i,k) |
---|
| 2924 | PCOLR0(i,k) = ZFLUC(i,1,kpl1)+ZFLUC(i,2,kpl1) |
---|
| 2925 | . - ZFLUC(i,1,k)- ZFLUC(i,2,k) |
---|
| 2926 | PCOLR0(i,k) = PCOLR0(i,k) * RDAY*RG/RCPD / PDP(i,k) |
---|
| 2927 | ENDDO |
---|
| 2928 | ENDDO |
---|
| 2929 | DO i = 1, KDLON |
---|
| 2930 | PSOLLW(i) = -ZFLUX(i,1,1)-ZFLUX(i,2,1) |
---|
| 2931 | PTOPLW(i) = ZFLUX(i,1,KFLEV+1) + ZFLUX(i,2,KFLEV+1) |
---|
| 2932 | c |
---|
| 2933 | PSOLLW0(i) = -ZFLUC(i,1,1)-ZFLUC(i,2,1) |
---|
| 2934 | PTOPLW0(i) = ZFLUC(i,1,KFLEV+1) + ZFLUC(i,2,KFLEV+1) |
---|
| 2935 | psollwdown(i) = -ZFLUX(i,2,1) |
---|
[644] | 2936 | c |
---|
[524] | 2937 | cIM attention aux signes !; LWtop >0, LWdn < 0 |
---|
| 2938 | DO k = 1, KFLEV+1 |
---|
| 2939 | plwup(i,k) = ZFLUX(i,1,k) |
---|
| 2940 | plwup0(i,k) = ZFLUC(i,1,k) |
---|
| 2941 | plwdn(i,k) = ZFLUX(i,2,k) |
---|
| 2942 | plwdn0(i,k) = ZFLUC(i,2,k) |
---|
| 2943 | ENDDO |
---|
| 2944 | ENDDO |
---|
| 2945 | C ------------------------------------------------------------------ |
---|
| 2946 | RETURN |
---|
| 2947 | END |
---|
| 2948 | cIM ctes ds clesphys.h SUBROUTINE LWU(RCO2, RCH4, RN2O, RCFC11, RCFC12, |
---|
| 2949 | SUBROUTINE LWU( |
---|
| 2950 | S PAER,PDP,PPMB,PPSOL,POZ,PTAVE,PVIEW,PWV, |
---|
| 2951 | S PABCU) |
---|
| 2952 | IMPLICIT none |
---|
| 2953 | #include "dimensions.h" |
---|
| 2954 | #include "dimphy.h" |
---|
| 2955 | #include "raddim.h" |
---|
| 2956 | #include "raddimlw.h" |
---|
| 2957 | #include "YOMCST.h" |
---|
| 2958 | #include "radepsi.h" |
---|
| 2959 | #include "radopt.h" |
---|
| 2960 | C |
---|
| 2961 | C PURPOSE. |
---|
| 2962 | C -------- |
---|
| 2963 | C COMPUTES ABSORBER AMOUNTS INCLUDING PRESSURE AND |
---|
| 2964 | C TEMPERATURE EFFECTS |
---|
| 2965 | C |
---|
| 2966 | C METHOD. |
---|
| 2967 | C ------- |
---|
| 2968 | C |
---|
| 2969 | C 1. COMPUTES THE PRESSURE AND TEMPERATURE WEIGHTED AMOUNTS OF |
---|
| 2970 | C ABSORBERS. |
---|
| 2971 | C |
---|
| 2972 | C |
---|
| 2973 | C REFERENCE. |
---|
| 2974 | C ---------- |
---|
| 2975 | C |
---|
| 2976 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 2977 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 2978 | C |
---|
| 2979 | C AUTHOR. |
---|
| 2980 | C ------- |
---|
| 2981 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 2982 | C |
---|
| 2983 | C MODIFICATIONS. |
---|
| 2984 | C -------------- |
---|
| 2985 | C ORIGINAL : 89-07-14 |
---|
| 2986 | C Voigt lines (loop 404 modified) - JJM & PhD - 01/96 |
---|
| 2987 | C----------------------------------------------------------------------- |
---|
| 2988 | C* ARGUMENTS: |
---|
| 2989 | cIM ctes ds clesphys.h |
---|
| 2990 | c REAL*8 RCO2 |
---|
| 2991 | c REAL*8 RCH4, RN2O, RCFC11, RCFC12 |
---|
| 2992 | #include "clesphys.h" |
---|
| 2993 | REAL*8 PAER(KDLON,KFLEV,5) |
---|
| 2994 | REAL*8 PDP(KDLON,KFLEV) |
---|
| 2995 | REAL*8 PPMB(KDLON,KFLEV+1) |
---|
| 2996 | REAL*8 PPSOL(KDLON) |
---|
| 2997 | REAL*8 POZ(KDLON,KFLEV) |
---|
| 2998 | REAL*8 PTAVE(KDLON,KFLEV) |
---|
| 2999 | REAL*8 PVIEW(KDLON) |
---|
| 3000 | REAL*8 PWV(KDLON,KFLEV) |
---|
| 3001 | C |
---|
| 3002 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
| 3003 | C |
---|
| 3004 | C----------------------------------------------------------------------- |
---|
| 3005 | C* LOCAL VARIABLES: |
---|
| 3006 | REAL*8 ZABLY(KDLON,NUA,3*KFLEV+1) |
---|
| 3007 | REAL*8 ZDUC(KDLON,3*KFLEV+1) |
---|
| 3008 | REAL*8 ZPHIO(KDLON) |
---|
| 3009 | REAL*8 ZPSC2(KDLON) |
---|
| 3010 | REAL*8 ZPSC3(KDLON) |
---|
| 3011 | REAL*8 ZPSH1(KDLON) |
---|
| 3012 | REAL*8 ZPSH2(KDLON) |
---|
| 3013 | REAL*8 ZPSH3(KDLON) |
---|
| 3014 | REAL*8 ZPSH4(KDLON) |
---|
| 3015 | REAL*8 ZPSH5(KDLON) |
---|
| 3016 | REAL*8 ZPSH6(KDLON) |
---|
| 3017 | REAL*8 ZPSIO(KDLON) |
---|
| 3018 | REAL*8 ZTCON(KDLON) |
---|
| 3019 | REAL*8 ZPHM6(KDLON) |
---|
| 3020 | REAL*8 ZPSM6(KDLON) |
---|
| 3021 | REAL*8 ZPHN6(KDLON) |
---|
| 3022 | REAL*8 ZPSN6(KDLON) |
---|
| 3023 | REAL*8 ZSSIG(KDLON,3*KFLEV+1) |
---|
| 3024 | REAL*8 ZTAVI(KDLON) |
---|
| 3025 | REAL*8 ZUAER(KDLON,Ninter) |
---|
| 3026 | REAL*8 ZXOZ(KDLON) |
---|
| 3027 | REAL*8 ZXWV(KDLON) |
---|
| 3028 | C |
---|
| 3029 | INTEGER jl, jk, jkj, jkjr, jkjp, ig1 |
---|
| 3030 | INTEGER jki, jkip1, ja, jj |
---|
| 3031 | INTEGER jkl, jkp1, jkk, jkjpn |
---|
| 3032 | INTEGER jae1, jae2, jae3, jae, jjpn |
---|
| 3033 | INTEGER ir, jc, jcp1 |
---|
| 3034 | REAL*8 zdpm, zupm, zupmh2o, zupmco2, zupmo3, zu6, zup |
---|
| 3035 | REAL*8 zfppw, ztx, ztx2, zzably |
---|
| 3036 | REAL*8 zcah1, zcbh1, zcah2, zcbh2, zcah3, zcbh3 |
---|
| 3037 | REAL*8 zcah4, zcbh4, zcah5, zcbh5, zcah6, zcbh6 |
---|
| 3038 | REAL*8 zcac8, zcbc8 |
---|
| 3039 | REAL*8 zalup, zdiff |
---|
| 3040 | c |
---|
| 3041 | REAL*8 PVGCO2, PVGH2O, PVGO3 |
---|
| 3042 | C |
---|
| 3043 | REAL*8 R10E ! DECIMAL/NATURAL LOG.FACTOR |
---|
| 3044 | PARAMETER (R10E=0.4342945) |
---|
| 3045 | c |
---|
| 3046 | c Used Data Block: |
---|
| 3047 | c |
---|
| 3048 | REAL*8 TREF |
---|
| 3049 | SAVE TREF |
---|
| 3050 | REAL*8 RT1(2) |
---|
| 3051 | SAVE RT1 |
---|
| 3052 | REAL*8 RAER(5,5) |
---|
| 3053 | SAVE RAER |
---|
| 3054 | REAL*8 AT(8,3), BT(8,3) |
---|
| 3055 | SAVE AT, BT |
---|
| 3056 | REAL*8 OCT(4) |
---|
| 3057 | SAVE OCT |
---|
| 3058 | DATA TREF /250.0/ |
---|
| 3059 | DATA (RT1(IG1),IG1=1,2) / -0.577350269, +0.577350269 / |
---|
| 3060 | DATA RAER / .038520, .037196, .040532, .054934, .038520 |
---|
| 3061 | 1 , .12613 , .18313 , .10357 , .064106, .126130 |
---|
| 3062 | 2 , .012579, .013649, .018652, .025181, .012579 |
---|
| 3063 | 3 , .011890, .016142, .021105, .028908, .011890 |
---|
| 3064 | 4 , .013792, .026810, .052203, .066338, .013792 / |
---|
| 3065 | DATA (AT(1,IR),IR=1,3) / |
---|
| 3066 | S 0.298199E-02,-.394023E-03,0.319566E-04 / |
---|
| 3067 | DATA (BT(1,IR),IR=1,3) / |
---|
| 3068 | S-0.106432E-04,0.660324E-06,0.174356E-06 / |
---|
| 3069 | DATA (AT(2,IR),IR=1,3) / |
---|
| 3070 | S 0.143676E-01,0.366501E-02,-.160822E-02 / |
---|
| 3071 | DATA (BT(2,IR),IR=1,3) / |
---|
| 3072 | S-0.553979E-04,-.101701E-04,0.920868E-05 / |
---|
| 3073 | DATA (AT(3,IR),IR=1,3) / |
---|
| 3074 | S 0.197861E-01,0.315541E-02,-.174547E-02 / |
---|
| 3075 | DATA (BT(3,IR),IR=1,3) / |
---|
| 3076 | S-0.877012E-04,0.513302E-04,0.523138E-06 / |
---|
| 3077 | DATA (AT(4,IR),IR=1,3) / |
---|
| 3078 | S 0.289560E-01,-.208807E-02,-.121943E-02 / |
---|
| 3079 | DATA (BT(4,IR),IR=1,3) / |
---|
| 3080 | S-0.165960E-03,0.157704E-03,-.146427E-04 / |
---|
| 3081 | DATA (AT(5,IR),IR=1,3) / |
---|
| 3082 | S 0.103800E-01,0.436296E-02,-.161431E-02 / |
---|
| 3083 | DATA (BT(5,IR),IR=1,3) / |
---|
| 3084 | S -.276744E-04,-.327381E-04,0.127646E-04 / |
---|
| 3085 | DATA (AT(6,IR),IR=1,3) / |
---|
| 3086 | S 0.868859E-02,-.972752E-03,0.000000E-00 / |
---|
| 3087 | DATA (BT(6,IR),IR=1,3) / |
---|
| 3088 | S -.278412E-04,-.713940E-06,0.117469E-05 / |
---|
| 3089 | DATA (AT(7,IR),IR=1,3) / |
---|
| 3090 | S 0.250073E-03,0.455875E-03,0.109242E-03 / |
---|
| 3091 | DATA (BT(7,IR),IR=1,3) / |
---|
| 3092 | S 0.199846E-05,-.216313E-05,0.175991E-06 / |
---|
| 3093 | DATA (AT(8,IR),IR=1,3) / |
---|
| 3094 | S 0.307423E-01,0.110879E-02,-.322172E-03 / |
---|
| 3095 | DATA (BT(8,IR),IR=1,3) / |
---|
| 3096 | S-0.108482E-03,0.258096E-05,-.814575E-06 / |
---|
| 3097 | c |
---|
| 3098 | DATA OCT /-.326E-03, -.102E-05, .137E-02, -.535E-05/ |
---|
| 3099 | C----------------------------------------------------------------------- |
---|
| 3100 | c |
---|
| 3101 | IF (LEVOIGT) THEN |
---|
| 3102 | PVGCO2= 60. |
---|
| 3103 | PVGH2O= 30. |
---|
| 3104 | PVGO3 =400. |
---|
| 3105 | ELSE |
---|
| 3106 | PVGCO2= 0. |
---|
| 3107 | PVGH2O= 0. |
---|
| 3108 | PVGO3 = 0. |
---|
| 3109 | ENDIF |
---|
| 3110 | C |
---|
| 3111 | C |
---|
| 3112 | C* 2. PRESSURE OVER GAUSS SUB-LEVELS |
---|
| 3113 | C ------------------------------ |
---|
| 3114 | C |
---|
| 3115 | 200 CONTINUE |
---|
| 3116 | C |
---|
| 3117 | DO 201 JL = 1, KDLON |
---|
| 3118 | ZSSIG(JL, 1 ) = PPMB(JL,1) * 100. |
---|
| 3119 | 201 CONTINUE |
---|
| 3120 | C |
---|
| 3121 | DO 206 JK = 1 , KFLEV |
---|
| 3122 | JKJ=(JK-1)*NG1P1+1 |
---|
| 3123 | JKJR = JKJ |
---|
| 3124 | JKJP = JKJ + NG1P1 |
---|
| 3125 | DO 203 JL = 1, KDLON |
---|
| 3126 | ZSSIG(JL,JKJP)=PPMB(JL,JK+1)* 100. |
---|
| 3127 | 203 CONTINUE |
---|
| 3128 | DO 205 IG1=1,NG1 |
---|
| 3129 | JKJ=JKJ+1 |
---|
| 3130 | DO 204 JL = 1, KDLON |
---|
| 3131 | ZSSIG(JL,JKJ)= (ZSSIG(JL,JKJR)+ZSSIG(JL,JKJP))*0.5 |
---|
| 3132 | S + RT1(IG1) * (ZSSIG(JL,JKJP) - ZSSIG(JL,JKJR)) * 0.5 |
---|
| 3133 | 204 CONTINUE |
---|
| 3134 | 205 CONTINUE |
---|
| 3135 | 206 CONTINUE |
---|
| 3136 | C |
---|
| 3137 | C----------------------------------------------------------------------- |
---|
| 3138 | C |
---|
| 3139 | C |
---|
| 3140 | C* 4. PRESSURE THICKNESS AND MEAN PRESSURE OF SUB-LAYERS |
---|
| 3141 | C -------------------------------------------------- |
---|
| 3142 | C |
---|
| 3143 | 400 CONTINUE |
---|
| 3144 | C |
---|
| 3145 | DO 402 JKI=1,3*KFLEV |
---|
| 3146 | JKIP1=JKI+1 |
---|
| 3147 | DO 401 JL = 1, KDLON |
---|
| 3148 | ZABLY(JL,5,JKI)=(ZSSIG(JL,JKI)+ZSSIG(JL,JKIP1))*0.5 |
---|
| 3149 | ZABLY(JL,3,JKI)=(ZSSIG(JL,JKI)-ZSSIG(JL,JKIP1)) |
---|
| 3150 | S /(10.*RG) |
---|
| 3151 | 401 CONTINUE |
---|
| 3152 | 402 CONTINUE |
---|
| 3153 | C |
---|
| 3154 | DO 406 JK = 1 , KFLEV |
---|
| 3155 | JKP1=JK+1 |
---|
| 3156 | JKL = KFLEV+1 - JK |
---|
| 3157 | DO 403 JL = 1, KDLON |
---|
| 3158 | ZXWV(JL) = MAX (PWV(JL,JK) , ZEPSCQ ) |
---|
| 3159 | ZXOZ(JL) = MAX (POZ(JL,JK) / PDP(JL,JK) , ZEPSCO ) |
---|
| 3160 | 403 CONTINUE |
---|
| 3161 | JKJ=(JK-1)*NG1P1+1 |
---|
| 3162 | JKJPN=JKJ+NG1 |
---|
| 3163 | DO 405 JKK=JKJ,JKJPN |
---|
| 3164 | DO 404 JL = 1, KDLON |
---|
| 3165 | ZDPM = ZABLY(JL,3,JKK) |
---|
| 3166 | ZUPM = ZABLY(JL,5,JKK) * ZDPM / 101325. |
---|
| 3167 | ZUPMCO2 = ( ZABLY(JL,5,JKK) + PVGCO2 ) * ZDPM / 101325. |
---|
| 3168 | ZUPMH2O = ( ZABLY(JL,5,JKK) + PVGH2O ) * ZDPM / 101325. |
---|
| 3169 | ZUPMO3 = ( ZABLY(JL,5,JKK) + PVGO3 ) * ZDPM / 101325. |
---|
| 3170 | ZDUC(JL,JKK) = ZDPM |
---|
| 3171 | ZABLY(JL,12,JKK) = ZXOZ(JL) * ZDPM |
---|
| 3172 | ZABLY(JL,13,JKK) = ZXOZ(JL) * ZUPMO3 |
---|
| 3173 | ZU6 = ZXWV(JL) * ZUPM |
---|
| 3174 | ZFPPW = 1.6078 * ZXWV(JL) / (1.+0.608*ZXWV(JL)) |
---|
| 3175 | ZABLY(JL,6,JKK) = ZXWV(JL) * ZUPMH2O |
---|
| 3176 | ZABLY(JL,11,JKK) = ZU6 * ZFPPW |
---|
| 3177 | ZABLY(JL,10,JKK) = ZU6 * (1.-ZFPPW) |
---|
| 3178 | ZABLY(JL,9,JKK) = RCO2 * ZUPMCO2 |
---|
| 3179 | ZABLY(JL,8,JKK) = RCO2 * ZDPM |
---|
| 3180 | 404 CONTINUE |
---|
| 3181 | 405 CONTINUE |
---|
| 3182 | 406 CONTINUE |
---|
| 3183 | C |
---|
| 3184 | C----------------------------------------------------------------------- |
---|
| 3185 | C |
---|
| 3186 | C |
---|
| 3187 | C* 5. CUMULATIVE ABSORBER AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 3188 | C -------------------------------------------------- |
---|
| 3189 | C |
---|
| 3190 | 500 CONTINUE |
---|
| 3191 | C |
---|
| 3192 | DO 502 JA = 1, NUA |
---|
| 3193 | DO 501 JL = 1, KDLON |
---|
| 3194 | PABCU(JL,JA,3*KFLEV+1) = 0. |
---|
| 3195 | 501 CONTINUE |
---|
| 3196 | 502 CONTINUE |
---|
| 3197 | C |
---|
| 3198 | DO 529 JK = 1 , KFLEV |
---|
| 3199 | JJ=(JK-1)*NG1P1+1 |
---|
| 3200 | JJPN=JJ+NG1 |
---|
| 3201 | JKL=KFLEV+1-JK |
---|
| 3202 | C |
---|
| 3203 | C |
---|
| 3204 | C* 5.1 CUMULATIVE AEROSOL AMOUNTS FROM TOP OF ATMOSPHERE |
---|
| 3205 | C -------------------------------------------------- |
---|
| 3206 | C |
---|
| 3207 | 510 CONTINUE |
---|
| 3208 | C |
---|
| 3209 | JAE1=3*KFLEV+1-JJ |
---|
| 3210 | JAE2=3*KFLEV+1-(JJ+1) |
---|
| 3211 | JAE3=3*KFLEV+1-JJPN |
---|
| 3212 | DO 512 JAE=1,5 |
---|
| 3213 | DO 511 JL = 1, KDLON |
---|
| 3214 | ZUAER(JL,JAE) = (RAER(JAE,1)*PAER(JL,JKL,1) |
---|
| 3215 | S +RAER(JAE,2)*PAER(JL,JKL,2)+RAER(JAE,3)*PAER(JL,JKL,3) |
---|
| 3216 | S +RAER(JAE,4)*PAER(JL,JKL,4)+RAER(JAE,5)*PAER(JL,JKL,5)) |
---|
| 3217 | S /(ZDUC(JL,JAE1)+ZDUC(JL,JAE2)+ZDUC(JL,JAE3)) |
---|
| 3218 | 511 CONTINUE |
---|
| 3219 | 512 CONTINUE |
---|
| 3220 | C |
---|
| 3221 | C |
---|
| 3222 | C |
---|
| 3223 | C* 5.2 INTRODUCES TEMPERATURE EFFECTS ON ABSORBER AMOUNTS |
---|
| 3224 | C -------------------------------------------------- |
---|
| 3225 | C |
---|
| 3226 | 520 CONTINUE |
---|
| 3227 | C |
---|
| 3228 | DO 521 JL = 1, KDLON |
---|
| 3229 | ZTAVI(JL)=PTAVE(JL,JKL) |
---|
| 3230 | ZTCON(JL)=EXP(6.08*(296./ZTAVI(JL)-1.)) |
---|
| 3231 | ZTX=ZTAVI(JL)-TREF |
---|
| 3232 | ZTX2=ZTX*ZTX |
---|
| 3233 | ZZABLY = ZABLY(JL,6,JAE1)+ZABLY(JL,6,JAE2)+ZABLY(JL,6,JAE3) |
---|
| 3234 | CMAF ZUP=MIN( MAX( 0.5*R10E*LOG( ZZABLY ) + 5., 0.), 6.0) |
---|
| 3235 | ZUP=MIN( MAX( 0.5*R10E*LOG( ZZABLY ) + 5., 0.d+0), 6.d+0) |
---|
| 3236 | ZCAH1=AT(1,1)+ZUP*(AT(1,2)+ZUP*(AT(1,3))) |
---|
| 3237 | ZCBH1=BT(1,1)+ZUP*(BT(1,2)+ZUP*(BT(1,3))) |
---|
| 3238 | ZPSH1(JL)=EXP( ZCAH1 * ZTX + ZCBH1 * ZTX2 ) |
---|
| 3239 | ZCAH2=AT(2,1)+ZUP*(AT(2,2)+ZUP*(AT(2,3))) |
---|
| 3240 | ZCBH2=BT(2,1)+ZUP*(BT(2,2)+ZUP*(BT(2,3))) |
---|
| 3241 | ZPSH2(JL)=EXP( ZCAH2 * ZTX + ZCBH2 * ZTX2 ) |
---|
| 3242 | ZCAH3=AT(3,1)+ZUP*(AT(3,2)+ZUP*(AT(3,3))) |
---|
| 3243 | ZCBH3=BT(3,1)+ZUP*(BT(3,2)+ZUP*(BT(3,3))) |
---|
| 3244 | ZPSH3(JL)=EXP( ZCAH3 * ZTX + ZCBH3 * ZTX2 ) |
---|
| 3245 | ZCAH4=AT(4,1)+ZUP*(AT(4,2)+ZUP*(AT(4,3))) |
---|
| 3246 | ZCBH4=BT(4,1)+ZUP*(BT(4,2)+ZUP*(BT(4,3))) |
---|
| 3247 | ZPSH4(JL)=EXP( ZCAH4 * ZTX + ZCBH4 * ZTX2 ) |
---|
| 3248 | ZCAH5=AT(5,1)+ZUP*(AT(5,2)+ZUP*(AT(5,3))) |
---|
| 3249 | ZCBH5=BT(5,1)+ZUP*(BT(5,2)+ZUP*(BT(5,3))) |
---|
| 3250 | ZPSH5(JL)=EXP( ZCAH5 * ZTX + ZCBH5 * ZTX2 ) |
---|
| 3251 | ZCAH6=AT(6,1)+ZUP*(AT(6,2)+ZUP*(AT(6,3))) |
---|
| 3252 | ZCBH6=BT(6,1)+ZUP*(BT(6,2)+ZUP*(BT(6,3))) |
---|
| 3253 | ZPSH6(JL)=EXP( ZCAH6 * ZTX + ZCBH6 * ZTX2 ) |
---|
| 3254 | ZPHM6(JL)=EXP(-5.81E-4 * ZTX - 1.13E-6 * ZTX2 ) |
---|
| 3255 | ZPSM6(JL)=EXP(-5.57E-4 * ZTX - 3.30E-6 * ZTX2 ) |
---|
| 3256 | ZPHN6(JL)=EXP(-3.46E-5 * ZTX + 2.05E-7 * ZTX2 ) |
---|
| 3257 | ZPSN6(JL)=EXP( 3.70E-3 * ZTX - 2.30E-6 * ZTX2 ) |
---|
| 3258 | 521 CONTINUE |
---|
| 3259 | C |
---|
| 3260 | DO 522 JL = 1, KDLON |
---|
| 3261 | ZTAVI(JL)=PTAVE(JL,JKL) |
---|
| 3262 | ZTX=ZTAVI(JL)-TREF |
---|
| 3263 | ZTX2=ZTX*ZTX |
---|
| 3264 | ZZABLY = ZABLY(JL,9,JAE1)+ZABLY(JL,9,JAE2)+ZABLY(JL,9,JAE3) |
---|
| 3265 | ZALUP = R10E * LOG ( ZZABLY ) |
---|
| 3266 | CMAF ZUP = MAX( 0.0 , 5.0 + 0.5 * ZALUP ) |
---|
| 3267 | ZUP = MAX( 0.d+0 , 5.0 + 0.5 * ZALUP ) |
---|
| 3268 | ZPSC2(JL) = (ZTAVI(JL)/TREF) ** ZUP |
---|
| 3269 | ZCAC8=AT(8,1)+ZUP*(AT(8,2)+ZUP*(AT(8,3))) |
---|
| 3270 | ZCBC8=BT(8,1)+ZUP*(BT(8,2)+ZUP*(BT(8,3))) |
---|
| 3271 | ZPSC3(JL)=EXP( ZCAC8 * ZTX + ZCBC8 * ZTX2 ) |
---|
| 3272 | ZPHIO(JL) = EXP( OCT(1) * ZTX + OCT(2) * ZTX2) |
---|
| 3273 | ZPSIO(JL) = EXP( 2.* (OCT(3)*ZTX+OCT(4)*ZTX2)) |
---|
| 3274 | 522 CONTINUE |
---|
| 3275 | C |
---|
| 3276 | DO 524 JKK=JJ,JJPN |
---|
| 3277 | JC=3*KFLEV+1-JKK |
---|
| 3278 | JCP1=JC+1 |
---|
| 3279 | DO 523 JL = 1, KDLON |
---|
| 3280 | ZDIFF = PVIEW(JL) |
---|
| 3281 | PABCU(JL,10,JC)=PABCU(JL,10,JCP1) |
---|
| 3282 | S +ZABLY(JL,10,JC) *ZDIFF |
---|
| 3283 | PABCU(JL,11,JC)=PABCU(JL,11,JCP1) |
---|
| 3284 | S +ZABLY(JL,11,JC)*ZTCON(JL)*ZDIFF |
---|
| 3285 | C |
---|
| 3286 | PABCU(JL,12,JC)=PABCU(JL,12,JCP1) |
---|
| 3287 | S +ZABLY(JL,12,JC)*ZPHIO(JL)*ZDIFF |
---|
| 3288 | PABCU(JL,13,JC)=PABCU(JL,13,JCP1) |
---|
| 3289 | S +ZABLY(JL,13,JC)*ZPSIO(JL)*ZDIFF |
---|
| 3290 | C |
---|
| 3291 | PABCU(JL,7,JC)=PABCU(JL,7,JCP1) |
---|
| 3292 | S +ZABLY(JL,9,JC)*ZPSC2(JL)*ZDIFF |
---|
| 3293 | PABCU(JL,8,JC)=PABCU(JL,8,JCP1) |
---|
| 3294 | S +ZABLY(JL,9,JC)*ZPSC3(JL)*ZDIFF |
---|
| 3295 | PABCU(JL,9,JC)=PABCU(JL,9,JCP1) |
---|
| 3296 | S +ZABLY(JL,9,JC)*ZPSC3(JL)*ZDIFF |
---|
| 3297 | C |
---|
| 3298 | PABCU(JL,1,JC)=PABCU(JL,1,JCP1) |
---|
| 3299 | S +ZABLY(JL,6,JC)*ZPSH1(JL)*ZDIFF |
---|
| 3300 | PABCU(JL,2,JC)=PABCU(JL,2,JCP1) |
---|
| 3301 | S +ZABLY(JL,6,JC)*ZPSH2(JL)*ZDIFF |
---|
| 3302 | PABCU(JL,3,JC)=PABCU(JL,3,JCP1) |
---|
| 3303 | S +ZABLY(JL,6,JC)*ZPSH5(JL)*ZDIFF |
---|
| 3304 | PABCU(JL,4,JC)=PABCU(JL,4,JCP1) |
---|
| 3305 | S +ZABLY(JL,6,JC)*ZPSH3(JL)*ZDIFF |
---|
| 3306 | PABCU(JL,5,JC)=PABCU(JL,5,JCP1) |
---|
| 3307 | S +ZABLY(JL,6,JC)*ZPSH4(JL)*ZDIFF |
---|
| 3308 | PABCU(JL,6,JC)=PABCU(JL,6,JCP1) |
---|
| 3309 | S +ZABLY(JL,6,JC)*ZPSH6(JL)*ZDIFF |
---|
| 3310 | C |
---|
| 3311 | PABCU(JL,14,JC)=PABCU(JL,14,JCP1) |
---|
| 3312 | S +ZUAER(JL,1) *ZDUC(JL,JC)*ZDIFF |
---|
| 3313 | PABCU(JL,15,JC)=PABCU(JL,15,JCP1) |
---|
| 3314 | S +ZUAER(JL,2) *ZDUC(JL,JC)*ZDIFF |
---|
| 3315 | PABCU(JL,16,JC)=PABCU(JL,16,JCP1) |
---|
| 3316 | S +ZUAER(JL,3) *ZDUC(JL,JC)*ZDIFF |
---|
| 3317 | PABCU(JL,17,JC)=PABCU(JL,17,JCP1) |
---|
| 3318 | S +ZUAER(JL,4) *ZDUC(JL,JC)*ZDIFF |
---|
| 3319 | PABCU(JL,18,JC)=PABCU(JL,18,JCP1) |
---|
| 3320 | S +ZUAER(JL,5) *ZDUC(JL,JC)*ZDIFF |
---|
| 3321 | C |
---|
| 3322 | PABCU(JL,19,JC)=PABCU(JL,19,JCP1) |
---|
| 3323 | S +ZABLY(JL,8,JC)*RCH4/RCO2*ZPHM6(JL)*ZDIFF |
---|
| 3324 | PABCU(JL,20,JC)=PABCU(JL,20,JCP1) |
---|
| 3325 | S +ZABLY(JL,9,JC)*RCH4/RCO2*ZPSM6(JL)*ZDIFF |
---|
| 3326 | PABCU(JL,21,JC)=PABCU(JL,21,JCP1) |
---|
| 3327 | S +ZABLY(JL,8,JC)*RN2O/RCO2*ZPHN6(JL)*ZDIFF |
---|
| 3328 | PABCU(JL,22,JC)=PABCU(JL,22,JCP1) |
---|
| 3329 | S +ZABLY(JL,9,JC)*RN2O/RCO2*ZPSN6(JL)*ZDIFF |
---|
| 3330 | C |
---|
| 3331 | PABCU(JL,23,JC)=PABCU(JL,23,JCP1) |
---|
| 3332 | S +ZABLY(JL,8,JC)*RCFC11/RCO2 *ZDIFF |
---|
| 3333 | PABCU(JL,24,JC)=PABCU(JL,24,JCP1) |
---|
| 3334 | S +ZABLY(JL,8,JC)*RCFC12/RCO2 *ZDIFF |
---|
| 3335 | 523 CONTINUE |
---|
| 3336 | 524 CONTINUE |
---|
| 3337 | C |
---|
| 3338 | 529 CONTINUE |
---|
| 3339 | C |
---|
| 3340 | C |
---|
| 3341 | RETURN |
---|
| 3342 | END |
---|
| 3343 | SUBROUTINE LWBV(KLIM,PDP,PDT0,PEMIS,PPMB,PTL,PTAVE,PABCU, |
---|
| 3344 | S PFLUC,PBINT,PBSUI,PCTS,PCNTRB) |
---|
| 3345 | IMPLICIT none |
---|
| 3346 | #include "dimensions.h" |
---|
| 3347 | #include "dimphy.h" |
---|
| 3348 | #include "raddim.h" |
---|
| 3349 | #include "raddimlw.h" |
---|
| 3350 | #include "YOMCST.h" |
---|
| 3351 | C |
---|
| 3352 | C PURPOSE. |
---|
| 3353 | C -------- |
---|
| 3354 | C TO COMPUTE THE PLANCK FUNCTION AND PERFORM THE |
---|
| 3355 | C VERTICAL INTEGRATION. SPLIT OUT FROM LW FOR MEMORY |
---|
| 3356 | C SAVING |
---|
| 3357 | C |
---|
| 3358 | C METHOD. |
---|
| 3359 | C ------- |
---|
| 3360 | C |
---|
| 3361 | C 1. COMPUTES THE PLANCK FUNCTIONS ON THE INTERFACES AND THE |
---|
| 3362 | C GRADIENT OF PLANCK FUNCTIONS IN THE LAYERS. |
---|
| 3363 | C 2. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING THE CON- |
---|
| 3364 | C TRIBUTIONS OF THE ADJACENT AND DISTANT LAYERS AND THOSE FROM THE |
---|
| 3365 | C BOUNDARIES. |
---|
| 3366 | C 3. COMPUTES THE CLEAR-SKY COOLING RATES. |
---|
| 3367 | C |
---|
| 3368 | C REFERENCE. |
---|
| 3369 | C ---------- |
---|
| 3370 | C |
---|
| 3371 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 3372 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 3373 | C |
---|
| 3374 | C AUTHOR. |
---|
| 3375 | C ------- |
---|
| 3376 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 3377 | C |
---|
| 3378 | C MODIFICATIONS. |
---|
| 3379 | C -------------- |
---|
| 3380 | C ORIGINAL : 89-07-14 |
---|
| 3381 | C MODIFICATION : 93-10-15 M.HAMRUD (SPLIT OUT FROM LW TO SAVE |
---|
| 3382 | C MEMORY) |
---|
| 3383 | C----------------------------------------------------------------------- |
---|
| 3384 | C* ARGUMENTS: |
---|
| 3385 | INTEGER KLIM |
---|
| 3386 | C |
---|
| 3387 | REAL*8 PDP(KDLON,KFLEV) |
---|
| 3388 | REAL*8 PDT0(KDLON) |
---|
| 3389 | REAL*8 PEMIS(KDLON) |
---|
| 3390 | REAL*8 PPMB(KDLON,KFLEV+1) |
---|
| 3391 | REAL*8 PTL(KDLON,KFLEV+1) |
---|
| 3392 | REAL*8 PTAVE(KDLON,KFLEV) |
---|
| 3393 | C |
---|
| 3394 | REAL*8 PFLUC(KDLON,2,KFLEV+1) |
---|
| 3395 | C |
---|
| 3396 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) |
---|
| 3397 | REAL*8 PBINT(KDLON,KFLEV+1) |
---|
| 3398 | REAL*8 PBSUI(KDLON) |
---|
| 3399 | REAL*8 PCTS(KDLON,KFLEV) |
---|
| 3400 | REAL*8 PCNTRB(KDLON,KFLEV+1,KFLEV+1) |
---|
| 3401 | C |
---|
| 3402 | C------------------------------------------------------------------------- |
---|
| 3403 | C |
---|
| 3404 | C* LOCAL VARIABLES: |
---|
| 3405 | REAL*8 ZB(KDLON,Ninter,KFLEV+1) |
---|
| 3406 | REAL*8 ZBSUR(KDLON,Ninter) |
---|
| 3407 | REAL*8 ZBTOP(KDLON,Ninter) |
---|
| 3408 | REAL*8 ZDBSL(KDLON,Ninter,KFLEV*2) |
---|
| 3409 | REAL*8 ZGA(KDLON,8,2,KFLEV) |
---|
| 3410 | REAL*8 ZGB(KDLON,8,2,KFLEV) |
---|
| 3411 | REAL*8 ZGASUR(KDLON,8,2) |
---|
| 3412 | REAL*8 ZGBSUR(KDLON,8,2) |
---|
| 3413 | REAL*8 ZGATOP(KDLON,8,2) |
---|
| 3414 | REAL*8 ZGBTOP(KDLON,8,2) |
---|
| 3415 | C |
---|
| 3416 | INTEGER nuaer, ntraer |
---|
| 3417 | C ------------------------------------------------------------------ |
---|
| 3418 | C* COMPUTES PLANCK FUNCTIONS: |
---|
| 3419 | CALL LWB(PDT0,PTAVE,PTL, |
---|
| 3420 | S ZB,PBINT,PBSUI,ZBSUR,ZBTOP,ZDBSL, |
---|
| 3421 | S ZGA,ZGB,ZGASUR,ZGBSUR,ZGATOP,ZGBTOP) |
---|
| 3422 | C ------------------------------------------------------------------ |
---|
| 3423 | C* PERFORMS THE VERTICAL INTEGRATION: |
---|
| 3424 | NUAER = NUA |
---|
| 3425 | NTRAER = NTRA |
---|
| 3426 | CALL LWV(NUAER,NTRAER, KLIM |
---|
| 3427 | R , PABCU,ZB,PBINT,PBSUI,ZBSUR,ZBTOP,ZDBSL,PEMIS,PPMB,PTAVE |
---|
| 3428 | R , ZGA,ZGB,ZGASUR,ZGBSUR,ZGATOP,ZGBTOP |
---|
| 3429 | S , PCNTRB,PCTS,PFLUC) |
---|
| 3430 | C ------------------------------------------------------------------ |
---|
| 3431 | RETURN |
---|
| 3432 | END |
---|
| 3433 | SUBROUTINE LWC(KLIM,PCLDLD,PCLDLU,PEMIS,PFLUC, |
---|
| 3434 | R PBINT,PBSUIN,PCTS,PCNTRB, |
---|
| 3435 | S PFLUX) |
---|
| 3436 | IMPLICIT none |
---|
| 3437 | #include "dimensions.h" |
---|
| 3438 | #include "dimphy.h" |
---|
| 3439 | #include "raddim.h" |
---|
| 3440 | #include "radepsi.h" |
---|
| 3441 | #include "radopt.h" |
---|
| 3442 | C |
---|
| 3443 | C PURPOSE. |
---|
| 3444 | C -------- |
---|
| 3445 | C INTRODUCES CLOUD EFFECTS ON LONGWAVE FLUXES OR |
---|
| 3446 | C RADIANCES |
---|
| 3447 | C |
---|
| 3448 | C EXPLICIT ARGUMENTS : |
---|
| 3449 | C -------------------- |
---|
| 3450 | C ==== INPUTS === |
---|
| 3451 | C PBINT : (KDLON,0:KFLEV) ; HALF LEVEL PLANCK FUNCTION |
---|
| 3452 | C PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 3453 | C PCLDLD : (KDLON,KFLEV) ; DOWNWARD EFFECTIVE CLOUD FRACTION |
---|
| 3454 | C PCLDLU : (KDLON,KFLEV) ; UPWARD EFFECTIVE CLOUD FRACTION |
---|
| 3455 | C PCNTRB : (KDLON,KFLEV+1,KFLEV+1); CLEAR-SKY ENERGY EXCHANGE |
---|
| 3456 | C PCTS : (KDLON,KFLEV) ; CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
| 3457 | C PEMIS : (KDLON) ; SURFACE EMISSIVITY |
---|
| 3458 | C PFLUC |
---|
| 3459 | C ==== OUTPUTS === |
---|
| 3460 | C PFLUX(KDLON,2,KFLEV) ; RADIATIVE FLUXES : |
---|
| 3461 | C 1 ==> UPWARD FLUX TOTAL |
---|
| 3462 | C 2 ==> DOWNWARD FLUX TOTAL |
---|
| 3463 | C |
---|
| 3464 | C METHOD. |
---|
| 3465 | C ------- |
---|
| 3466 | C |
---|
| 3467 | C 1. INITIALIZES ALL FLUXES TO CLEAR-SKY VALUES |
---|
| 3468 | C 2. EFFECT OF ONE OVERCAST UNITY EMISSIVITY CLOUD LAYER |
---|
| 3469 | C 3. EFFECT OF SEMI-TRANSPARENT, PARTIAL OR MULTI-LAYERED |
---|
| 3470 | C CLOUDS |
---|
| 3471 | C |
---|
| 3472 | C REFERENCE. |
---|
| 3473 | C ---------- |
---|
| 3474 | C |
---|
| 3475 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 3476 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 3477 | C |
---|
| 3478 | C AUTHOR. |
---|
| 3479 | C ------- |
---|
| 3480 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 3481 | C |
---|
| 3482 | C MODIFICATIONS. |
---|
| 3483 | C -------------- |
---|
| 3484 | C ORIGINAL : 89-07-14 |
---|
| 3485 | C Voigt lines (loop 231 to 233) - JJM & PhD - 01/96 |
---|
| 3486 | C----------------------------------------------------------------------- |
---|
| 3487 | C* ARGUMENTS: |
---|
| 3488 | INTEGER klim |
---|
| 3489 | REAL*8 PFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 3490 | REAL*8 PBINT(KDLON,KFLEV+1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 3491 | REAL*8 PBSUIN(KDLON) ! SURFACE PLANCK FUNCTION |
---|
| 3492 | REAL*8 PCNTRB(KDLON,KFLEV+1,KFLEV+1) !CLEAR-SKY ENERGY EXCHANGE |
---|
| 3493 | REAL*8 PCTS(KDLON,KFLEV) ! CLEAR-SKY LAYER COOLING-TO-SPACE |
---|
| 3494 | c |
---|
| 3495 | REAL*8 PCLDLD(KDLON,KFLEV) |
---|
| 3496 | REAL*8 PCLDLU(KDLON,KFLEV) |
---|
| 3497 | REAL*8 PEMIS(KDLON) |
---|
| 3498 | C |
---|
| 3499 | REAL*8 PFLUX(KDLON,2,KFLEV+1) |
---|
| 3500 | C----------------------------------------------------------------------- |
---|
| 3501 | C* LOCAL VARIABLES: |
---|
| 3502 | INTEGER IMX(KDLON), IMXP(KDLON) |
---|
| 3503 | C |
---|
| 3504 | REAL*8 ZCLEAR(KDLON),ZCLOUD(KDLON),ZDNF(KDLON,KFLEV+1,KFLEV+1) |
---|
| 3505 | S , ZFD(KDLON), ZFN10(KDLON), ZFU(KDLON) |
---|
| 3506 | S , ZUPF(KDLON,KFLEV+1,KFLEV+1) |
---|
| 3507 | REAL*8 ZCLM(KDLON,KFLEV+1,KFLEV+1) |
---|
| 3508 | C |
---|
| 3509 | INTEGER jk, jl, imaxc, imx1, imx2, jkj, jkp1, jkm1 |
---|
| 3510 | INTEGER jk1, jk2, jkc, jkcp1, jcloud |
---|
| 3511 | INTEGER imxm1, imxp1 |
---|
| 3512 | REAL*8 zcfrac |
---|
| 3513 | C ------------------------------------------------------------------ |
---|
| 3514 | C |
---|
| 3515 | C* 1. INITIALIZATION |
---|
| 3516 | C -------------- |
---|
| 3517 | C |
---|
| 3518 | 100 CONTINUE |
---|
| 3519 | C |
---|
| 3520 | IMAXC = 0 |
---|
| 3521 | C |
---|
| 3522 | DO 101 JL = 1, KDLON |
---|
| 3523 | IMX(JL)=0 |
---|
| 3524 | IMXP(JL)=0 |
---|
| 3525 | ZCLOUD(JL) = 0. |
---|
| 3526 | 101 CONTINUE |
---|
| 3527 | C |
---|
| 3528 | C* 1.1 SEARCH THE LAYER INDEX OF THE HIGHEST CLOUD |
---|
| 3529 | C ------------------------------------------- |
---|
| 3530 | C |
---|
| 3531 | 110 CONTINUE |
---|
| 3532 | C |
---|
| 3533 | DO 112 JK = 1 , KFLEV |
---|
| 3534 | DO 111 JL = 1, KDLON |
---|
| 3535 | IMX1=IMX(JL) |
---|
| 3536 | IMX2=JK |
---|
| 3537 | IF (PCLDLU(JL,JK).GT.ZEPSC) THEN |
---|
| 3538 | IMXP(JL)=IMX2 |
---|
| 3539 | ELSE |
---|
| 3540 | IMXP(JL)=IMX1 |
---|
| 3541 | END IF |
---|
| 3542 | IMAXC=MAX(IMXP(JL),IMAXC) |
---|
| 3543 | IMX(JL)=IMXP(JL) |
---|
| 3544 | 111 CONTINUE |
---|
| 3545 | 112 CONTINUE |
---|
| 3546 | CGM******* |
---|
| 3547 | IMAXC=KFLEV |
---|
| 3548 | CGM******* |
---|
| 3549 | C |
---|
| 3550 | DO 114 JK = 1 , KFLEV+1 |
---|
| 3551 | DO 113 JL = 1, KDLON |
---|
| 3552 | PFLUX(JL,1,JK) = PFLUC(JL,1,JK) |
---|
| 3553 | PFLUX(JL,2,JK) = PFLUC(JL,2,JK) |
---|
| 3554 | 113 CONTINUE |
---|
| 3555 | 114 CONTINUE |
---|
| 3556 | C |
---|
| 3557 | C ------------------------------------------------------------------ |
---|
| 3558 | C |
---|
| 3559 | C* 2. EFFECT OF CLOUDINESS ON LONGWAVE FLUXES |
---|
| 3560 | C --------------------------------------- |
---|
| 3561 | C |
---|
| 3562 | IF (IMAXC.GT.0) THEN |
---|
| 3563 | C |
---|
| 3564 | IMXP1 = IMAXC + 1 |
---|
| 3565 | IMXM1 = IMAXC - 1 |
---|
| 3566 | C |
---|
| 3567 | C* 2.0 INITIALIZE TO CLEAR-SKY FLUXES |
---|
| 3568 | C ------------------------------ |
---|
| 3569 | C |
---|
| 3570 | 200 CONTINUE |
---|
| 3571 | C |
---|
| 3572 | DO 203 JK1=1,KFLEV+1 |
---|
| 3573 | DO 202 JK2=1,KFLEV+1 |
---|
| 3574 | DO 201 JL = 1, KDLON |
---|
| 3575 | ZUPF(JL,JK2,JK1)=PFLUC(JL,1,JK1) |
---|
| 3576 | ZDNF(JL,JK2,JK1)=PFLUC(JL,2,JK1) |
---|
| 3577 | 201 CONTINUE |
---|
| 3578 | 202 CONTINUE |
---|
| 3579 | 203 CONTINUE |
---|
| 3580 | C |
---|
| 3581 | C* 2.1 FLUXES FOR ONE OVERCAST UNITY EMISSIVITY CLOUD |
---|
| 3582 | C ---------------------------------------------- |
---|
| 3583 | C |
---|
| 3584 | 210 CONTINUE |
---|
| 3585 | C |
---|
| 3586 | DO 213 JKC = 1 , IMAXC |
---|
| 3587 | JCLOUD=JKC |
---|
| 3588 | JKCP1=JCLOUD+1 |
---|
| 3589 | C |
---|
| 3590 | C* 2.1.1 ABOVE THE CLOUD |
---|
| 3591 | C --------------- |
---|
| 3592 | C |
---|
| 3593 | 2110 CONTINUE |
---|
| 3594 | C |
---|
| 3595 | DO 2115 JK=JKCP1,KFLEV+1 |
---|
| 3596 | JKM1=JK-1 |
---|
| 3597 | DO 2111 JL = 1, KDLON |
---|
| 3598 | ZFU(JL)=0. |
---|
| 3599 | 2111 CONTINUE |
---|
| 3600 | IF (JK .GT. JKCP1) THEN |
---|
| 3601 | DO 2113 JKJ=JKCP1,JKM1 |
---|
| 3602 | DO 2112 JL = 1, KDLON |
---|
| 3603 | ZFU(JL) = ZFU(JL) + PCNTRB(JL,JK,JKJ) |
---|
| 3604 | 2112 CONTINUE |
---|
| 3605 | 2113 CONTINUE |
---|
| 3606 | END IF |
---|
| 3607 | C |
---|
| 3608 | DO 2114 JL = 1, KDLON |
---|
| 3609 | ZUPF(JL,JKCP1,JK)=PBINT(JL,JK)-ZFU(JL) |
---|
| 3610 | 2114 CONTINUE |
---|
| 3611 | 2115 CONTINUE |
---|
| 3612 | C |
---|
| 3613 | C* 2.1.2 BELOW THE CLOUD |
---|
| 3614 | C --------------- |
---|
| 3615 | C |
---|
| 3616 | 2120 CONTINUE |
---|
| 3617 | C |
---|
| 3618 | DO 2125 JK=1,JCLOUD |
---|
| 3619 | JKP1=JK+1 |
---|
| 3620 | DO 2121 JL = 1, KDLON |
---|
| 3621 | ZFD(JL)=0. |
---|
| 3622 | 2121 CONTINUE |
---|
| 3623 | C |
---|
| 3624 | IF (JK .LT. JCLOUD) THEN |
---|
| 3625 | DO 2123 JKJ=JKP1,JCLOUD |
---|
| 3626 | DO 2122 JL = 1, KDLON |
---|
| 3627 | ZFD(JL) = ZFD(JL) + PCNTRB(JL,JK,JKJ) |
---|
| 3628 | 2122 CONTINUE |
---|
| 3629 | 2123 CONTINUE |
---|
| 3630 | END IF |
---|
| 3631 | DO 2124 JL = 1, KDLON |
---|
| 3632 | ZDNF(JL,JKCP1,JK)=-PBINT(JL,JK)-ZFD(JL) |
---|
| 3633 | 2124 CONTINUE |
---|
| 3634 | 2125 CONTINUE |
---|
| 3635 | C |
---|
| 3636 | 213 CONTINUE |
---|
| 3637 | C |
---|
| 3638 | C |
---|
| 3639 | C* 2.2 CLOUD COVER MATRIX |
---|
| 3640 | C ------------------ |
---|
| 3641 | C |
---|
| 3642 | C* ZCLM(JK1,JK2) IS THE OBSCURATION FACTOR BY CLOUD LAYERS BETWEEN |
---|
| 3643 | C HALF-LEVELS JK1 AND JK2 AS SEEN FROM JK1 |
---|
| 3644 | C |
---|
| 3645 | 220 CONTINUE |
---|
| 3646 | C |
---|
| 3647 | DO 223 JK1 = 1 , KFLEV+1 |
---|
| 3648 | DO 222 JK2 = 1 , KFLEV+1 |
---|
| 3649 | DO 221 JL = 1, KDLON |
---|
| 3650 | ZCLM(JL,JK1,JK2) = 0. |
---|
| 3651 | 221 CONTINUE |
---|
| 3652 | 222 CONTINUE |
---|
| 3653 | 223 CONTINUE |
---|
| 3654 | C |
---|
| 3655 | C |
---|
| 3656 | C |
---|
| 3657 | C* 2.4 CLOUD COVER BELOW THE LEVEL OF CALCULATION |
---|
| 3658 | C ------------------------------------------ |
---|
| 3659 | C |
---|
| 3660 | 240 CONTINUE |
---|
| 3661 | C |
---|
| 3662 | DO 244 JK1 = 2 , KFLEV+1 |
---|
| 3663 | DO 241 JL = 1, KDLON |
---|
| 3664 | ZCLEAR(JL)=1. |
---|
| 3665 | ZCLOUD(JL)=0. |
---|
| 3666 | 241 CONTINUE |
---|
| 3667 | DO 243 JK = JK1 - 1 , 1 , -1 |
---|
| 3668 | DO 242 JL = 1, KDLON |
---|
| 3669 | IF (NOVLP.EQ.1) THEN |
---|
| 3670 | c* maximum-random |
---|
| 3671 | ZCLEAR(JL)=ZCLEAR(JL)*(1.0-MAX(PCLDLU(JL,JK),ZCLOUD(JL))) |
---|
| 3672 | * /(1.0-MIN(ZCLOUD(JL),1.-ZEPSEC)) |
---|
| 3673 | ZCLM(JL,JK1,JK) = 1.0 - ZCLEAR(JL) |
---|
| 3674 | ZCLOUD(JL) = PCLDLU(JL,JK) |
---|
| 3675 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 3676 | c* maximum |
---|
| 3677 | ZCLOUD(JL) = MAX(ZCLOUD(JL) , PCLDLU(JL,JK)) |
---|
| 3678 | ZCLM(JL,JK1,JK) = ZCLOUD(JL) |
---|
| 3679 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 3680 | c* random |
---|
| 3681 | ZCLEAR(JL) = ZCLEAR(JL)*(1.0 - PCLDLU(JL,JK)) |
---|
| 3682 | ZCLOUD(JL) = 1.0 - ZCLEAR(JL) |
---|
| 3683 | ZCLM(JL,JK1,JK) = ZCLOUD(JL) |
---|
| 3684 | END IF |
---|
| 3685 | 242 CONTINUE |
---|
| 3686 | 243 CONTINUE |
---|
| 3687 | 244 CONTINUE |
---|
| 3688 | C |
---|
| 3689 | C |
---|
| 3690 | C* 2.5 CLOUD COVER ABOVE THE LEVEL OF CALCULATION |
---|
| 3691 | C ------------------------------------------ |
---|
| 3692 | C |
---|
| 3693 | 250 CONTINUE |
---|
| 3694 | C |
---|
| 3695 | DO 254 JK1 = 1 , KFLEV |
---|
| 3696 | DO 251 JL = 1, KDLON |
---|
| 3697 | ZCLEAR(JL)=1. |
---|
| 3698 | ZCLOUD(JL)=0. |
---|
| 3699 | 251 CONTINUE |
---|
| 3700 | DO 253 JK = JK1 , KFLEV |
---|
| 3701 | DO 252 JL = 1, KDLON |
---|
| 3702 | IF (NOVLP.EQ.1) THEN |
---|
| 3703 | c* maximum-random |
---|
| 3704 | ZCLEAR(JL)=ZCLEAR(JL)*(1.0-MAX(PCLDLD(JL,JK),ZCLOUD(JL))) |
---|
| 3705 | * /(1.0-MIN(ZCLOUD(JL),1.-ZEPSEC)) |
---|
| 3706 | ZCLM(JL,JK1,JK) = 1.0 - ZCLEAR(JL) |
---|
| 3707 | ZCLOUD(JL) = PCLDLD(JL,JK) |
---|
| 3708 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 3709 | c* maximum |
---|
| 3710 | ZCLOUD(JL) = MAX(ZCLOUD(JL) , PCLDLD(JL,JK)) |
---|
| 3711 | ZCLM(JL,JK1,JK) = ZCLOUD(JL) |
---|
| 3712 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 3713 | c* random |
---|
| 3714 | ZCLEAR(JL) = ZCLEAR(JL)*(1.0 - PCLDLD(JL,JK)) |
---|
| 3715 | ZCLOUD(JL) = 1.0 - ZCLEAR(JL) |
---|
| 3716 | ZCLM(JL,JK1,JK) = ZCLOUD(JL) |
---|
| 3717 | END IF |
---|
| 3718 | 252 CONTINUE |
---|
| 3719 | 253 CONTINUE |
---|
| 3720 | 254 CONTINUE |
---|
| 3721 | C |
---|
| 3722 | C |
---|
| 3723 | C |
---|
| 3724 | C* 3. FLUXES FOR PARTIAL/MULTIPLE LAYERED CLOUDINESS |
---|
| 3725 | C ---------------------------------------------- |
---|
| 3726 | C |
---|
| 3727 | 300 CONTINUE |
---|
| 3728 | C |
---|
| 3729 | C* 3.1 DOWNWARD FLUXES |
---|
| 3730 | C --------------- |
---|
| 3731 | C |
---|
| 3732 | 310 CONTINUE |
---|
| 3733 | C |
---|
| 3734 | DO 311 JL = 1, KDLON |
---|
| 3735 | PFLUX(JL,2,KFLEV+1) = 0. |
---|
| 3736 | 311 CONTINUE |
---|
| 3737 | C |
---|
| 3738 | DO 317 JK1 = KFLEV , 1 , -1 |
---|
| 3739 | C |
---|
| 3740 | C* CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 3741 | C |
---|
| 3742 | DO 312 JL = 1, KDLON |
---|
| 3743 | ZFD (JL) = (1. - ZCLM(JL,JK1,KFLEV)) * ZDNF(JL,1,JK1) |
---|
| 3744 | 312 CONTINUE |
---|
| 3745 | C |
---|
| 3746 | C* CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 3747 | C |
---|
| 3748 | DO 313 JL = 1, KDLON |
---|
| 3749 | ZFD(JL) = ZFD(JL) + ZCLM(JL,JK1,JK1) * ZDNF(JL,JK1+1,JK1) |
---|
| 3750 | 313 CONTINUE |
---|
| 3751 | C |
---|
| 3752 | C* CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 3753 | C |
---|
| 3754 | DO 315 JK = KFLEV-1 , JK1 , -1 |
---|
| 3755 | DO 314 JL = 1, KDLON |
---|
| 3756 | ZCFRAC = ZCLM(JL,JK1,JK+1) - ZCLM(JL,JK1,JK) |
---|
| 3757 | ZFD(JL) = ZFD(JL) + ZCFRAC * ZDNF(JL,JK+2,JK1) |
---|
| 3758 | 314 CONTINUE |
---|
| 3759 | 315 CONTINUE |
---|
| 3760 | C |
---|
| 3761 | DO 316 JL = 1, KDLON |
---|
| 3762 | PFLUX(JL,2,JK1) = ZFD (JL) |
---|
| 3763 | 316 CONTINUE |
---|
| 3764 | C |
---|
| 3765 | 317 CONTINUE |
---|
| 3766 | C |
---|
| 3767 | C |
---|
| 3768 | C |
---|
| 3769 | C |
---|
| 3770 | C* 3.2 UPWARD FLUX AT THE SURFACE |
---|
| 3771 | C -------------------------- |
---|
| 3772 | C |
---|
| 3773 | 320 CONTINUE |
---|
| 3774 | C |
---|
| 3775 | DO 321 JL = 1, KDLON |
---|
| 3776 | PFLUX(JL,1,1) = PEMIS(JL)*PBSUIN(JL)-(1.-PEMIS(JL))*PFLUX(JL,2,1) |
---|
| 3777 | 321 CONTINUE |
---|
| 3778 | C |
---|
| 3779 | C |
---|
| 3780 | C |
---|
| 3781 | C* 3.3 UPWARD FLUXES |
---|
| 3782 | C ------------- |
---|
| 3783 | C |
---|
| 3784 | 330 CONTINUE |
---|
| 3785 | C |
---|
| 3786 | DO 337 JK1 = 2 , KFLEV+1 |
---|
| 3787 | C |
---|
| 3788 | C* CONTRIBUTION FROM CLEAR-SKY FRACTION |
---|
| 3789 | C |
---|
| 3790 | DO 332 JL = 1, KDLON |
---|
| 3791 | ZFU (JL) = (1. - ZCLM(JL,JK1,1)) * ZUPF(JL,1,JK1) |
---|
| 3792 | 332 CONTINUE |
---|
| 3793 | C |
---|
| 3794 | C* CONTRIBUTION FROM ADJACENT CLOUD |
---|
| 3795 | C |
---|
| 3796 | DO 333 JL = 1, KDLON |
---|
| 3797 | ZFU(JL) = ZFU(JL) + ZCLM(JL,JK1,JK1-1) * ZUPF(JL,JK1,JK1) |
---|
| 3798 | 333 CONTINUE |
---|
| 3799 | C |
---|
| 3800 | C* CONTRIBUTION FROM OTHER CLOUDY FRACTIONS |
---|
| 3801 | C |
---|
| 3802 | DO 335 JK = 2 , JK1-1 |
---|
| 3803 | DO 334 JL = 1, KDLON |
---|
| 3804 | ZCFRAC = ZCLM(JL,JK1,JK-1) - ZCLM(JL,JK1,JK) |
---|
| 3805 | ZFU(JL) = ZFU(JL) + ZCFRAC * ZUPF(JL,JK ,JK1) |
---|
| 3806 | 334 CONTINUE |
---|
| 3807 | 335 CONTINUE |
---|
| 3808 | C |
---|
| 3809 | DO 336 JL = 1, KDLON |
---|
| 3810 | PFLUX(JL,1,JK1) = ZFU (JL) |
---|
| 3811 | 336 CONTINUE |
---|
| 3812 | C |
---|
| 3813 | 337 CONTINUE |
---|
| 3814 | C |
---|
| 3815 | C |
---|
| 3816 | END IF |
---|
| 3817 | C |
---|
| 3818 | C |
---|
| 3819 | C* 2.3 END OF CLOUD EFFECT COMPUTATIONS |
---|
| 3820 | C |
---|
| 3821 | 230 CONTINUE |
---|
| 3822 | C |
---|
| 3823 | IF (.NOT.LEVOIGT) THEN |
---|
| 3824 | DO 231 JL = 1, KDLON |
---|
| 3825 | ZFN10(JL) = PFLUX(JL,1,KLIM) + PFLUX(JL,2,KLIM) |
---|
| 3826 | 231 CONTINUE |
---|
| 3827 | DO 233 JK = KLIM+1 , KFLEV+1 |
---|
| 3828 | DO 232 JL = 1, KDLON |
---|
| 3829 | ZFN10(JL) = ZFN10(JL) + PCTS(JL,JK-1) |
---|
| 3830 | PFLUX(JL,1,JK) = ZFN10(JL) |
---|
| 3831 | PFLUX(JL,2,JK) = 0.0 |
---|
| 3832 | 232 CONTINUE |
---|
| 3833 | 233 CONTINUE |
---|
| 3834 | ENDIF |
---|
| 3835 | C |
---|
| 3836 | RETURN |
---|
| 3837 | END |
---|
| 3838 | SUBROUTINE LWB(PDT0,PTAVE,PTL |
---|
| 3839 | S , PB,PBINT,PBSUIN,PBSUR,PBTOP,PDBSL |
---|
| 3840 | S , PGA,PGB,PGASUR,PGBSUR,PGATOP,PGBTOP) |
---|
| 3841 | IMPLICIT none |
---|
| 3842 | #include "dimensions.h" |
---|
| 3843 | #include "dimphy.h" |
---|
| 3844 | #include "raddim.h" |
---|
| 3845 | #include "raddimlw.h" |
---|
| 3846 | C |
---|
| 3847 | C----------------------------------------------------------------------- |
---|
| 3848 | C PURPOSE. |
---|
| 3849 | C -------- |
---|
| 3850 | C COMPUTES PLANCK FUNCTIONS |
---|
| 3851 | C |
---|
| 3852 | C EXPLICIT ARGUMENTS : |
---|
| 3853 | C -------------------- |
---|
| 3854 | C ==== INPUTS === |
---|
| 3855 | C PDT0 : (KDLON) ; SURFACE TEMPERATURE DISCONTINUITY |
---|
| 3856 | C PTAVE : (KDLON,KFLEV) ; TEMPERATURE |
---|
| 3857 | C PTL : (KDLON,0:KFLEV) ; HALF LEVEL TEMPERATURE |
---|
| 3858 | C ==== OUTPUTS === |
---|
| 3859 | C PB : (KDLON,Ninter,KFLEV+1); SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3860 | C PBINT : (KDLON,KFLEV+1) ; HALF LEVEL PLANCK FUNCTION |
---|
| 3861 | C PBSUIN : (KDLON) ; SURFACE PLANCK FUNCTION |
---|
| 3862 | C PBSUR : (KDLON,Ninter) ; SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3863 | C PBTOP : (KDLON,Ninter) ; TOP SPECTRAL PLANCK FUNCTION |
---|
| 3864 | C PDBSL : (KDLON,Ninter,KFLEV*2); SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3865 | C PGA : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3866 | C PGB : (KDLON,8,2,KFLEV); dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3867 | C PGASUR, PGBSUR (KDLON,8,2) ; SURFACE PADE APPROXIMANTS |
---|
| 3868 | C PGATOP, PGBTOP (KDLON,8,2) ; T.O.A. PADE APPROXIMANTS |
---|
| 3869 | C |
---|
| 3870 | C IMPLICIT ARGUMENTS : NONE |
---|
| 3871 | C -------------------- |
---|
| 3872 | C |
---|
| 3873 | C METHOD. |
---|
| 3874 | C ------- |
---|
| 3875 | C |
---|
| 3876 | C 1. COMPUTES THE PLANCK FUNCTION ON ALL LEVELS AND HALF LEVELS |
---|
| 3877 | C FROM A POLYNOMIAL DEVELOPMENT OF PLANCK FUNCTION |
---|
| 3878 | C |
---|
| 3879 | C REFERENCE. |
---|
| 3880 | C ---------- |
---|
| 3881 | C |
---|
| 3882 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 3883 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS " |
---|
| 3884 | C |
---|
| 3885 | C AUTHOR. |
---|
| 3886 | C ------- |
---|
| 3887 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 3888 | C |
---|
| 3889 | C MODIFICATIONS. |
---|
| 3890 | C -------------- |
---|
| 3891 | C ORIGINAL : 89-07-14 |
---|
| 3892 | C |
---|
| 3893 | C----------------------------------------------------------------------- |
---|
| 3894 | C |
---|
| 3895 | C ARGUMENTS: |
---|
| 3896 | C |
---|
| 3897 | REAL*8 PDT0(KDLON) |
---|
| 3898 | REAL*8 PTAVE(KDLON,KFLEV) |
---|
| 3899 | REAL*8 PTL(KDLON,KFLEV+1) |
---|
| 3900 | C |
---|
| 3901 | REAL*8 PB(KDLON,Ninter,KFLEV+1) ! SPECTRAL HALF LEVEL PLANCK FUNCTION |
---|
| 3902 | REAL*8 PBINT(KDLON,KFLEV+1) ! HALF LEVEL PLANCK FUNCTION |
---|
| 3903 | REAL*8 PBSUIN(KDLON) ! SURFACE PLANCK FUNCTION |
---|
| 3904 | REAL*8 PBSUR(KDLON,Ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 3905 | REAL*8 PBTOP(KDLON,Ninter) ! TOP SPECTRAL PLANCK FUNCTION |
---|
| 3906 | REAL*8 PDBSL(KDLON,Ninter,KFLEV*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 3907 | REAL*8 PGA(KDLON,8,2,KFLEV) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3908 | REAL*8 PGB(KDLON,8,2,KFLEV) ! dB/dT-weighted LAYER PADE APPROXIMANTS |
---|
| 3909 | REAL*8 PGASUR(KDLON,8,2) ! SURFACE PADE APPROXIMANTS |
---|
| 3910 | REAL*8 PGBSUR(KDLON,8,2) ! SURFACE PADE APPROXIMANTS |
---|
| 3911 | REAL*8 PGATOP(KDLON,8,2) ! T.O.A. PADE APPROXIMANTS |
---|
| 3912 | REAL*8 PGBTOP(KDLON,8,2) ! T.O.A. PADE APPROXIMANTS |
---|
| 3913 | C |
---|
| 3914 | C------------------------------------------------------------------------- |
---|
| 3915 | C* LOCAL VARIABLES: |
---|
| 3916 | INTEGER INDB(KDLON),INDS(KDLON) |
---|
| 3917 | REAL*8 ZBLAY(KDLON,KFLEV),ZBLEV(KDLON,KFLEV+1) |
---|
| 3918 | REAL*8 ZRES(KDLON),ZRES2(KDLON),ZTI(KDLON),ZTI2(KDLON) |
---|
| 3919 | c |
---|
| 3920 | INTEGER jk, jl, ic, jnu, jf, jg |
---|
| 3921 | INTEGER jk1, jk2 |
---|
| 3922 | INTEGER k, j, ixtox, indto, ixtx, indt |
---|
| 3923 | INTEGER indsu, indtp |
---|
| 3924 | REAL*8 zdsto1, zdstox, zdst1, zdstx |
---|
| 3925 | c |
---|
| 3926 | C* Quelques parametres: |
---|
| 3927 | REAL*8 TSTAND |
---|
| 3928 | PARAMETER (TSTAND=250.0) |
---|
| 3929 | REAL*8 TSTP |
---|
| 3930 | PARAMETER (TSTP=12.5) |
---|
| 3931 | INTEGER MXIXT |
---|
| 3932 | PARAMETER (MXIXT=10) |
---|
| 3933 | C |
---|
| 3934 | C* Used Data Block: |
---|
| 3935 | REAL*8 TINTP(11) |
---|
| 3936 | SAVE TINTP |
---|
| 3937 | REAL*8 GA(11,16,3), GB(11,16,3) |
---|
| 3938 | SAVE GA, GB |
---|
| 3939 | REAL*8 XP(6,6) |
---|
| 3940 | SAVE XP |
---|
| 3941 | c |
---|
| 3942 | DATA TINTP / 187.5, 200., 212.5, 225., 237.5, 250., |
---|
| 3943 | S 262.5, 275., 287.5, 300., 312.5 / |
---|
| 3944 | C----------------------------------------------------------------------- |
---|
| 3945 | C-- WATER VAPOR -- INT.1 -- 0- 500 CM-1 -- FROM ABS225 ---------------- |
---|
| 3946 | C |
---|
| 3947 | C |
---|
| 3948 | C |
---|
| 3949 | C |
---|
| 3950 | C-- R.D. -- G = - 0.2 SLA |
---|
| 3951 | C |
---|
| 3952 | C |
---|
| 3953 | C----- INTERVAL = 1 ----- T = 187.5 |
---|
| 3954 | C |
---|
| 3955 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3956 | DATA (GA( 1, 1,IC),IC=1,3) / |
---|
| 3957 | S 0.63499072E-02,-0.99506586E-03, 0.00000000E+00/ |
---|
| 3958 | DATA (GB( 1, 1,IC),IC=1,3) / |
---|
| 3959 | S 0.63499072E-02, 0.97222852E-01, 0.10000000E+01/ |
---|
| 3960 | DATA (GA( 1, 2,IC),IC=1,3) / |
---|
| 3961 | S 0.77266491E-02,-0.11661515E-02, 0.00000000E+00/ |
---|
| 3962 | DATA (GB( 1, 2,IC),IC=1,3) / |
---|
| 3963 | S 0.77266491E-02, 0.10681591E+00, 0.10000000E+01/ |
---|
| 3964 | C |
---|
| 3965 | C----- INTERVAL = 1 ----- T = 200.0 |
---|
| 3966 | C |
---|
| 3967 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3968 | DATA (GA( 2, 1,IC),IC=1,3) / |
---|
| 3969 | S 0.65566348E-02,-0.10184169E-02, 0.00000000E+00/ |
---|
| 3970 | DATA (GB( 2, 1,IC),IC=1,3) / |
---|
| 3971 | S 0.65566348E-02, 0.98862238E-01, 0.10000000E+01/ |
---|
| 3972 | DATA (GA( 2, 2,IC),IC=1,3) / |
---|
| 3973 | S 0.81323287E-02,-0.11886130E-02, 0.00000000E+00/ |
---|
| 3974 | DATA (GB( 2, 2,IC),IC=1,3) / |
---|
| 3975 | S 0.81323287E-02, 0.10921298E+00, 0.10000000E+01/ |
---|
| 3976 | C |
---|
| 3977 | C----- INTERVAL = 1 ----- T = 212.5 |
---|
| 3978 | C |
---|
| 3979 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3980 | DATA (GA( 3, 1,IC),IC=1,3) / |
---|
| 3981 | S 0.67849730E-02,-0.10404730E-02, 0.00000000E+00/ |
---|
| 3982 | DATA (GB( 3, 1,IC),IC=1,3) / |
---|
| 3983 | S 0.67849730E-02, 0.10061504E+00, 0.10000000E+01/ |
---|
| 3984 | DATA (GA( 3, 2,IC),IC=1,3) / |
---|
| 3985 | S 0.86507620E-02,-0.12139929E-02, 0.00000000E+00/ |
---|
| 3986 | DATA (GB( 3, 2,IC),IC=1,3) / |
---|
| 3987 | S 0.86507620E-02, 0.11198225E+00, 0.10000000E+01/ |
---|
| 3988 | C |
---|
| 3989 | C----- INTERVAL = 1 ----- T = 225.0 |
---|
| 3990 | C |
---|
| 3991 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 3992 | DATA (GA( 4, 1,IC),IC=1,3) / |
---|
| 3993 | S 0.70481947E-02,-0.10621792E-02, 0.00000000E+00/ |
---|
| 3994 | DATA (GB( 4, 1,IC),IC=1,3) / |
---|
| 3995 | S 0.70481947E-02, 0.10256222E+00, 0.10000000E+01/ |
---|
| 3996 | DATA (GA( 4, 2,IC),IC=1,3) / |
---|
| 3997 | S 0.92776391E-02,-0.12445811E-02, 0.00000000E+00/ |
---|
| 3998 | DATA (GB( 4, 2,IC),IC=1,3) / |
---|
| 3999 | S 0.92776391E-02, 0.11487826E+00, 0.10000000E+01/ |
---|
| 4000 | C |
---|
| 4001 | C----- INTERVAL = 1 ----- T = 237.5 |
---|
| 4002 | C |
---|
| 4003 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4004 | DATA (GA( 5, 1,IC),IC=1,3) / |
---|
| 4005 | S 0.73585943E-02,-0.10847662E-02, 0.00000000E+00/ |
---|
| 4006 | DATA (GB( 5, 1,IC),IC=1,3) / |
---|
| 4007 | S 0.73585943E-02, 0.10475952E+00, 0.10000000E+01/ |
---|
| 4008 | DATA (GA( 5, 2,IC),IC=1,3) / |
---|
| 4009 | S 0.99806312E-02,-0.12807672E-02, 0.00000000E+00/ |
---|
| 4010 | DATA (GB( 5, 2,IC),IC=1,3) / |
---|
| 4011 | S 0.99806312E-02, 0.11751113E+00, 0.10000000E+01/ |
---|
| 4012 | C |
---|
| 4013 | C----- INTERVAL = 1 ----- T = 250.0 |
---|
| 4014 | C |
---|
| 4015 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4016 | DATA (GA( 6, 1,IC),IC=1,3) / |
---|
| 4017 | S 0.77242818E-02,-0.11094726E-02, 0.00000000E+00/ |
---|
| 4018 | DATA (GB( 6, 1,IC),IC=1,3) / |
---|
| 4019 | S 0.77242818E-02, 0.10720986E+00, 0.10000000E+01/ |
---|
| 4020 | DATA (GA( 6, 2,IC),IC=1,3) / |
---|
| 4021 | S 0.10709803E-01,-0.13208251E-02, 0.00000000E+00/ |
---|
| 4022 | DATA (GB( 6, 2,IC),IC=1,3) / |
---|
| 4023 | S 0.10709803E-01, 0.11951535E+00, 0.10000000E+01/ |
---|
| 4024 | C |
---|
| 4025 | C----- INTERVAL = 1 ----- T = 262.5 |
---|
| 4026 | C |
---|
| 4027 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4028 | DATA (GA( 7, 1,IC),IC=1,3) / |
---|
| 4029 | S 0.81472693E-02,-0.11372949E-02, 0.00000000E+00/ |
---|
| 4030 | DATA (GB( 7, 1,IC),IC=1,3) / |
---|
| 4031 | S 0.81472693E-02, 0.10985370E+00, 0.10000000E+01/ |
---|
| 4032 | DATA (GA( 7, 2,IC),IC=1,3) / |
---|
| 4033 | S 0.11414739E-01,-0.13619034E-02, 0.00000000E+00/ |
---|
| 4034 | DATA (GB( 7, 2,IC),IC=1,3) / |
---|
| 4035 | S 0.11414739E-01, 0.12069945E+00, 0.10000000E+01/ |
---|
| 4036 | C |
---|
| 4037 | C----- INTERVAL = 1 ----- T = 275.0 |
---|
| 4038 | C |
---|
| 4039 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4040 | DATA (GA( 8, 1,IC),IC=1,3) / |
---|
| 4041 | S 0.86227527E-02,-0.11687683E-02, 0.00000000E+00/ |
---|
| 4042 | DATA (GB( 8, 1,IC),IC=1,3) / |
---|
| 4043 | S 0.86227527E-02, 0.11257633E+00, 0.10000000E+01/ |
---|
| 4044 | DATA (GA( 8, 2,IC),IC=1,3) / |
---|
| 4045 | S 0.12058772E-01,-0.14014165E-02, 0.00000000E+00/ |
---|
| 4046 | DATA (GB( 8, 2,IC),IC=1,3) / |
---|
| 4047 | S 0.12058772E-01, 0.12108524E+00, 0.10000000E+01/ |
---|
| 4048 | C |
---|
| 4049 | C----- INTERVAL = 1 ----- T = 287.5 |
---|
| 4050 | C |
---|
| 4051 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4052 | DATA (GA( 9, 1,IC),IC=1,3) / |
---|
| 4053 | S 0.91396814E-02,-0.12038314E-02, 0.00000000E+00/ |
---|
| 4054 | DATA (GB( 9, 1,IC),IC=1,3) / |
---|
| 4055 | S 0.91396814E-02, 0.11522980E+00, 0.10000000E+01/ |
---|
| 4056 | DATA (GA( 9, 2,IC),IC=1,3) / |
---|
| 4057 | S 0.12623992E-01,-0.14378639E-02, 0.00000000E+00/ |
---|
| 4058 | DATA (GB( 9, 2,IC),IC=1,3) / |
---|
| 4059 | S 0.12623992E-01, 0.12084229E+00, 0.10000000E+01/ |
---|
| 4060 | C |
---|
| 4061 | C----- INTERVAL = 1 ----- T = 300.0 |
---|
| 4062 | C |
---|
| 4063 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4064 | DATA (GA(10, 1,IC),IC=1,3) / |
---|
| 4065 | S 0.96825438E-02,-0.12418367E-02, 0.00000000E+00/ |
---|
| 4066 | DATA (GB(10, 1,IC),IC=1,3) / |
---|
| 4067 | S 0.96825438E-02, 0.11766343E+00, 0.10000000E+01/ |
---|
| 4068 | DATA (GA(10, 2,IC),IC=1,3) / |
---|
| 4069 | S 0.13108146E-01,-0.14708488E-02, 0.00000000E+00/ |
---|
| 4070 | DATA (GB(10, 2,IC),IC=1,3) / |
---|
| 4071 | S 0.13108146E-01, 0.12019005E+00, 0.10000000E+01/ |
---|
| 4072 | C |
---|
| 4073 | C----- INTERVAL = 1 ----- T = 312.5 |
---|
| 4074 | C |
---|
| 4075 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4076 | DATA (GA(11, 1,IC),IC=1,3) / |
---|
| 4077 | S 0.10233955E-01,-0.12817135E-02, 0.00000000E+00/ |
---|
| 4078 | DATA (GB(11, 1,IC),IC=1,3) / |
---|
| 4079 | S 0.10233955E-01, 0.11975320E+00, 0.10000000E+01/ |
---|
| 4080 | DATA (GA(11, 2,IC),IC=1,3) / |
---|
| 4081 | S 0.13518390E-01,-0.15006791E-02, 0.00000000E+00/ |
---|
| 4082 | DATA (GB(11, 2,IC),IC=1,3) / |
---|
| 4083 | S 0.13518390E-01, 0.11932684E+00, 0.10000000E+01/ |
---|
| 4084 | C |
---|
| 4085 | C |
---|
| 4086 | C |
---|
| 4087 | C--- WATER VAPOR --- INTERVAL 2 -- 500-800 CM-1--- FROM ABS225 --------- |
---|
| 4088 | C |
---|
| 4089 | C |
---|
| 4090 | C |
---|
| 4091 | C |
---|
| 4092 | C--- R.D. --- G = 0.02 + 0.50 / ( 1 + 4.5 U ) |
---|
| 4093 | C |
---|
| 4094 | C |
---|
| 4095 | C----- INTERVAL = 2 ----- T = 187.5 |
---|
| 4096 | C |
---|
| 4097 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4098 | DATA (GA( 1, 3,IC),IC=1,3) / |
---|
| 4099 | S 0.11644593E+01, 0.41243390E+00, 0.00000000E+00/ |
---|
| 4100 | DATA (GB( 1, 3,IC),IC=1,3) / |
---|
| 4101 | S 0.11644593E+01, 0.10346097E+01, 0.10000000E+01/ |
---|
| 4102 | DATA (GA( 1, 4,IC),IC=1,3) / |
---|
| 4103 | S 0.12006968E+01, 0.48318936E+00, 0.00000000E+00/ |
---|
| 4104 | DATA (GB( 1, 4,IC),IC=1,3) / |
---|
| 4105 | S 0.12006968E+01, 0.10626130E+01, 0.10000000E+01/ |
---|
| 4106 | C |
---|
| 4107 | C----- INTERVAL = 2 ----- T = 200.0 |
---|
| 4108 | C |
---|
| 4109 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4110 | DATA (GA( 2, 3,IC),IC=1,3) / |
---|
| 4111 | S 0.11747203E+01, 0.43407282E+00, 0.00000000E+00/ |
---|
| 4112 | DATA (GB( 2, 3,IC),IC=1,3) / |
---|
| 4113 | S 0.11747203E+01, 0.10433655E+01, 0.10000000E+01/ |
---|
| 4114 | DATA (GA( 2, 4,IC),IC=1,3) / |
---|
| 4115 | S 0.12108196E+01, 0.50501827E+00, 0.00000000E+00/ |
---|
| 4116 | DATA (GB( 2, 4,IC),IC=1,3) / |
---|
| 4117 | S 0.12108196E+01, 0.10716026E+01, 0.10000000E+01/ |
---|
| 4118 | C |
---|
| 4119 | C----- INTERVAL = 2 ----- T = 212.5 |
---|
| 4120 | C |
---|
| 4121 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4122 | DATA (GA( 3, 3,IC),IC=1,3) / |
---|
| 4123 | S 0.11837872E+01, 0.45331413E+00, 0.00000000E+00/ |
---|
| 4124 | DATA (GB( 3, 3,IC),IC=1,3) / |
---|
| 4125 | S 0.11837872E+01, 0.10511933E+01, 0.10000000E+01/ |
---|
| 4126 | DATA (GA( 3, 4,IC),IC=1,3) / |
---|
| 4127 | S 0.12196717E+01, 0.52409502E+00, 0.00000000E+00/ |
---|
| 4128 | DATA (GB( 3, 4,IC),IC=1,3) / |
---|
| 4129 | S 0.12196717E+01, 0.10795108E+01, 0.10000000E+01/ |
---|
| 4130 | C |
---|
| 4131 | C----- INTERVAL = 2 ----- T = 225.0 |
---|
| 4132 | C |
---|
| 4133 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4134 | DATA (GA( 4, 3,IC),IC=1,3) / |
---|
| 4135 | S 0.11918561E+01, 0.47048604E+00, 0.00000000E+00/ |
---|
| 4136 | DATA (GB( 4, 3,IC),IC=1,3) / |
---|
| 4137 | S 0.11918561E+01, 0.10582150E+01, 0.10000000E+01/ |
---|
| 4138 | DATA (GA( 4, 4,IC),IC=1,3) / |
---|
| 4139 | S 0.12274493E+01, 0.54085277E+00, 0.00000000E+00/ |
---|
| 4140 | DATA (GB( 4, 4,IC),IC=1,3) / |
---|
| 4141 | S 0.12274493E+01, 0.10865006E+01, 0.10000000E+01/ |
---|
| 4142 | C |
---|
| 4143 | C----- INTERVAL = 2 ----- T = 237.5 |
---|
| 4144 | C |
---|
| 4145 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4146 | DATA (GA( 5, 3,IC),IC=1,3) / |
---|
| 4147 | S 0.11990757E+01, 0.48586286E+00, 0.00000000E+00/ |
---|
| 4148 | DATA (GB( 5, 3,IC),IC=1,3) / |
---|
| 4149 | S 0.11990757E+01, 0.10645317E+01, 0.10000000E+01/ |
---|
| 4150 | DATA (GA( 5, 4,IC),IC=1,3) / |
---|
| 4151 | S 0.12343189E+01, 0.55565422E+00, 0.00000000E+00/ |
---|
| 4152 | DATA (GB( 5, 4,IC),IC=1,3) / |
---|
| 4153 | S 0.12343189E+01, 0.10927103E+01, 0.10000000E+01/ |
---|
| 4154 | C |
---|
| 4155 | C----- INTERVAL = 2 ----- T = 250.0 |
---|
| 4156 | C |
---|
| 4157 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4158 | DATA (GA( 6, 3,IC),IC=1,3) / |
---|
| 4159 | S 0.12055643E+01, 0.49968044E+00, 0.00000000E+00/ |
---|
| 4160 | DATA (GB( 6, 3,IC),IC=1,3) / |
---|
| 4161 | S 0.12055643E+01, 0.10702313E+01, 0.10000000E+01/ |
---|
| 4162 | DATA (GA( 6, 4,IC),IC=1,3) / |
---|
| 4163 | S 0.12404147E+01, 0.56878618E+00, 0.00000000E+00/ |
---|
| 4164 | DATA (GB( 6, 4,IC),IC=1,3) / |
---|
| 4165 | S 0.12404147E+01, 0.10982489E+01, 0.10000000E+01/ |
---|
| 4166 | C |
---|
| 4167 | C----- INTERVAL = 2 ----- T = 262.5 |
---|
| 4168 | C |
---|
| 4169 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4170 | DATA (GA( 7, 3,IC),IC=1,3) / |
---|
| 4171 | S 0.12114186E+01, 0.51214132E+00, 0.00000000E+00/ |
---|
| 4172 | DATA (GB( 7, 3,IC),IC=1,3) / |
---|
| 4173 | S 0.12114186E+01, 0.10753907E+01, 0.10000000E+01/ |
---|
| 4174 | DATA (GA( 7, 4,IC),IC=1,3) / |
---|
| 4175 | S 0.12458431E+01, 0.58047395E+00, 0.00000000E+00/ |
---|
| 4176 | DATA (GB( 7, 4,IC),IC=1,3) / |
---|
| 4177 | S 0.12458431E+01, 0.11032019E+01, 0.10000000E+01/ |
---|
| 4178 | C |
---|
| 4179 | C----- INTERVAL = 2 ----- T = 275.0 |
---|
| 4180 | C |
---|
| 4181 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4182 | DATA (GA( 8, 3,IC),IC=1,3) / |
---|
| 4183 | S 0.12167192E+01, 0.52341830E+00, 0.00000000E+00/ |
---|
| 4184 | DATA (GB( 8, 3,IC),IC=1,3) / |
---|
| 4185 | S 0.12167192E+01, 0.10800762E+01, 0.10000000E+01/ |
---|
| 4186 | DATA (GA( 8, 4,IC),IC=1,3) / |
---|
| 4187 | S 0.12506907E+01, 0.59089894E+00, 0.00000000E+00/ |
---|
| 4188 | DATA (GB( 8, 4,IC),IC=1,3) / |
---|
| 4189 | S 0.12506907E+01, 0.11076379E+01, 0.10000000E+01/ |
---|
| 4190 | C |
---|
| 4191 | C----- INTERVAL = 2 ----- T = 287.5 |
---|
| 4192 | C |
---|
| 4193 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4194 | DATA (GA( 9, 3,IC),IC=1,3) / |
---|
| 4195 | S 0.12215344E+01, 0.53365803E+00, 0.00000000E+00/ |
---|
| 4196 | DATA (GB( 9, 3,IC),IC=1,3) / |
---|
| 4197 | S 0.12215344E+01, 0.10843446E+01, 0.10000000E+01/ |
---|
| 4198 | DATA (GA( 9, 4,IC),IC=1,3) / |
---|
| 4199 | S 0.12550299E+01, 0.60021475E+00, 0.00000000E+00/ |
---|
| 4200 | DATA (GB( 9, 4,IC),IC=1,3) / |
---|
| 4201 | S 0.12550299E+01, 0.11116160E+01, 0.10000000E+01/ |
---|
| 4202 | C |
---|
| 4203 | C----- INTERVAL = 2 ----- T = 300.0 |
---|
| 4204 | C |
---|
| 4205 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4206 | DATA (GA(10, 3,IC),IC=1,3) / |
---|
| 4207 | S 0.12259226E+01, 0.54298448E+00, 0.00000000E+00/ |
---|
| 4208 | DATA (GB(10, 3,IC),IC=1,3) / |
---|
| 4209 | S 0.12259226E+01, 0.10882439E+01, 0.10000000E+01/ |
---|
| 4210 | DATA (GA(10, 4,IC),IC=1,3) / |
---|
| 4211 | S 0.12589256E+01, 0.60856112E+00, 0.00000000E+00/ |
---|
| 4212 | DATA (GB(10, 4,IC),IC=1,3) / |
---|
| 4213 | S 0.12589256E+01, 0.11151910E+01, 0.10000000E+01/ |
---|
| 4214 | C |
---|
| 4215 | C----- INTERVAL = 2 ----- T = 312.5 |
---|
| 4216 | C |
---|
| 4217 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4218 | DATA (GA(11, 3,IC),IC=1,3) / |
---|
| 4219 | S 0.12299344E+01, 0.55150227E+00, 0.00000000E+00/ |
---|
| 4220 | DATA (GB(11, 3,IC),IC=1,3) / |
---|
| 4221 | S 0.12299344E+01, 0.10918144E+01, 0.10000000E+01/ |
---|
| 4222 | DATA (GA(11, 4,IC),IC=1,3) / |
---|
| 4223 | S 0.12624402E+01, 0.61607594E+00, 0.00000000E+00/ |
---|
| 4224 | DATA (GB(11, 4,IC),IC=1,3) / |
---|
| 4225 | S 0.12624402E+01, 0.11184188E+01, 0.10000000E+01/ |
---|
| 4226 | C |
---|
| 4227 | C |
---|
| 4228 | C |
---|
| 4229 | C |
---|
| 4230 | C |
---|
| 4231 | C |
---|
| 4232 | C- WATER VAPOR - INT. 3 -- 800-970 + 1110-1250 CM-1 -- FIT FROM 215 IS - |
---|
| 4233 | C |
---|
| 4234 | C |
---|
| 4235 | C-- WATER VAPOR LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 4236 | C |
---|
| 4237 | C |
---|
| 4238 | C |
---|
| 4239 | C--- G = 3.875E-03 --------------- |
---|
| 4240 | C |
---|
| 4241 | C----- INTERVAL = 3 ----- T = 187.5 |
---|
| 4242 | C |
---|
| 4243 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4244 | DATA (GA( 1, 7,IC),IC=1,3) / |
---|
| 4245 | S 0.10192131E+02, 0.80737799E+01, 0.00000000E+00/ |
---|
| 4246 | DATA (GB( 1, 7,IC),IC=1,3) / |
---|
| 4247 | S 0.10192131E+02, 0.82623280E+01, 0.10000000E+01/ |
---|
| 4248 | DATA (GA( 1, 8,IC),IC=1,3) / |
---|
| 4249 | S 0.92439050E+01, 0.77425778E+01, 0.00000000E+00/ |
---|
| 4250 | DATA (GB( 1, 8,IC),IC=1,3) / |
---|
| 4251 | S 0.92439050E+01, 0.79342219E+01, 0.10000000E+01/ |
---|
| 4252 | C |
---|
| 4253 | C----- INTERVAL = 3 ----- T = 200.0 |
---|
| 4254 | C |
---|
| 4255 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4256 | DATA (GA( 2, 7,IC),IC=1,3) / |
---|
| 4257 | S 0.97258602E+01, 0.79171158E+01, 0.00000000E+00/ |
---|
| 4258 | DATA (GB( 2, 7,IC),IC=1,3) / |
---|
| 4259 | S 0.97258602E+01, 0.81072291E+01, 0.10000000E+01/ |
---|
| 4260 | DATA (GA( 2, 8,IC),IC=1,3) / |
---|
| 4261 | S 0.87567422E+01, 0.75443460E+01, 0.00000000E+00/ |
---|
| 4262 | DATA (GB( 2, 8,IC),IC=1,3) / |
---|
| 4263 | S 0.87567422E+01, 0.77373458E+01, 0.10000000E+01/ |
---|
| 4264 | C |
---|
| 4265 | C----- INTERVAL = 3 ----- T = 212.5 |
---|
| 4266 | C |
---|
| 4267 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4268 | DATA (GA( 3, 7,IC),IC=1,3) / |
---|
| 4269 | S 0.92992890E+01, 0.77609605E+01, 0.00000000E+00/ |
---|
| 4270 | DATA (GB( 3, 7,IC),IC=1,3) / |
---|
| 4271 | S 0.92992890E+01, 0.79523834E+01, 0.10000000E+01/ |
---|
| 4272 | DATA (GA( 3, 8,IC),IC=1,3) / |
---|
| 4273 | S 0.83270144E+01, 0.73526151E+01, 0.00000000E+00/ |
---|
| 4274 | DATA (GB( 3, 8,IC),IC=1,3) / |
---|
| 4275 | S 0.83270144E+01, 0.75467334E+01, 0.10000000E+01/ |
---|
| 4276 | C |
---|
| 4277 | C----- INTERVAL = 3 ----- T = 225.0 |
---|
| 4278 | C |
---|
| 4279 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4280 | DATA (GA( 4, 7,IC),IC=1,3) / |
---|
| 4281 | S 0.89154021E+01, 0.76087371E+01, 0.00000000E+00/ |
---|
| 4282 | DATA (GB( 4, 7,IC),IC=1,3) / |
---|
| 4283 | S 0.89154021E+01, 0.78012527E+01, 0.10000000E+01/ |
---|
| 4284 | DATA (GA( 4, 8,IC),IC=1,3) / |
---|
| 4285 | S 0.79528337E+01, 0.71711188E+01, 0.00000000E+00/ |
---|
| 4286 | DATA (GB( 4, 8,IC),IC=1,3) / |
---|
| 4287 | S 0.79528337E+01, 0.73661786E+01, 0.10000000E+01/ |
---|
| 4288 | C |
---|
| 4289 | C----- INTERVAL = 3 ----- T = 237.5 |
---|
| 4290 | C |
---|
| 4291 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4292 | DATA (GA( 5, 7,IC),IC=1,3) / |
---|
| 4293 | S 0.85730084E+01, 0.74627112E+01, 0.00000000E+00/ |
---|
| 4294 | DATA (GB( 5, 7,IC),IC=1,3) / |
---|
| 4295 | S 0.85730084E+01, 0.76561458E+01, 0.10000000E+01/ |
---|
| 4296 | DATA (GA( 5, 8,IC),IC=1,3) / |
---|
| 4297 | S 0.76286839E+01, 0.70015571E+01, 0.00000000E+00/ |
---|
| 4298 | DATA (GB( 5, 8,IC),IC=1,3) / |
---|
| 4299 | S 0.76286839E+01, 0.71974319E+01, 0.10000000E+01/ |
---|
| 4300 | C |
---|
| 4301 | C----- INTERVAL = 3 ----- T = 250.0 |
---|
| 4302 | C |
---|
| 4303 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4304 | DATA (GA( 6, 7,IC),IC=1,3) / |
---|
| 4305 | S 0.82685838E+01, 0.73239981E+01, 0.00000000E+00/ |
---|
| 4306 | DATA (GB( 6, 7,IC),IC=1,3) / |
---|
| 4307 | S 0.82685838E+01, 0.75182174E+01, 0.10000000E+01/ |
---|
| 4308 | DATA (GA( 6, 8,IC),IC=1,3) / |
---|
| 4309 | S 0.73477879E+01, 0.68442532E+01, 0.00000000E+00/ |
---|
| 4310 | DATA (GB( 6, 8,IC),IC=1,3) / |
---|
| 4311 | S 0.73477879E+01, 0.70408543E+01, 0.10000000E+01/ |
---|
| 4312 | C |
---|
| 4313 | C----- INTERVAL = 3 ----- T = 262.5 |
---|
| 4314 | C |
---|
| 4315 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4316 | DATA (GA( 7, 7,IC),IC=1,3) / |
---|
| 4317 | S 0.79978921E+01, 0.71929934E+01, 0.00000000E+00/ |
---|
| 4318 | DATA (GB( 7, 7,IC),IC=1,3) / |
---|
| 4319 | S 0.79978921E+01, 0.73878952E+01, 0.10000000E+01/ |
---|
| 4320 | DATA (GA( 7, 8,IC),IC=1,3) / |
---|
| 4321 | S 0.71035818E+01, 0.66987996E+01, 0.00000000E+00/ |
---|
| 4322 | DATA (GB( 7, 8,IC),IC=1,3) / |
---|
| 4323 | S 0.71035818E+01, 0.68960649E+01, 0.10000000E+01/ |
---|
| 4324 | C |
---|
| 4325 | C----- INTERVAL = 3 ----- T = 275.0 |
---|
| 4326 | C |
---|
| 4327 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4328 | DATA (GA( 8, 7,IC),IC=1,3) / |
---|
| 4329 | S 0.77568055E+01, 0.70697065E+01, 0.00000000E+00/ |
---|
| 4330 | DATA (GB( 8, 7,IC),IC=1,3) / |
---|
| 4331 | S 0.77568055E+01, 0.72652133E+01, 0.10000000E+01/ |
---|
| 4332 | DATA (GA( 8, 8,IC),IC=1,3) / |
---|
| 4333 | S 0.68903312E+01, 0.65644820E+01, 0.00000000E+00/ |
---|
| 4334 | DATA (GB( 8, 8,IC),IC=1,3) / |
---|
| 4335 | S 0.68903312E+01, 0.67623672E+01, 0.10000000E+01/ |
---|
| 4336 | C |
---|
| 4337 | C----- INTERVAL = 3 ----- T = 287.5 |
---|
| 4338 | C |
---|
| 4339 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4340 | DATA (GA( 9, 7,IC),IC=1,3) / |
---|
| 4341 | S 0.75416266E+01, 0.69539626E+01, 0.00000000E+00/ |
---|
| 4342 | DATA (GB( 9, 7,IC),IC=1,3) / |
---|
| 4343 | S 0.75416266E+01, 0.71500151E+01, 0.10000000E+01/ |
---|
| 4344 | DATA (GA( 9, 8,IC),IC=1,3) / |
---|
| 4345 | S 0.67032875E+01, 0.64405267E+01, 0.00000000E+00/ |
---|
| 4346 | DATA (GB( 9, 8,IC),IC=1,3) / |
---|
| 4347 | S 0.67032875E+01, 0.66389989E+01, 0.10000000E+01/ |
---|
| 4348 | C |
---|
| 4349 | C----- INTERVAL = 3 ----- T = 300.0 |
---|
| 4350 | C |
---|
| 4351 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4352 | DATA (GA(10, 7,IC),IC=1,3) / |
---|
| 4353 | S 0.73491694E+01, 0.68455144E+01, 0.00000000E+00/ |
---|
| 4354 | DATA (GB(10, 7,IC),IC=1,3) / |
---|
| 4355 | S 0.73491694E+01, 0.70420667E+01, 0.10000000E+01/ |
---|
| 4356 | DATA (GA(10, 8,IC),IC=1,3) / |
---|
| 4357 | S 0.65386461E+01, 0.63262376E+01, 0.00000000E+00/ |
---|
| 4358 | DATA (GB(10, 8,IC),IC=1,3) / |
---|
| 4359 | S 0.65386461E+01, 0.65252707E+01, 0.10000000E+01/ |
---|
| 4360 | C |
---|
| 4361 | C----- INTERVAL = 3 ----- T = 312.5 |
---|
| 4362 | C |
---|
| 4363 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4364 | DATA (GA(11, 7,IC),IC=1,3) / |
---|
| 4365 | S 0.71767400E+01, 0.67441020E+01, 0.00000000E+00/ |
---|
| 4366 | DATA (GB(11, 7,IC),IC=1,3) / |
---|
| 4367 | S 0.71767400E+01, 0.69411177E+01, 0.10000000E+01/ |
---|
| 4368 | DATA (GA(11, 8,IC),IC=1,3) / |
---|
| 4369 | S 0.63934377E+01, 0.62210701E+01, 0.00000000E+00/ |
---|
| 4370 | DATA (GB(11, 8,IC),IC=1,3) / |
---|
| 4371 | S 0.63934377E+01, 0.64206412E+01, 0.10000000E+01/ |
---|
| 4372 | C |
---|
| 4373 | C |
---|
| 4374 | C-- WATER VAPOR -- 970-1110 CM-1 ---------------------------------------- |
---|
| 4375 | C |
---|
| 4376 | C-- G = 3.6E-03 |
---|
| 4377 | C |
---|
| 4378 | C----- INTERVAL = 4 ----- T = 187.5 |
---|
| 4379 | C |
---|
| 4380 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4381 | DATA (GA( 1, 9,IC),IC=1,3) / |
---|
| 4382 | S 0.24870635E+02, 0.10542131E+02, 0.00000000E+00/ |
---|
| 4383 | DATA (GB( 1, 9,IC),IC=1,3) / |
---|
| 4384 | S 0.24870635E+02, 0.10656640E+02, 0.10000000E+01/ |
---|
| 4385 | DATA (GA( 1,10,IC),IC=1,3) / |
---|
| 4386 | S 0.24586283E+02, 0.10490353E+02, 0.00000000E+00/ |
---|
| 4387 | DATA (GB( 1,10,IC),IC=1,3) / |
---|
| 4388 | S 0.24586283E+02, 0.10605856E+02, 0.10000000E+01/ |
---|
| 4389 | C |
---|
| 4390 | C----- INTERVAL = 4 ----- T = 200.0 |
---|
| 4391 | C |
---|
| 4392 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4393 | DATA (GA( 2, 9,IC),IC=1,3) / |
---|
| 4394 | S 0.24725591E+02, 0.10515895E+02, 0.00000000E+00/ |
---|
| 4395 | DATA (GB( 2, 9,IC),IC=1,3) / |
---|
| 4396 | S 0.24725591E+02, 0.10630910E+02, 0.10000000E+01/ |
---|
| 4397 | DATA (GA( 2,10,IC),IC=1,3) / |
---|
| 4398 | S 0.24441465E+02, 0.10463512E+02, 0.00000000E+00/ |
---|
| 4399 | DATA (GB( 2,10,IC),IC=1,3) / |
---|
| 4400 | S 0.24441465E+02, 0.10579514E+02, 0.10000000E+01/ |
---|
| 4401 | C |
---|
| 4402 | C----- INTERVAL = 4 ----- T = 212.5 |
---|
| 4403 | C |
---|
| 4404 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4405 | DATA (GA( 3, 9,IC),IC=1,3) / |
---|
| 4406 | S 0.24600320E+02, 0.10492949E+02, 0.00000000E+00/ |
---|
| 4407 | DATA (GB( 3, 9,IC),IC=1,3) / |
---|
| 4408 | S 0.24600320E+02, 0.10608399E+02, 0.10000000E+01/ |
---|
| 4409 | DATA (GA( 3,10,IC),IC=1,3) / |
---|
| 4410 | S 0.24311657E+02, 0.10439183E+02, 0.00000000E+00/ |
---|
| 4411 | DATA (GB( 3,10,IC),IC=1,3) / |
---|
| 4412 | S 0.24311657E+02, 0.10555632E+02, 0.10000000E+01/ |
---|
| 4413 | C |
---|
| 4414 | C----- INTERVAL = 4 ----- T = 225.0 |
---|
| 4415 | C |
---|
| 4416 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4417 | DATA (GA( 4, 9,IC),IC=1,3) / |
---|
| 4418 | S 0.24487300E+02, 0.10472049E+02, 0.00000000E+00/ |
---|
| 4419 | DATA (GB( 4, 9,IC),IC=1,3) / |
---|
| 4420 | S 0.24487300E+02, 0.10587891E+02, 0.10000000E+01/ |
---|
| 4421 | DATA (GA( 4,10,IC),IC=1,3) / |
---|
| 4422 | S 0.24196167E+02, 0.10417324E+02, 0.00000000E+00/ |
---|
| 4423 | DATA (GB( 4,10,IC),IC=1,3) / |
---|
| 4424 | S 0.24196167E+02, 0.10534169E+02, 0.10000000E+01/ |
---|
| 4425 | C |
---|
| 4426 | C----- INTERVAL = 4 ----- T = 237.5 |
---|
| 4427 | C |
---|
| 4428 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4429 | DATA (GA( 5, 9,IC),IC=1,3) / |
---|
| 4430 | S 0.24384935E+02, 0.10452961E+02, 0.00000000E+00/ |
---|
| 4431 | DATA (GB( 5, 9,IC),IC=1,3) / |
---|
| 4432 | S 0.24384935E+02, 0.10569156E+02, 0.10000000E+01/ |
---|
| 4433 | DATA (GA( 5,10,IC),IC=1,3) / |
---|
| 4434 | S 0.24093406E+02, 0.10397704E+02, 0.00000000E+00/ |
---|
| 4435 | DATA (GB( 5,10,IC),IC=1,3) / |
---|
| 4436 | S 0.24093406E+02, 0.10514900E+02, 0.10000000E+01/ |
---|
| 4437 | C |
---|
| 4438 | C----- INTERVAL = 4 ----- T = 250.0 |
---|
| 4439 | C |
---|
| 4440 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4441 | DATA (GA( 6, 9,IC),IC=1,3) / |
---|
| 4442 | S 0.24292341E+02, 0.10435562E+02, 0.00000000E+00/ |
---|
| 4443 | DATA (GB( 6, 9,IC),IC=1,3) / |
---|
| 4444 | S 0.24292341E+02, 0.10552075E+02, 0.10000000E+01/ |
---|
| 4445 | DATA (GA( 6,10,IC),IC=1,3) / |
---|
| 4446 | S 0.24001597E+02, 0.10380038E+02, 0.00000000E+00/ |
---|
| 4447 | DATA (GB( 6,10,IC),IC=1,3) / |
---|
| 4448 | S 0.24001597E+02, 0.10497547E+02, 0.10000000E+01/ |
---|
| 4449 | C |
---|
| 4450 | C----- INTERVAL = 4 ----- T = 262.5 |
---|
| 4451 | C |
---|
| 4452 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4453 | DATA (GA( 7, 9,IC),IC=1,3) / |
---|
| 4454 | S 0.24208572E+02, 0.10419710E+02, 0.00000000E+00/ |
---|
| 4455 | DATA (GB( 7, 9,IC),IC=1,3) / |
---|
| 4456 | S 0.24208572E+02, 0.10536510E+02, 0.10000000E+01/ |
---|
| 4457 | DATA (GA( 7,10,IC),IC=1,3) / |
---|
| 4458 | S 0.23919098E+02, 0.10364052E+02, 0.00000000E+00/ |
---|
| 4459 | DATA (GB( 7,10,IC),IC=1,3) / |
---|
| 4460 | S 0.23919098E+02, 0.10481842E+02, 0.10000000E+01/ |
---|
| 4461 | C |
---|
| 4462 | C----- INTERVAL = 4 ----- T = 275.0 |
---|
| 4463 | C |
---|
| 4464 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4465 | DATA (GA( 8, 9,IC),IC=1,3) / |
---|
| 4466 | S 0.24132642E+02, 0.10405247E+02, 0.00000000E+00/ |
---|
| 4467 | DATA (GB( 8, 9,IC),IC=1,3) / |
---|
| 4468 | S 0.24132642E+02, 0.10522307E+02, 0.10000000E+01/ |
---|
| 4469 | DATA (GA( 8,10,IC),IC=1,3) / |
---|
| 4470 | S 0.23844511E+02, 0.10349509E+02, 0.00000000E+00/ |
---|
| 4471 | DATA (GB( 8,10,IC),IC=1,3) / |
---|
| 4472 | S 0.23844511E+02, 0.10467553E+02, 0.10000000E+01/ |
---|
| 4473 | C |
---|
| 4474 | C----- INTERVAL = 4 ----- T = 287.5 |
---|
| 4475 | C |
---|
| 4476 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4477 | DATA (GA( 9, 9,IC),IC=1,3) / |
---|
| 4478 | S 0.24063614E+02, 0.10392022E+02, 0.00000000E+00/ |
---|
| 4479 | DATA (GB( 9, 9,IC),IC=1,3) / |
---|
| 4480 | S 0.24063614E+02, 0.10509317E+02, 0.10000000E+01/ |
---|
| 4481 | DATA (GA( 9,10,IC),IC=1,3) / |
---|
| 4482 | S 0.23776708E+02, 0.10336215E+02, 0.00000000E+00/ |
---|
| 4483 | DATA (GB( 9,10,IC),IC=1,3) / |
---|
| 4484 | S 0.23776708E+02, 0.10454488E+02, 0.10000000E+01/ |
---|
| 4485 | C |
---|
| 4486 | C----- INTERVAL = 4 ----- T = 300.0 |
---|
| 4487 | C |
---|
| 4488 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4489 | DATA (GA(10, 9,IC),IC=1,3) / |
---|
| 4490 | S 0.24000649E+02, 0.10379892E+02, 0.00000000E+00/ |
---|
| 4491 | DATA (GB(10, 9,IC),IC=1,3) / |
---|
| 4492 | S 0.24000649E+02, 0.10497402E+02, 0.10000000E+01/ |
---|
| 4493 | DATA (GA(10,10,IC),IC=1,3) / |
---|
| 4494 | S 0.23714816E+02, 0.10324018E+02, 0.00000000E+00/ |
---|
| 4495 | DATA (GB(10,10,IC),IC=1,3) / |
---|
| 4496 | S 0.23714816E+02, 0.10442501E+02, 0.10000000E+01/ |
---|
| 4497 | C |
---|
| 4498 | C----- INTERVAL = 4 ----- T = 312.5 |
---|
| 4499 | C |
---|
| 4500 | C-- INDICES FOR PADE APPROXIMATION 1 28 37 45 |
---|
| 4501 | DATA (GA(11, 9,IC),IC=1,3) / |
---|
| 4502 | S 0.23943021E+02, 0.10368736E+02, 0.00000000E+00/ |
---|
| 4503 | DATA (GB(11, 9,IC),IC=1,3) / |
---|
| 4504 | S 0.23943021E+02, 0.10486443E+02, 0.10000000E+01/ |
---|
| 4505 | DATA (GA(11,10,IC),IC=1,3) / |
---|
| 4506 | S 0.23658197E+02, 0.10312808E+02, 0.00000000E+00/ |
---|
| 4507 | DATA (GB(11,10,IC),IC=1,3) / |
---|
| 4508 | S 0.23658197E+02, 0.10431483E+02, 0.10000000E+01/ |
---|
| 4509 | C |
---|
| 4510 | C |
---|
| 4511 | C |
---|
| 4512 | C-- H2O -- WEAKER PARTS OF THE STRONG BANDS -- FROM ABS225 ---- |
---|
| 4513 | C |
---|
| 4514 | C-- WATER VAPOR --- 350 - 500 CM-1 |
---|
| 4515 | C |
---|
| 4516 | C-- G = - 0.2*SLA, 0.0 +0.5/(1+0.5U) |
---|
| 4517 | C |
---|
| 4518 | C----- INTERVAL = 5 ----- T = 187.5 |
---|
| 4519 | C |
---|
| 4520 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4521 | DATA (GA( 1, 5,IC),IC=1,3) / |
---|
| 4522 | S 0.15750172E+00,-0.22159303E-01, 0.00000000E+00/ |
---|
| 4523 | DATA (GB( 1, 5,IC),IC=1,3) / |
---|
| 4524 | S 0.15750172E+00, 0.38103212E+00, 0.10000000E+01/ |
---|
| 4525 | DATA (GA( 1, 6,IC),IC=1,3) / |
---|
| 4526 | S 0.17770551E+00,-0.24972399E-01, 0.00000000E+00/ |
---|
| 4527 | DATA (GB( 1, 6,IC),IC=1,3) / |
---|
| 4528 | S 0.17770551E+00, 0.41646579E+00, 0.10000000E+01/ |
---|
| 4529 | C |
---|
| 4530 | C----- INTERVAL = 5 ----- T = 200.0 |
---|
| 4531 | C |
---|
| 4532 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4533 | DATA (GA( 2, 5,IC),IC=1,3) / |
---|
| 4534 | S 0.16174076E+00,-0.22748917E-01, 0.00000000E+00/ |
---|
| 4535 | DATA (GB( 2, 5,IC),IC=1,3) / |
---|
| 4536 | S 0.16174076E+00, 0.38913800E+00, 0.10000000E+01/ |
---|
| 4537 | DATA (GA( 2, 6,IC),IC=1,3) / |
---|
| 4538 | S 0.18176757E+00,-0.25537247E-01, 0.00000000E+00/ |
---|
| 4539 | DATA (GB( 2, 6,IC),IC=1,3) / |
---|
| 4540 | S 0.18176757E+00, 0.42345095E+00, 0.10000000E+01/ |
---|
| 4541 | C |
---|
| 4542 | C----- INTERVAL = 5 ----- T = 212.5 |
---|
| 4543 | C |
---|
| 4544 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4545 | DATA (GA( 3, 5,IC),IC=1,3) / |
---|
| 4546 | S 0.16548628E+00,-0.23269898E-01, 0.00000000E+00/ |
---|
| 4547 | DATA (GB( 3, 5,IC),IC=1,3) / |
---|
| 4548 | S 0.16548628E+00, 0.39613651E+00, 0.10000000E+01/ |
---|
| 4549 | DATA (GA( 3, 6,IC),IC=1,3) / |
---|
| 4550 | S 0.18527967E+00,-0.26025624E-01, 0.00000000E+00/ |
---|
| 4551 | DATA (GB( 3, 6,IC),IC=1,3) / |
---|
| 4552 | S 0.18527967E+00, 0.42937476E+00, 0.10000000E+01/ |
---|
| 4553 | C |
---|
| 4554 | C----- INTERVAL = 5 ----- T = 225.0 |
---|
| 4555 | C |
---|
| 4556 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4557 | DATA (GA( 4, 5,IC),IC=1,3) / |
---|
| 4558 | S 0.16881124E+00,-0.23732392E-01, 0.00000000E+00/ |
---|
| 4559 | DATA (GB( 4, 5,IC),IC=1,3) / |
---|
| 4560 | S 0.16881124E+00, 0.40222421E+00, 0.10000000E+01/ |
---|
| 4561 | DATA (GA( 4, 6,IC),IC=1,3) / |
---|
| 4562 | S 0.18833348E+00,-0.26450280E-01, 0.00000000E+00/ |
---|
| 4563 | DATA (GB( 4, 6,IC),IC=1,3) / |
---|
| 4564 | S 0.18833348E+00, 0.43444062E+00, 0.10000000E+01/ |
---|
| 4565 | C |
---|
| 4566 | C----- INTERVAL = 5 ----- T = 237.5 |
---|
| 4567 | C |
---|
| 4568 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4569 | DATA (GA( 5, 5,IC),IC=1,3) / |
---|
| 4570 | S 0.17177839E+00,-0.24145123E-01, 0.00000000E+00/ |
---|
| 4571 | DATA (GB( 5, 5,IC),IC=1,3) / |
---|
| 4572 | S 0.17177839E+00, 0.40756010E+00, 0.10000000E+01/ |
---|
| 4573 | DATA (GA( 5, 6,IC),IC=1,3) / |
---|
| 4574 | S 0.19100108E+00,-0.26821236E-01, 0.00000000E+00/ |
---|
| 4575 | DATA (GB( 5, 6,IC),IC=1,3) / |
---|
| 4576 | S 0.19100108E+00, 0.43880316E+00, 0.10000000E+01/ |
---|
| 4577 | C |
---|
| 4578 | C----- INTERVAL = 5 ----- T = 250.0 |
---|
| 4579 | C |
---|
| 4580 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4581 | DATA (GA( 6, 5,IC),IC=1,3) / |
---|
| 4582 | S 0.17443933E+00,-0.24515269E-01, 0.00000000E+00/ |
---|
| 4583 | DATA (GB( 6, 5,IC),IC=1,3) / |
---|
| 4584 | S 0.17443933E+00, 0.41226954E+00, 0.10000000E+01/ |
---|
| 4585 | DATA (GA( 6, 6,IC),IC=1,3) / |
---|
| 4586 | S 0.19334122E+00,-0.27146657E-01, 0.00000000E+00/ |
---|
| 4587 | DATA (GB( 6, 6,IC),IC=1,3) / |
---|
| 4588 | S 0.19334122E+00, 0.44258354E+00, 0.10000000E+01/ |
---|
| 4589 | C |
---|
| 4590 | C----- INTERVAL = 5 ----- T = 262.5 |
---|
| 4591 | C |
---|
| 4592 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4593 | DATA (GA( 7, 5,IC),IC=1,3) / |
---|
| 4594 | S 0.17683622E+00,-0.24848690E-01, 0.00000000E+00/ |
---|
| 4595 | DATA (GB( 7, 5,IC),IC=1,3) / |
---|
| 4596 | S 0.17683622E+00, 0.41645142E+00, 0.10000000E+01/ |
---|
| 4597 | DATA (GA( 7, 6,IC),IC=1,3) / |
---|
| 4598 | S 0.19540288E+00,-0.27433354E-01, 0.00000000E+00/ |
---|
| 4599 | DATA (GB( 7, 6,IC),IC=1,3) / |
---|
| 4600 | S 0.19540288E+00, 0.44587882E+00, 0.10000000E+01/ |
---|
| 4601 | C |
---|
| 4602 | C----- INTERVAL = 5 ----- T = 275.0 |
---|
| 4603 | C |
---|
| 4604 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4605 | DATA (GA( 8, 5,IC),IC=1,3) / |
---|
| 4606 | S 0.17900375E+00,-0.25150210E-01, 0.00000000E+00/ |
---|
| 4607 | DATA (GB( 8, 5,IC),IC=1,3) / |
---|
| 4608 | S 0.17900375E+00, 0.42018474E+00, 0.10000000E+01/ |
---|
| 4609 | DATA (GA( 8, 6,IC),IC=1,3) / |
---|
| 4610 | S 0.19722732E+00,-0.27687065E-01, 0.00000000E+00/ |
---|
| 4611 | DATA (GB( 8, 6,IC),IC=1,3) / |
---|
| 4612 | S 0.19722732E+00, 0.44876776E+00, 0.10000000E+01/ |
---|
| 4613 | C |
---|
| 4614 | C----- INTERVAL = 5 ----- T = 287.5 |
---|
| 4615 | C |
---|
| 4616 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4617 | DATA (GA( 9, 5,IC),IC=1,3) / |
---|
| 4618 | S 0.18097099E+00,-0.25423873E-01, 0.00000000E+00/ |
---|
| 4619 | DATA (GB( 9, 5,IC),IC=1,3) / |
---|
| 4620 | S 0.18097099E+00, 0.42353379E+00, 0.10000000E+01/ |
---|
| 4621 | DATA (GA( 9, 6,IC),IC=1,3) / |
---|
| 4622 | S 0.19884918E+00,-0.27912608E-01, 0.00000000E+00/ |
---|
| 4623 | DATA (GB( 9, 6,IC),IC=1,3) / |
---|
| 4624 | S 0.19884918E+00, 0.45131451E+00, 0.10000000E+01/ |
---|
| 4625 | C |
---|
| 4626 | C----- INTERVAL = 5 ----- T = 300.0 |
---|
| 4627 | C |
---|
| 4628 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4629 | DATA (GA(10, 5,IC),IC=1,3) / |
---|
| 4630 | S 0.18276283E+00,-0.25673139E-01, 0.00000000E+00/ |
---|
| 4631 | DATA (GB(10, 5,IC),IC=1,3) / |
---|
| 4632 | S 0.18276283E+00, 0.42655211E+00, 0.10000000E+01/ |
---|
| 4633 | DATA (GA(10, 6,IC),IC=1,3) / |
---|
| 4634 | S 0.20029696E+00,-0.28113944E-01, 0.00000000E+00/ |
---|
| 4635 | DATA (GB(10, 6,IC),IC=1,3) / |
---|
| 4636 | S 0.20029696E+00, 0.45357095E+00, 0.10000000E+01/ |
---|
| 4637 | C |
---|
| 4638 | C----- INTERVAL = 5 ----- T = 312.5 |
---|
| 4639 | C |
---|
| 4640 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4641 | DATA (GA(11, 5,IC),IC=1,3) / |
---|
| 4642 | S 0.18440117E+00,-0.25901055E-01, 0.00000000E+00/ |
---|
| 4643 | DATA (GB(11, 5,IC),IC=1,3) / |
---|
| 4644 | S 0.18440117E+00, 0.42928533E+00, 0.10000000E+01/ |
---|
| 4645 | DATA (GA(11, 6,IC),IC=1,3) / |
---|
| 4646 | S 0.20159300E+00,-0.28294180E-01, 0.00000000E+00/ |
---|
| 4647 | DATA (GB(11, 6,IC),IC=1,3) / |
---|
| 4648 | S 0.20159300E+00, 0.45557797E+00, 0.10000000E+01/ |
---|
| 4649 | C |
---|
| 4650 | C |
---|
| 4651 | C |
---|
| 4652 | C |
---|
| 4653 | C- WATER VAPOR - WINGS OF VIBRATION-ROTATION BAND - 1250-1450+1880-2820 - |
---|
| 4654 | C--- G = 0.0 |
---|
| 4655 | C |
---|
| 4656 | C |
---|
| 4657 | C----- INTERVAL = 6 ----- T = 187.5 |
---|
| 4658 | C |
---|
| 4659 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4660 | DATA (GA( 1,11,IC),IC=1,3) / |
---|
| 4661 | S 0.11990218E+02,-0.12823142E+01, 0.00000000E+00/ |
---|
| 4662 | DATA (GB( 1,11,IC),IC=1,3) / |
---|
| 4663 | S 0.11990218E+02, 0.26681588E+02, 0.10000000E+01/ |
---|
| 4664 | DATA (GA( 1,12,IC),IC=1,3) / |
---|
| 4665 | S 0.79709806E+01,-0.74805226E+00, 0.00000000E+00/ |
---|
| 4666 | DATA (GB( 1,12,IC),IC=1,3) / |
---|
| 4667 | S 0.79709806E+01, 0.18377807E+02, 0.10000000E+01/ |
---|
| 4668 | C |
---|
| 4669 | C----- INTERVAL = 6 ----- T = 200.0 |
---|
| 4670 | C |
---|
| 4671 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4672 | DATA (GA( 2,11,IC),IC=1,3) / |
---|
| 4673 | S 0.10904073E+02,-0.10571588E+01, 0.00000000E+00/ |
---|
| 4674 | DATA (GB( 2,11,IC),IC=1,3) / |
---|
| 4675 | S 0.10904073E+02, 0.24728346E+02, 0.10000000E+01/ |
---|
| 4676 | DATA (GA( 2,12,IC),IC=1,3) / |
---|
| 4677 | S 0.75400737E+01,-0.56252739E+00, 0.00000000E+00/ |
---|
| 4678 | DATA (GB( 2,12,IC),IC=1,3) / |
---|
| 4679 | S 0.75400737E+01, 0.17643148E+02, 0.10000000E+01/ |
---|
| 4680 | C |
---|
| 4681 | C----- INTERVAL = 6 ----- T = 212.5 |
---|
| 4682 | C |
---|
| 4683 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4684 | DATA (GA( 3,11,IC),IC=1,3) / |
---|
| 4685 | S 0.89126838E+01,-0.74864953E+00, 0.00000000E+00/ |
---|
| 4686 | DATA (GB( 3,11,IC),IC=1,3) / |
---|
| 4687 | S 0.89126838E+01, 0.20551342E+02, 0.10000000E+01/ |
---|
| 4688 | DATA (GA( 3,12,IC),IC=1,3) / |
---|
| 4689 | S 0.81804377E+01,-0.46188072E+00, 0.00000000E+00/ |
---|
| 4690 | DATA (GB( 3,12,IC),IC=1,3) / |
---|
| 4691 | S 0.81804377E+01, 0.19296161E+02, 0.10000000E+01/ |
---|
| 4692 | C |
---|
| 4693 | C----- INTERVAL = 6 ----- T = 225.0 |
---|
| 4694 | C |
---|
| 4695 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4696 | DATA (GA( 4,11,IC),IC=1,3) / |
---|
| 4697 | S 0.85622405E+01,-0.58705980E+00, 0.00000000E+00/ |
---|
| 4698 | DATA (GB( 4,11,IC),IC=1,3) / |
---|
| 4699 | S 0.85622405E+01, 0.19955244E+02, 0.10000000E+01/ |
---|
| 4700 | DATA (GA( 4,12,IC),IC=1,3) / |
---|
| 4701 | S 0.10564339E+02,-0.40712065E+00, 0.00000000E+00/ |
---|
| 4702 | DATA (GB( 4,12,IC),IC=1,3) / |
---|
| 4703 | S 0.10564339E+02, 0.24951120E+02, 0.10000000E+01/ |
---|
| 4704 | C |
---|
| 4705 | C----- INTERVAL = 6 ----- T = 237.5 |
---|
| 4706 | C |
---|
| 4707 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4708 | DATA (GA( 5,11,IC),IC=1,3) / |
---|
| 4709 | S 0.94892164E+01,-0.49305772E+00, 0.00000000E+00/ |
---|
| 4710 | DATA (GB( 5,11,IC),IC=1,3) / |
---|
| 4711 | S 0.94892164E+01, 0.22227100E+02, 0.10000000E+01/ |
---|
| 4712 | DATA (GA( 5,12,IC),IC=1,3) / |
---|
| 4713 | S 0.46896789E+02,-0.15295996E+01, 0.00000000E+00/ |
---|
| 4714 | DATA (GB( 5,12,IC),IC=1,3) / |
---|
| 4715 | S 0.46896789E+02, 0.10957372E+03, 0.10000000E+01/ |
---|
| 4716 | C |
---|
| 4717 | C----- INTERVAL = 6 ----- T = 250.0 |
---|
| 4718 | C |
---|
| 4719 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4720 | DATA (GA( 6,11,IC),IC=1,3) / |
---|
| 4721 | S 0.13580937E+02,-0.51461431E+00, 0.00000000E+00/ |
---|
| 4722 | DATA (GB( 6,11,IC),IC=1,3) / |
---|
| 4723 | S 0.13580937E+02, 0.31770288E+02, 0.10000000E+01/ |
---|
| 4724 | DATA (GA( 6,12,IC),IC=1,3) / |
---|
| 4725 | S-0.30926524E+01, 0.43555255E+00, 0.00000000E+00/ |
---|
| 4726 | DATA (GB( 6,12,IC),IC=1,3) / |
---|
| 4727 | S-0.30926524E+01,-0.67432659E+01, 0.10000000E+01/ |
---|
| 4728 | C |
---|
| 4729 | C----- INTERVAL = 6 ----- T = 262.5 |
---|
| 4730 | C |
---|
| 4731 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4732 | DATA (GA( 7,11,IC),IC=1,3) / |
---|
| 4733 | S-0.32050918E+03, 0.12373350E+02, 0.00000000E+00/ |
---|
| 4734 | DATA (GB( 7,11,IC),IC=1,3) / |
---|
| 4735 | S-0.32050918E+03,-0.74061287E+03, 0.10000000E+01/ |
---|
| 4736 | DATA (GA( 7,12,IC),IC=1,3) / |
---|
| 4737 | S 0.85742941E+00, 0.50380874E+00, 0.00000000E+00/ |
---|
| 4738 | DATA (GB( 7,12,IC),IC=1,3) / |
---|
| 4739 | S 0.85742941E+00, 0.24550746E+01, 0.10000000E+01/ |
---|
| 4740 | C |
---|
| 4741 | C----- INTERVAL = 6 ----- T = 275.0 |
---|
| 4742 | C |
---|
| 4743 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4744 | DATA (GA( 8,11,IC),IC=1,3) / |
---|
| 4745 | S-0.37133165E+01, 0.44809588E+00, 0.00000000E+00/ |
---|
| 4746 | DATA (GB( 8,11,IC),IC=1,3) / |
---|
| 4747 | S-0.37133165E+01,-0.81329826E+01, 0.10000000E+01/ |
---|
| 4748 | DATA (GA( 8,12,IC),IC=1,3) / |
---|
| 4749 | S 0.19164038E+01, 0.68537352E+00, 0.00000000E+00/ |
---|
| 4750 | DATA (GB( 8,12,IC),IC=1,3) / |
---|
| 4751 | S 0.19164038E+01, 0.49089917E+01, 0.10000000E+01/ |
---|
| 4752 | C |
---|
| 4753 | C----- INTERVAL = 6 ----- T = 287.5 |
---|
| 4754 | C |
---|
| 4755 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4756 | DATA (GA( 9,11,IC),IC=1,3) / |
---|
| 4757 | S 0.18890836E+00, 0.46548918E+00, 0.00000000E+00/ |
---|
| 4758 | DATA (GB( 9,11,IC),IC=1,3) / |
---|
| 4759 | S 0.18890836E+00, 0.90279822E+00, 0.10000000E+01/ |
---|
| 4760 | DATA (GA( 9,12,IC),IC=1,3) / |
---|
| 4761 | S 0.23513199E+01, 0.89437630E+00, 0.00000000E+00/ |
---|
| 4762 | DATA (GB( 9,12,IC),IC=1,3) / |
---|
| 4763 | S 0.23513199E+01, 0.59008712E+01, 0.10000000E+01/ |
---|
| 4764 | C |
---|
| 4765 | C----- INTERVAL = 6 ----- T = 300.0 |
---|
| 4766 | C |
---|
| 4767 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4768 | DATA (GA(10,11,IC),IC=1,3) / |
---|
| 4769 | S 0.14209226E+01, 0.59121475E+00, 0.00000000E+00/ |
---|
| 4770 | DATA (GB(10,11,IC),IC=1,3) / |
---|
| 4771 | S 0.14209226E+01, 0.37532746E+01, 0.10000000E+01/ |
---|
| 4772 | DATA (GA(10,12,IC),IC=1,3) / |
---|
| 4773 | S 0.25566644E+01, 0.11127003E+01, 0.00000000E+00/ |
---|
| 4774 | DATA (GB(10,12,IC),IC=1,3) / |
---|
| 4775 | S 0.25566644E+01, 0.63532616E+01, 0.10000000E+01/ |
---|
| 4776 | C |
---|
| 4777 | C----- INTERVAL = 6 ----- T = 312.5 |
---|
| 4778 | C |
---|
| 4779 | C-- INDICES FOR PADE APPROXIMATION 1 35 40 45 |
---|
| 4780 | DATA (GA(11,11,IC),IC=1,3) / |
---|
| 4781 | S 0.19817679E+01, 0.74676119E+00, 0.00000000E+00/ |
---|
| 4782 | DATA (GB(11,11,IC),IC=1,3) / |
---|
| 4783 | S 0.19817679E+01, 0.50437916E+01, 0.10000000E+01/ |
---|
| 4784 | DATA (GA(11,12,IC),IC=1,3) / |
---|
| 4785 | S 0.26555181E+01, 0.13329782E+01, 0.00000000E+00/ |
---|
| 4786 | DATA (GB(11,12,IC),IC=1,3) / |
---|
| 4787 | S 0.26555181E+01, 0.65558627E+01, 0.10000000E+01/ |
---|
| 4788 | C |
---|
| 4789 | C |
---|
| 4790 | C |
---|
| 4791 | C |
---|
| 4792 | C |
---|
| 4793 | C-- END WATER VAPOR |
---|
| 4794 | C |
---|
| 4795 | C |
---|
| 4796 | C-- CO2 -- INT.2 -- 500-800 CM-1 --- FROM ABS225 ---------------------- |
---|
| 4797 | C |
---|
| 4798 | C |
---|
| 4799 | C |
---|
| 4800 | C-- FIU = 0.8 + MAX(0.35,(7-IU)*0.9) , X/T, 9 |
---|
| 4801 | C |
---|
| 4802 | C----- INTERVAL = 2 ----- T = 187.5 |
---|
| 4803 | C |
---|
| 4804 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4805 | DATA (GA( 1,13,IC),IC=1,3) / |
---|
| 4806 | S 0.87668459E-01, 0.13845511E+01, 0.00000000E+00/ |
---|
| 4807 | DATA (GB( 1,13,IC),IC=1,3) / |
---|
| 4808 | S 0.87668459E-01, 0.23203798E+01, 0.10000000E+01/ |
---|
| 4809 | DATA (GA( 1,14,IC),IC=1,3) / |
---|
| 4810 | S 0.74878820E-01, 0.11718758E+01, 0.00000000E+00/ |
---|
| 4811 | DATA (GB( 1,14,IC),IC=1,3) / |
---|
| 4812 | S 0.74878820E-01, 0.20206726E+01, 0.10000000E+01/ |
---|
| 4813 | C |
---|
| 4814 | C----- INTERVAL = 2 ----- T = 200.0 |
---|
| 4815 | C |
---|
| 4816 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4817 | DATA (GA( 2,13,IC),IC=1,3) / |
---|
| 4818 | S 0.83754276E-01, 0.13187042E+01, 0.00000000E+00/ |
---|
| 4819 | DATA (GB( 2,13,IC),IC=1,3) / |
---|
| 4820 | S 0.83754276E-01, 0.22288925E+01, 0.10000000E+01/ |
---|
| 4821 | DATA (GA( 2,14,IC),IC=1,3) / |
---|
| 4822 | S 0.71650966E-01, 0.11216131E+01, 0.00000000E+00/ |
---|
| 4823 | DATA (GB( 2,14,IC),IC=1,3) / |
---|
| 4824 | S 0.71650966E-01, 0.19441824E+01, 0.10000000E+01/ |
---|
| 4825 | C |
---|
| 4826 | C----- INTERVAL = 2 ----- T = 212.5 |
---|
| 4827 | C |
---|
| 4828 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4829 | DATA (GA( 3,13,IC),IC=1,3) / |
---|
| 4830 | S 0.80460283E-01, 0.12644396E+01, 0.00000000E+00/ |
---|
| 4831 | DATA (GB( 3,13,IC),IC=1,3) / |
---|
| 4832 | S 0.80460283E-01, 0.21515593E+01, 0.10000000E+01/ |
---|
| 4833 | DATA (GA( 3,14,IC),IC=1,3) / |
---|
| 4834 | S 0.68979615E-01, 0.10809473E+01, 0.00000000E+00/ |
---|
| 4835 | DATA (GB( 3,14,IC),IC=1,3) / |
---|
| 4836 | S 0.68979615E-01, 0.18807257E+01, 0.10000000E+01/ |
---|
| 4837 | C |
---|
| 4838 | C----- INTERVAL = 2 ----- T = 225.0 |
---|
| 4839 | C |
---|
| 4840 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4841 | DATA (GA( 4,13,IC),IC=1,3) / |
---|
| 4842 | S 0.77659686E-01, 0.12191543E+01, 0.00000000E+00/ |
---|
| 4843 | DATA (GB( 4,13,IC),IC=1,3) / |
---|
| 4844 | S 0.77659686E-01, 0.20855896E+01, 0.10000000E+01/ |
---|
| 4845 | DATA (GA( 4,14,IC),IC=1,3) / |
---|
| 4846 | S 0.66745345E-01, 0.10476396E+01, 0.00000000E+00/ |
---|
| 4847 | DATA (GB( 4,14,IC),IC=1,3) / |
---|
| 4848 | S 0.66745345E-01, 0.18275618E+01, 0.10000000E+01/ |
---|
| 4849 | C |
---|
| 4850 | C----- INTERVAL = 2 ----- T = 237.5 |
---|
| 4851 | C |
---|
| 4852 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4853 | DATA (GA( 5,13,IC),IC=1,3) / |
---|
| 4854 | S 0.75257056E-01, 0.11809511E+01, 0.00000000E+00/ |
---|
| 4855 | DATA (GB( 5,13,IC),IC=1,3) / |
---|
| 4856 | S 0.75257056E-01, 0.20288489E+01, 0.10000000E+01/ |
---|
| 4857 | DATA (GA( 5,14,IC),IC=1,3) / |
---|
| 4858 | S 0.64857571E-01, 0.10200373E+01, 0.00000000E+00/ |
---|
| 4859 | DATA (GB( 5,14,IC),IC=1,3) / |
---|
| 4860 | S 0.64857571E-01, 0.17825910E+01, 0.10000000E+01/ |
---|
| 4861 | C |
---|
| 4862 | C----- INTERVAL = 2 ----- T = 250.0 |
---|
| 4863 | C |
---|
| 4864 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4865 | DATA (GA( 6,13,IC),IC=1,3) / |
---|
| 4866 | S 0.73179175E-01, 0.11484154E+01, 0.00000000E+00/ |
---|
| 4867 | DATA (GB( 6,13,IC),IC=1,3) / |
---|
| 4868 | S 0.73179175E-01, 0.19796791E+01, 0.10000000E+01/ |
---|
| 4869 | DATA (GA( 6,14,IC),IC=1,3) / |
---|
| 4870 | S 0.63248495E-01, 0.99692726E+00, 0.00000000E+00/ |
---|
| 4871 | DATA (GB( 6,14,IC),IC=1,3) / |
---|
| 4872 | S 0.63248495E-01, 0.17442308E+01, 0.10000000E+01/ |
---|
| 4873 | C |
---|
| 4874 | C----- INTERVAL = 2 ----- T = 262.5 |
---|
| 4875 | C |
---|
| 4876 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4877 | DATA (GA( 7,13,IC),IC=1,3) / |
---|
| 4878 | S 0.71369063E-01, 0.11204723E+01, 0.00000000E+00/ |
---|
| 4879 | DATA (GB( 7,13,IC),IC=1,3) / |
---|
| 4880 | S 0.71369063E-01, 0.19367778E+01, 0.10000000E+01/ |
---|
| 4881 | DATA (GA( 7,14,IC),IC=1,3) / |
---|
| 4882 | S 0.61866970E-01, 0.97740923E+00, 0.00000000E+00/ |
---|
| 4883 | DATA (GB( 7,14,IC),IC=1,3) / |
---|
| 4884 | S 0.61866970E-01, 0.17112809E+01, 0.10000000E+01/ |
---|
| 4885 | C |
---|
| 4886 | C----- INTERVAL = 2 ----- T = 275.0 |
---|
| 4887 | C |
---|
| 4888 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4889 | DATA (GA( 8,13,IC),IC=1,3) / |
---|
| 4890 | S 0.69781812E-01, 0.10962918E+01, 0.00000000E+00/ |
---|
| 4891 | DATA (GB( 8,13,IC),IC=1,3) / |
---|
| 4892 | S 0.69781812E-01, 0.18991112E+01, 0.10000000E+01/ |
---|
| 4893 | DATA (GA( 8,14,IC),IC=1,3) / |
---|
| 4894 | S 0.60673632E-01, 0.96080188E+00, 0.00000000E+00/ |
---|
| 4895 | DATA (GB( 8,14,IC),IC=1,3) / |
---|
| 4896 | S 0.60673632E-01, 0.16828137E+01, 0.10000000E+01/ |
---|
| 4897 | C |
---|
| 4898 | C----- INTERVAL = 2 ----- T = 287.5 |
---|
| 4899 | C |
---|
| 4900 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4901 | DATA (GA( 9,13,IC),IC=1,3) / |
---|
| 4902 | S 0.68381606E-01, 0.10752229E+01, 0.00000000E+00/ |
---|
| 4903 | DATA (GB( 9,13,IC),IC=1,3) / |
---|
| 4904 | S 0.68381606E-01, 0.18658501E+01, 0.10000000E+01/ |
---|
| 4905 | DATA (GA( 9,14,IC),IC=1,3) / |
---|
| 4906 | S 0.59637277E-01, 0.94657562E+00, 0.00000000E+00/ |
---|
| 4907 | DATA (GB( 9,14,IC),IC=1,3) / |
---|
| 4908 | S 0.59637277E-01, 0.16580908E+01, 0.10000000E+01/ |
---|
| 4909 | C |
---|
| 4910 | C----- INTERVAL = 2 ----- T = 300.0 |
---|
| 4911 | C |
---|
| 4912 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4913 | DATA (GA(10,13,IC),IC=1,3) / |
---|
| 4914 | S 0.67139539E-01, 0.10567474E+01, 0.00000000E+00/ |
---|
| 4915 | DATA (GB(10,13,IC),IC=1,3) / |
---|
| 4916 | S 0.67139539E-01, 0.18363226E+01, 0.10000000E+01/ |
---|
| 4917 | DATA (GA(10,14,IC),IC=1,3) / |
---|
| 4918 | S 0.58732178E-01, 0.93430511E+00, 0.00000000E+00/ |
---|
| 4919 | DATA (GB(10,14,IC),IC=1,3) / |
---|
| 4920 | S 0.58732178E-01, 0.16365014E+01, 0.10000000E+01/ |
---|
| 4921 | C |
---|
| 4922 | C----- INTERVAL = 2 ----- T = 312.5 |
---|
| 4923 | C |
---|
| 4924 | C-- INDICES FOR PADE APPROXIMATION 1 30 38 45 |
---|
| 4925 | DATA (GA(11,13,IC),IC=1,3) / |
---|
| 4926 | S 0.66032012E-01, 0.10404465E+01, 0.00000000E+00/ |
---|
| 4927 | DATA (GB(11,13,IC),IC=1,3) / |
---|
| 4928 | S 0.66032012E-01, 0.18099779E+01, 0.10000000E+01/ |
---|
| 4929 | DATA (GA(11,14,IC),IC=1,3) / |
---|
| 4930 | S 0.57936092E-01, 0.92363528E+00, 0.00000000E+00/ |
---|
| 4931 | DATA (GB(11,14,IC),IC=1,3) / |
---|
| 4932 | S 0.57936092E-01, 0.16175164E+01, 0.10000000E+01/ |
---|
| 4933 | C |
---|
| 4934 | C |
---|
| 4935 | C |
---|
| 4936 | C |
---|
| 4937 | C |
---|
| 4938 | C |
---|
| 4939 | C |
---|
| 4940 | C |
---|
| 4941 | C |
---|
| 4942 | C |
---|
| 4943 | C-- CARBON DIOXIDE LINES IN THE WINDOW REGION (800-1250 CM-1) |
---|
| 4944 | C |
---|
| 4945 | C |
---|
| 4946 | C-- G = 0.0 |
---|
| 4947 | C |
---|
| 4948 | C |
---|
| 4949 | C----- INTERVAL = 4 ----- T = 187.5 |
---|
| 4950 | C |
---|
| 4951 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4952 | DATA (GA( 1,15,IC),IC=1,3) / |
---|
| 4953 | S 0.13230067E+02, 0.22042132E+02, 0.00000000E+00/ |
---|
| 4954 | DATA (GB( 1,15,IC),IC=1,3) / |
---|
| 4955 | S 0.13230067E+02, 0.22051750E+02, 0.10000000E+01/ |
---|
| 4956 | DATA (GA( 1,16,IC),IC=1,3) / |
---|
| 4957 | S 0.13183816E+02, 0.22169501E+02, 0.00000000E+00/ |
---|
| 4958 | DATA (GB( 1,16,IC),IC=1,3) / |
---|
| 4959 | S 0.13183816E+02, 0.22178972E+02, 0.10000000E+01/ |
---|
| 4960 | C |
---|
| 4961 | C----- INTERVAL = 4 ----- T = 200.0 |
---|
| 4962 | C |
---|
| 4963 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4964 | DATA (GA( 2,15,IC),IC=1,3) / |
---|
| 4965 | S 0.13213564E+02, 0.22107298E+02, 0.00000000E+00/ |
---|
| 4966 | DATA (GB( 2,15,IC),IC=1,3) / |
---|
| 4967 | S 0.13213564E+02, 0.22116850E+02, 0.10000000E+01/ |
---|
| 4968 | DATA (GA( 2,16,IC),IC=1,3) / |
---|
| 4969 | S 0.13189991E+02, 0.22270075E+02, 0.00000000E+00/ |
---|
| 4970 | DATA (GB( 2,16,IC),IC=1,3) / |
---|
| 4971 | S 0.13189991E+02, 0.22279484E+02, 0.10000000E+01/ |
---|
| 4972 | C |
---|
| 4973 | C----- INTERVAL = 4 ----- T = 212.5 |
---|
| 4974 | C |
---|
| 4975 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4976 | DATA (GA( 3,15,IC),IC=1,3) / |
---|
| 4977 | S 0.13209140E+02, 0.22180915E+02, 0.00000000E+00/ |
---|
| 4978 | DATA (GB( 3,15,IC),IC=1,3) / |
---|
| 4979 | S 0.13209140E+02, 0.22190410E+02, 0.10000000E+01/ |
---|
| 4980 | DATA (GA( 3,16,IC),IC=1,3) / |
---|
| 4981 | S 0.13209485E+02, 0.22379193E+02, 0.00000000E+00/ |
---|
| 4982 | DATA (GB( 3,16,IC),IC=1,3) / |
---|
| 4983 | S 0.13209485E+02, 0.22388551E+02, 0.10000000E+01/ |
---|
| 4984 | C |
---|
| 4985 | C----- INTERVAL = 4 ----- T = 225.0 |
---|
| 4986 | C |
---|
| 4987 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 4988 | DATA (GA( 4,15,IC),IC=1,3) / |
---|
| 4989 | S 0.13213894E+02, 0.22259478E+02, 0.00000000E+00/ |
---|
| 4990 | DATA (GB( 4,15,IC),IC=1,3) / |
---|
| 4991 | S 0.13213894E+02, 0.22268925E+02, 0.10000000E+01/ |
---|
| 4992 | DATA (GA( 4,16,IC),IC=1,3) / |
---|
| 4993 | S 0.13238789E+02, 0.22492992E+02, 0.00000000E+00/ |
---|
| 4994 | DATA (GB( 4,16,IC),IC=1,3) / |
---|
| 4995 | S 0.13238789E+02, 0.22502309E+02, 0.10000000E+01/ |
---|
| 4996 | C |
---|
| 4997 | C----- INTERVAL = 4 ----- T = 237.5 |
---|
| 4998 | C |
---|
| 4999 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5000 | DATA (GA( 5,15,IC),IC=1,3) / |
---|
| 5001 | S 0.13225963E+02, 0.22341039E+02, 0.00000000E+00/ |
---|
| 5002 | DATA (GB( 5,15,IC),IC=1,3) / |
---|
| 5003 | S 0.13225963E+02, 0.22350445E+02, 0.10000000E+01/ |
---|
| 5004 | DATA (GA( 5,16,IC),IC=1,3) / |
---|
| 5005 | S 0.13275017E+02, 0.22608508E+02, 0.00000000E+00/ |
---|
| 5006 | DATA (GB( 5,16,IC),IC=1,3) / |
---|
| 5007 | S 0.13275017E+02, 0.22617792E+02, 0.10000000E+01/ |
---|
| 5008 | C |
---|
| 5009 | C----- INTERVAL = 4 ----- T = 250.0 |
---|
| 5010 | C |
---|
| 5011 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5012 | DATA (GA( 6,15,IC),IC=1,3) / |
---|
| 5013 | S 0.13243806E+02, 0.22424247E+02, 0.00000000E+00/ |
---|
| 5014 | DATA (GB( 6,15,IC),IC=1,3) / |
---|
| 5015 | S 0.13243806E+02, 0.22433617E+02, 0.10000000E+01/ |
---|
| 5016 | DATA (GA( 6,16,IC),IC=1,3) / |
---|
| 5017 | S 0.13316096E+02, 0.22723843E+02, 0.00000000E+00/ |
---|
| 5018 | DATA (GB( 6,16,IC),IC=1,3) / |
---|
| 5019 | S 0.13316096E+02, 0.22733099E+02, 0.10000000E+01/ |
---|
| 5020 | C |
---|
| 5021 | C----- INTERVAL = 4 ----- T = 262.5 |
---|
| 5022 | C |
---|
| 5023 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5024 | DATA (GA( 7,15,IC),IC=1,3) / |
---|
| 5025 | S 0.13266104E+02, 0.22508089E+02, 0.00000000E+00/ |
---|
| 5026 | DATA (GB( 7,15,IC),IC=1,3) / |
---|
| 5027 | S 0.13266104E+02, 0.22517429E+02, 0.10000000E+01/ |
---|
| 5028 | DATA (GA( 7,16,IC),IC=1,3) / |
---|
| 5029 | S 0.13360555E+02, 0.22837837E+02, 0.00000000E+00/ |
---|
| 5030 | DATA (GB( 7,16,IC),IC=1,3) / |
---|
| 5031 | S 0.13360555E+02, 0.22847071E+02, 0.10000000E+01/ |
---|
| 5032 | C |
---|
| 5033 | C----- INTERVAL = 4 ----- T = 275.0 |
---|
| 5034 | C |
---|
| 5035 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5036 | DATA (GA( 8,15,IC),IC=1,3) / |
---|
| 5037 | S 0.13291782E+02, 0.22591771E+02, 0.00000000E+00/ |
---|
| 5038 | DATA (GB( 8,15,IC),IC=1,3) / |
---|
| 5039 | S 0.13291782E+02, 0.22601086E+02, 0.10000000E+01/ |
---|
| 5040 | DATA (GA( 8,16,IC),IC=1,3) / |
---|
| 5041 | S 0.13407324E+02, 0.22949751E+02, 0.00000000E+00/ |
---|
| 5042 | DATA (GB( 8,16,IC),IC=1,3) / |
---|
| 5043 | S 0.13407324E+02, 0.22958967E+02, 0.10000000E+01/ |
---|
| 5044 | C |
---|
| 5045 | C----- INTERVAL = 4 ----- T = 287.5 |
---|
| 5046 | C |
---|
| 5047 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5048 | DATA (GA( 9,15,IC),IC=1,3) / |
---|
| 5049 | S 0.13319961E+02, 0.22674661E+02, 0.00000000E+00/ |
---|
| 5050 | DATA (GB( 9,15,IC),IC=1,3) / |
---|
| 5051 | S 0.13319961E+02, 0.22683956E+02, 0.10000000E+01/ |
---|
| 5052 | DATA (GA( 9,16,IC),IC=1,3) / |
---|
| 5053 | S 0.13455544E+02, 0.23059032E+02, 0.00000000E+00/ |
---|
| 5054 | DATA (GB( 9,16,IC),IC=1,3) / |
---|
| 5055 | S 0.13455544E+02, 0.23068234E+02, 0.10000000E+01/ |
---|
| 5056 | C |
---|
| 5057 | C----- INTERVAL = 4 ----- T = 300.0 |
---|
| 5058 | C |
---|
| 5059 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5060 | DATA (GA(10,15,IC),IC=1,3) / |
---|
| 5061 | S 0.13349927E+02, 0.22756246E+02, 0.00000000E+00/ |
---|
| 5062 | DATA (GB(10,15,IC),IC=1,3) / |
---|
| 5063 | S 0.13349927E+02, 0.22765522E+02, 0.10000000E+01/ |
---|
| 5064 | DATA (GA(10,16,IC),IC=1,3) / |
---|
| 5065 | S 0.13504450E+02, 0.23165146E+02, 0.00000000E+00/ |
---|
| 5066 | DATA (GB(10,16,IC),IC=1,3) / |
---|
| 5067 | S 0.13504450E+02, 0.23174336E+02, 0.10000000E+01/ |
---|
| 5068 | C |
---|
| 5069 | C----- INTERVAL = 4 ----- T = 312.5 |
---|
| 5070 | C |
---|
| 5071 | C-- INDICES FOR PADE APPROXIMATION 1 15 29 45 |
---|
| 5072 | DATA (GA(11,15,IC),IC=1,3) / |
---|
| 5073 | S 0.13381108E+02, 0.22836093E+02, 0.00000000E+00/ |
---|
| 5074 | DATA (GB(11,15,IC),IC=1,3) / |
---|
| 5075 | S 0.13381108E+02, 0.22845354E+02, 0.10000000E+01/ |
---|
| 5076 | DATA (GA(11,16,IC),IC=1,3) / |
---|
| 5077 | S 0.13553282E+02, 0.23267456E+02, 0.00000000E+00/ |
---|
| 5078 | DATA (GB(11,16,IC),IC=1,3) / |
---|
| 5079 | S 0.13553282E+02, 0.23276638E+02, 0.10000000E+01/ |
---|
| 5080 | |
---|
| 5081 | C ------------------------------------------------------------------ |
---|
| 5082 | DATA (( XP( J,K),J=1,6), K=1,6) / |
---|
| 5083 | S 0.46430621E+02, 0.12928299E+03, 0.20732648E+03, |
---|
| 5084 | S 0.31398411E+03, 0.18373177E+03,-0.11412303E+03, |
---|
| 5085 | S 0.73604774E+02, 0.27887914E+03, 0.27076947E+03, |
---|
| 5086 | S-0.57322111E+02,-0.64742459E+02, 0.87238280E+02, |
---|
| 5087 | S 0.37050866E+02, 0.20498759E+03, 0.37558029E+03, |
---|
| 5088 | S 0.17401171E+03,-0.13350302E+03,-0.37651795E+02, |
---|
| 5089 | S 0.14930141E+02, 0.89161160E+02, 0.17793062E+03, |
---|
| 5090 | S 0.93433860E+02,-0.70646020E+02,-0.26373150E+02, |
---|
| 5091 | S 0.40386780E+02, 0.10855270E+03, 0.50755010E+02, |
---|
| 5092 | S-0.31496190E+02, 0.12791300E+00, 0.18017770E+01, |
---|
| 5093 | S 0.90811926E+01, 0.75073923E+02, 0.24654438E+03, |
---|
| 5094 | S 0.39332612E+03, 0.29385281E+03, 0.89107921E+02 / |
---|
| 5095 | C |
---|
| 5096 | C |
---|
| 5097 | C* 1.0 PLANCK FUNCTIONS AND GRADIENTS |
---|
| 5098 | C ------------------------------ |
---|
| 5099 | C |
---|
| 5100 | 100 CONTINUE |
---|
| 5101 | C |
---|
| 5102 | DO 102 JK = 1 , KFLEV+1 |
---|
| 5103 | DO 101 JL = 1, KDLON |
---|
| 5104 | PBINT(JL,JK) = 0. |
---|
| 5105 | 101 CONTINUE |
---|
| 5106 | 102 CONTINUE |
---|
| 5107 | DO 103 JL = 1, KDLON |
---|
| 5108 | PBSUIN(JL) = 0. |
---|
| 5109 | 103 CONTINUE |
---|
| 5110 | C |
---|
| 5111 | DO 141 JNU=1,Ninter |
---|
| 5112 | C |
---|
| 5113 | C |
---|
| 5114 | C* 1.1 LEVELS FROM SURFACE TO KFLEV |
---|
| 5115 | C ---------------------------- |
---|
| 5116 | C |
---|
| 5117 | 110 CONTINUE |
---|
| 5118 | C |
---|
| 5119 | DO 112 JK = 1 , KFLEV |
---|
| 5120 | DO 111 JL = 1, KDLON |
---|
| 5121 | ZTI(JL)=(PTL(JL,JK)-TSTAND)/TSTAND |
---|
| 5122 | ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU) |
---|
| 5123 | S +ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU) |
---|
| 5124 | S ))))) |
---|
| 5125 | PBINT(JL,JK)=PBINT(JL,JK)+ZRES(JL) |
---|
| 5126 | PB(JL,JNU,JK)= ZRES(JL) |
---|
| 5127 | ZBLEV(JL,JK) = ZRES(JL) |
---|
| 5128 | ZTI2(JL)=(PTAVE(JL,JK)-TSTAND)/TSTAND |
---|
| 5129 | ZRES2(JL)=XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU) |
---|
| 5130 | S +ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,JNU) |
---|
| 5131 | S ))))) |
---|
| 5132 | ZBLAY(JL,JK) = ZRES2(JL) |
---|
| 5133 | 111 CONTINUE |
---|
| 5134 | 112 CONTINUE |
---|
| 5135 | C |
---|
| 5136 | C |
---|
| 5137 | C* 1.2 TOP OF THE ATMOSPHERE AND SURFACE |
---|
| 5138 | C --------------------------------- |
---|
| 5139 | C |
---|
| 5140 | 120 CONTINUE |
---|
| 5141 | C |
---|
| 5142 | DO 121 JL = 1, KDLON |
---|
| 5143 | ZTI(JL)=(PTL(JL,KFLEV+1)-TSTAND)/TSTAND |
---|
| 5144 | ZTI2(JL) = (PTL(JL,1) + PDT0(JL) - TSTAND) / TSTAND |
---|
| 5145 | ZRES(JL) = XP(1,JNU)+ZTI(JL)*(XP(2,JNU)+ZTI(JL)*(XP(3,JNU) |
---|
| 5146 | S +ZTI(JL)*(XP(4,JNU)+ZTI(JL)*(XP(5,JNU)+ZTI(JL)*(XP(6,JNU) |
---|
| 5147 | S ))))) |
---|
| 5148 | ZRES2(JL) = XP(1,JNU)+ZTI2(JL)*(XP(2,JNU)+ZTI2(JL)*(XP(3,JNU) |
---|
| 5149 | S +ZTI2(JL)*(XP(4,JNU)+ZTI2(JL)*(XP(5,JNU)+ZTI2(JL)*(XP(6,JNU) |
---|
| 5150 | S ))))) |
---|
| 5151 | PBINT(JL,KFLEV+1) = PBINT(JL,KFLEV+1)+ZRES(JL) |
---|
| 5152 | PB(JL,JNU,KFLEV+1)= ZRES(JL) |
---|
| 5153 | ZBLEV(JL,KFLEV+1) = ZRES(JL) |
---|
| 5154 | PBTOP(JL,JNU) = ZRES(JL) |
---|
| 5155 | PBSUR(JL,JNU) = ZRES2(JL) |
---|
| 5156 | PBSUIN(JL) = PBSUIN(JL) + ZRES2(JL) |
---|
| 5157 | 121 CONTINUE |
---|
| 5158 | C |
---|
| 5159 | C |
---|
| 5160 | C* 1.3 GRADIENTS IN SUB-LAYERS |
---|
| 5161 | C ----------------------- |
---|
| 5162 | C |
---|
| 5163 | 130 CONTINUE |
---|
| 5164 | C |
---|
| 5165 | DO 132 JK = 1 , KFLEV |
---|
| 5166 | JK2 = 2 * JK |
---|
| 5167 | JK1 = JK2 - 1 |
---|
| 5168 | DO 131 JL = 1, KDLON |
---|
| 5169 | PDBSL(JL,JNU,JK1) = ZBLAY(JL,JK ) - ZBLEV(JL,JK) |
---|
| 5170 | PDBSL(JL,JNU,JK2) = ZBLEV(JL,JK+1) - ZBLAY(JL,JK) |
---|
| 5171 | 131 CONTINUE |
---|
| 5172 | 132 CONTINUE |
---|
| 5173 | C |
---|
| 5174 | 141 CONTINUE |
---|
| 5175 | C |
---|
| 5176 | C* 2.0 CHOOSE THE RELEVANT SETS OF PADE APPROXIMANTS |
---|
| 5177 | C --------------------------------------------- |
---|
| 5178 | C |
---|
| 5179 | 200 CONTINUE |
---|
| 5180 | C |
---|
| 5181 | C |
---|
| 5182 | 210 CONTINUE |
---|
| 5183 | C |
---|
| 5184 | DO 211 JL=1, KDLON |
---|
| 5185 | ZDSTO1 = (PTL(JL,KFLEV+1)-TINTP(1)) / TSTP |
---|
| 5186 | IXTOX = MAX( 1, MIN( MXIXT, INT( ZDSTO1 + 1. ) ) ) |
---|
| 5187 | ZDSTOX = (PTL(JL,KFLEV+1)-TINTP(IXTOX))/TSTP |
---|
| 5188 | IF (ZDSTOX.LT.0.5) THEN |
---|
| 5189 | INDTO=IXTOX |
---|
| 5190 | ELSE |
---|
| 5191 | INDTO=IXTOX+1 |
---|
| 5192 | END IF |
---|
| 5193 | INDB(JL)=INDTO |
---|
| 5194 | ZDST1 = (PTL(JL,1)-TINTP(1)) / TSTP |
---|
| 5195 | IXTX = MAX( 1, MIN( MXIXT, INT( ZDST1 + 1. ) ) ) |
---|
| 5196 | ZDSTX = (PTL(JL,1)-TINTP(IXTX))/TSTP |
---|
| 5197 | IF (ZDSTX.LT.0.5) THEN |
---|
| 5198 | INDT=IXTX |
---|
| 5199 | ELSE |
---|
| 5200 | INDT=IXTX+1 |
---|
| 5201 | END IF |
---|
| 5202 | INDS(JL)=INDT |
---|
| 5203 | 211 CONTINUE |
---|
| 5204 | C |
---|
| 5205 | DO 214 JF=1,2 |
---|
| 5206 | DO 213 JG=1, 8 |
---|
| 5207 | DO 212 JL=1, KDLON |
---|
| 5208 | INDSU=INDS(JL) |
---|
| 5209 | PGASUR(JL,JG,JF)=GA(INDSU,2*JG-1,JF) |
---|
| 5210 | PGBSUR(JL,JG,JF)=GB(INDSU,2*JG-1,JF) |
---|
| 5211 | INDTP=INDB(JL) |
---|
| 5212 | PGATOP(JL,JG,JF)=GA(INDTP,2*JG-1,JF) |
---|
| 5213 | PGBTOP(JL,JG,JF)=GB(INDTP,2*JG-1,JF) |
---|
| 5214 | 212 CONTINUE |
---|
| 5215 | 213 CONTINUE |
---|
| 5216 | 214 CONTINUE |
---|
| 5217 | C |
---|
| 5218 | 220 CONTINUE |
---|
| 5219 | C |
---|
| 5220 | DO 225 JK=1,KFLEV |
---|
| 5221 | DO 221 JL=1, KDLON |
---|
| 5222 | ZDST1 = (PTAVE(JL,JK)-TINTP(1)) / TSTP |
---|
| 5223 | IXTX = MAX( 1, MIN( MXIXT, INT( ZDST1 + 1. ) ) ) |
---|
| 5224 | ZDSTX = (PTAVE(JL,JK)-TINTP(IXTX))/TSTP |
---|
| 5225 | IF (ZDSTX.LT.0.5) THEN |
---|
| 5226 | INDT=IXTX |
---|
| 5227 | ELSE |
---|
| 5228 | INDT=IXTX+1 |
---|
| 5229 | END IF |
---|
| 5230 | INDB(JL)=INDT |
---|
| 5231 | 221 CONTINUE |
---|
| 5232 | C |
---|
| 5233 | DO 224 JF=1,2 |
---|
| 5234 | DO 223 JG=1, 8 |
---|
| 5235 | DO 222 JL=1, KDLON |
---|
| 5236 | INDT=INDB(JL) |
---|
| 5237 | PGA(JL,JG,JF,JK)=GA(INDT,2*JG,JF) |
---|
| 5238 | PGB(JL,JG,JF,JK)=GB(INDT,2*JG,JF) |
---|
| 5239 | 222 CONTINUE |
---|
| 5240 | 223 CONTINUE |
---|
| 5241 | 224 CONTINUE |
---|
| 5242 | 225 CONTINUE |
---|
| 5243 | C |
---|
| 5244 | C ------------------------------------------------------------------ |
---|
| 5245 | C |
---|
| 5246 | RETURN |
---|
| 5247 | END |
---|
| 5248 | SUBROUTINE LWV(KUAER,KTRAER, KLIM |
---|
| 5249 | R , PABCU,PB,PBINT,PBSUIN,PBSUR,PBTOP,PDBSL,PEMIS,PPMB,PTAVE |
---|
| 5250 | R , PGA,PGB,PGASUR,PGBSUR,PGATOP,PGBTOP |
---|
| 5251 | S , PCNTRB,PCTS,PFLUC) |
---|
| 5252 | IMPLICIT none |
---|
| 5253 | #include "dimensions.h" |
---|
| 5254 | #include "dimphy.h" |
---|
| 5255 | #include "raddim.h" |
---|
| 5256 | #include "raddimlw.h" |
---|
| 5257 | #include "YOMCST.h" |
---|
| 5258 | C |
---|
| 5259 | C----------------------------------------------------------------------- |
---|
| 5260 | C PURPOSE. |
---|
| 5261 | C -------- |
---|
| 5262 | C CARRIES OUT THE VERTICAL INTEGRATION TO GIVE LONGWAVE |
---|
| 5263 | C FLUXES OR RADIANCES |
---|
| 5264 | C |
---|
| 5265 | C METHOD. |
---|
| 5266 | C ------- |
---|
| 5267 | C |
---|
| 5268 | C 1. PERFORMS THE VERTICAL INTEGRATION DISTINGUISHING BETWEEN |
---|
| 5269 | C CONTRIBUTIONS BY - THE NEARBY LAYERS |
---|
| 5270 | C - THE DISTANT LAYERS |
---|
| 5271 | C - THE BOUNDARY TERMS |
---|
| 5272 | C 2. COMPUTES THE CLEAR-SKY DOWNWARD AND UPWARD EMISSIVITIES. |
---|
| 5273 | C |
---|
| 5274 | C REFERENCE. |
---|
| 5275 | C ---------- |
---|
| 5276 | C |
---|
| 5277 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5278 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5279 | C |
---|
| 5280 | C AUTHOR. |
---|
| 5281 | C ------- |
---|
| 5282 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5283 | C |
---|
| 5284 | C MODIFICATIONS. |
---|
| 5285 | C -------------- |
---|
| 5286 | C ORIGINAL : 89-07-14 |
---|
| 5287 | C----------------------------------------------------------------------- |
---|
| 5288 | C |
---|
| 5289 | C* ARGUMENTS: |
---|
| 5290 | INTEGER KUAER,KTRAER, KLIM |
---|
| 5291 | C |
---|
| 5292 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) ! EFFECTIVE ABSORBER AMOUNTS |
---|
| 5293 | REAL*8 PB(KDLON,Ninter,KFLEV+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 5294 | REAL*8 PBINT(KDLON,KFLEV+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 5295 | REAL*8 PBSUR(KDLON,Ninter) ! SURFACE SPECTRAL PLANCK FUNCTION |
---|
| 5296 | REAL*8 PBSUIN(KDLON) ! SURFACE PLANCK FUNCTION |
---|
| 5297 | REAL*8 PBTOP(KDLON,Ninter) ! T.O.A. SPECTRAL PLANCK FUNCTION |
---|
| 5298 | REAL*8 PDBSL(KDLON,Ninter,KFLEV*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 5299 | REAL*8 PEMIS(KDLON) ! SURFACE EMISSIVITY |
---|
| 5300 | REAL*8 PPMB(KDLON,KFLEV+1) ! HALF-LEVEL PRESSURE (MB) |
---|
| 5301 | REAL*8 PTAVE(KDLON,KFLEV) ! TEMPERATURE |
---|
| 5302 | REAL*8 PGA(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5303 | REAL*8 PGB(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5304 | REAL*8 PGASUR(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 5305 | REAL*8 PGBSUR(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 5306 | REAL*8 PGATOP(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 5307 | REAL*8 PGBTOP(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 5308 | C |
---|
| 5309 | REAL*8 PCNTRB(KDLON,KFLEV+1,KFLEV+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 5310 | REAL*8 PCTS(KDLON,KFLEV) ! COOLING-TO-SPACE TERM |
---|
| 5311 | REAL*8 PFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 5312 | C----------------------------------------------------------------------- |
---|
| 5313 | C LOCAL VARIABLES: |
---|
| 5314 | REAL*8 ZADJD(KDLON,KFLEV+1) |
---|
| 5315 | REAL*8 ZADJU(KDLON,KFLEV+1) |
---|
| 5316 | REAL*8 ZDBDT(KDLON,Ninter,KFLEV) |
---|
| 5317 | REAL*8 ZDISD(KDLON,KFLEV+1) |
---|
| 5318 | REAL*8 ZDISU(KDLON,KFLEV+1) |
---|
| 5319 | C |
---|
| 5320 | INTEGER jk, jl |
---|
| 5321 | C----------------------------------------------------------------------- |
---|
| 5322 | C |
---|
| 5323 | DO 112 JK=1,KFLEV+1 |
---|
| 5324 | DO 111 JL=1, KDLON |
---|
| 5325 | ZADJD(JL,JK)=0. |
---|
| 5326 | ZADJU(JL,JK)=0. |
---|
| 5327 | ZDISD(JL,JK)=0. |
---|
| 5328 | ZDISU(JL,JK)=0. |
---|
| 5329 | 111 CONTINUE |
---|
| 5330 | 112 CONTINUE |
---|
| 5331 | C |
---|
| 5332 | DO 114 JK=1,KFLEV |
---|
| 5333 | DO 113 JL=1, KDLON |
---|
| 5334 | PCTS(JL,JK)=0. |
---|
| 5335 | 113 CONTINUE |
---|
| 5336 | 114 CONTINUE |
---|
| 5337 | C |
---|
| 5338 | C* CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 5339 | C |
---|
| 5340 | CALL LWVN(KUAER,KTRAER |
---|
| 5341 | R , PABCU,PDBSL,PGA,PGB |
---|
| 5342 | S , ZADJD,ZADJU,PCNTRB,ZDBDT) |
---|
| 5343 | C* CONTRIBUTION FROM DISTANT LAYERS |
---|
| 5344 | C |
---|
| 5345 | CALL LWVD(KUAER,KTRAER |
---|
| 5346 | R , PABCU,ZDBDT,PGA,PGB |
---|
| 5347 | S , PCNTRB,ZDISD,ZDISU) |
---|
| 5348 | C |
---|
| 5349 | C* EXCHANGE WITH THE BOUNDARIES |
---|
| 5350 | C |
---|
| 5351 | CALL LWVB(KUAER,KTRAER, KLIM |
---|
| 5352 | R , PABCU,ZADJD,ZADJU,PB,PBINT,PBSUIN,PBSUR,PBTOP |
---|
| 5353 | R , ZDISD,ZDISU,PEMIS,PPMB |
---|
| 5354 | R , PGA,PGB,PGASUR,PGBSUR,PGATOP,PGBTOP |
---|
| 5355 | S , PCTS,PFLUC) |
---|
| 5356 | C |
---|
| 5357 | C |
---|
| 5358 | RETURN |
---|
| 5359 | END |
---|
| 5360 | SUBROUTINE LWVB(KUAER,KTRAER, KLIM |
---|
| 5361 | R , PABCU,PADJD,PADJU,PB,PBINT,PBSUI,PBSUR,PBTOP |
---|
| 5362 | R , PDISD,PDISU,PEMIS,PPMB |
---|
| 5363 | R , PGA,PGB,PGASUR,PGBSUR,PGATOP,PGBTOP |
---|
| 5364 | S , PCTS,PFLUC) |
---|
| 5365 | IMPLICIT none |
---|
| 5366 | #include "dimensions.h" |
---|
| 5367 | #include "dimphy.h" |
---|
| 5368 | #include "raddim.h" |
---|
| 5369 | #include "raddimlw.h" |
---|
| 5370 | #include "radopt.h" |
---|
| 5371 | C |
---|
| 5372 | C----------------------------------------------------------------------- |
---|
| 5373 | C PURPOSE. |
---|
| 5374 | C -------- |
---|
| 5375 | C INTRODUCES THE EFFECTS OF THE BOUNDARIES IN THE VERTICAL |
---|
| 5376 | C INTEGRATION |
---|
| 5377 | C |
---|
| 5378 | C METHOD. |
---|
| 5379 | C ------- |
---|
| 5380 | C |
---|
| 5381 | C 1. COMPUTES THE ENERGY EXCHANGE WITH TOP AND SURFACE OF THE |
---|
| 5382 | C ATMOSPHERE |
---|
| 5383 | C 2. COMPUTES THE COOLING-TO-SPACE AND HEATING-FROM-GROUND |
---|
| 5384 | C TERMS FOR THE APPROXIMATE COOLING RATE ABOVE 10 HPA |
---|
| 5385 | C 3. ADDS UP ALL CONTRIBUTIONS TO GET THE CLEAR-SKY FLUXES |
---|
| 5386 | C |
---|
| 5387 | C REFERENCE. |
---|
| 5388 | C ---------- |
---|
| 5389 | C |
---|
| 5390 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5391 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5392 | C |
---|
| 5393 | C AUTHOR. |
---|
| 5394 | C ------- |
---|
| 5395 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5396 | C |
---|
| 5397 | C MODIFICATIONS. |
---|
| 5398 | C -------------- |
---|
| 5399 | C ORIGINAL : 89-07-14 |
---|
| 5400 | C Voigt lines (loop 2413 to 2427) - JJM & PhD - 01/96 |
---|
| 5401 | C----------------------------------------------------------------------- |
---|
| 5402 | C |
---|
| 5403 | C* 0.1 ARGUMENTS |
---|
| 5404 | C --------- |
---|
| 5405 | C |
---|
| 5406 | INTEGER KUAER,KTRAER, KLIM |
---|
| 5407 | C |
---|
| 5408 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) ! ABSORBER AMOUNTS |
---|
| 5409 | REAL*8 PADJD(KDLON,KFLEV+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 5410 | REAL*8 PADJU(KDLON,KFLEV+1) ! CONTRIBUTION BY ADJACENT LAYERS |
---|
| 5411 | REAL*8 PB(KDLON,Ninter,KFLEV+1) ! SPECTRAL HALF-LEVEL PLANCK FUNCTIONS |
---|
| 5412 | REAL*8 PBINT(KDLON,KFLEV+1) ! HALF-LEVEL PLANCK FUNCTIONS |
---|
| 5413 | REAL*8 PBSUR(KDLON,Ninter) ! SPECTRAL SURFACE PLANCK FUNCTION |
---|
| 5414 | REAL*8 PBSUI(KDLON) ! SURFACE PLANCK FUNCTION |
---|
| 5415 | REAL*8 PBTOP(KDLON,Ninter) ! SPECTRAL T.O.A. PLANCK FUNCTION |
---|
| 5416 | REAL*8 PDISD(KDLON,KFLEV+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 5417 | REAL*8 PDISU(KDLON,KFLEV+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 5418 | REAL*8 PEMIS(KDLON) ! SURFACE EMISSIVITY |
---|
| 5419 | REAL*8 PPMB(KDLON,KFLEV+1) ! PRESSURE MB |
---|
| 5420 | REAL*8 PGA(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5421 | REAL*8 PGB(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5422 | REAL*8 PGASUR(KDLON,8,2) ! SURFACE PADE APPROXIMANTS |
---|
| 5423 | REAL*8 PGBSUR(KDLON,8,2) ! SURFACE PADE APPROXIMANTS |
---|
| 5424 | REAL*8 PGATOP(KDLON,8,2) ! T.O.A. PADE APPROXIMANTS |
---|
| 5425 | REAL*8 PGBTOP(KDLON,8,2) ! T.O.A. PADE APPROXIMANTS |
---|
| 5426 | C |
---|
| 5427 | REAL*8 PFLUC(KDLON,2,KFLEV+1) ! CLEAR-SKY RADIATIVE FLUXES |
---|
| 5428 | REAL*8 PCTS(KDLON,KFLEV) ! COOLING-TO-SPACE TERM |
---|
| 5429 | C |
---|
| 5430 | C* LOCAL VARIABLES: |
---|
| 5431 | C |
---|
| 5432 | REAL*8 ZBGND(KDLON) |
---|
| 5433 | REAL*8 ZFD(KDLON) |
---|
| 5434 | REAL*8 ZFN10(KDLON) |
---|
| 5435 | REAL*8 ZFU(KDLON) |
---|
| 5436 | REAL*8 ZTT(KDLON,NTRA) |
---|
| 5437 | REAL*8 ZTT1(KDLON,NTRA) |
---|
| 5438 | REAL*8 ZTT2(KDLON,NTRA) |
---|
| 5439 | REAL*8 ZUU(KDLON,NUA) |
---|
| 5440 | REAL*8 ZCNSOL(KDLON) |
---|
| 5441 | REAL*8 ZCNTOP(KDLON) |
---|
| 5442 | C |
---|
| 5443 | INTEGER jk, jl, ja |
---|
| 5444 | INTEGER jstra, jstru |
---|
| 5445 | INTEGER ind1, ind2, ind3, ind4, in, jlim |
---|
| 5446 | REAL*8 zctstr |
---|
| 5447 | C----------------------------------------------------------------------- |
---|
| 5448 | C |
---|
| 5449 | C* 1. INITIALIZATION |
---|
| 5450 | C -------------- |
---|
| 5451 | C |
---|
| 5452 | 100 CONTINUE |
---|
| 5453 | C |
---|
| 5454 | C |
---|
| 5455 | C* 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 5456 | C --------------------------------- |
---|
| 5457 | C |
---|
| 5458 | 120 CONTINUE |
---|
| 5459 | C |
---|
| 5460 | DO 122 JA=1,NTRA |
---|
| 5461 | DO 121 JL=1, KDLON |
---|
| 5462 | ZTT (JL,JA)=1.0 |
---|
| 5463 | ZTT1(JL,JA)=1.0 |
---|
| 5464 | ZTT2(JL,JA)=1.0 |
---|
| 5465 | 121 CONTINUE |
---|
| 5466 | 122 CONTINUE |
---|
| 5467 | C |
---|
| 5468 | DO 124 JA=1,NUA |
---|
| 5469 | DO 123 JL=1, KDLON |
---|
| 5470 | ZUU(JL,JA)=1.0 |
---|
| 5471 | 123 CONTINUE |
---|
| 5472 | 124 CONTINUE |
---|
| 5473 | C |
---|
| 5474 | C ------------------------------------------------------------------ |
---|
| 5475 | C |
---|
| 5476 | C* 2. VERTICAL INTEGRATION |
---|
| 5477 | C -------------------- |
---|
| 5478 | C |
---|
| 5479 | 200 CONTINUE |
---|
| 5480 | C |
---|
| 5481 | IND1=0 |
---|
| 5482 | IND3=0 |
---|
| 5483 | IND4=1 |
---|
| 5484 | IND2=1 |
---|
| 5485 | C |
---|
| 5486 | C |
---|
| 5487 | C* 2.3 EXCHANGE WITH TOP OF THE ATMOSPHERE |
---|
| 5488 | C ----------------------------------- |
---|
| 5489 | C |
---|
| 5490 | 230 CONTINUE |
---|
| 5491 | C |
---|
| 5492 | DO 235 JK = 1 , KFLEV |
---|
| 5493 | IN=(JK-1)*NG1P1+1 |
---|
| 5494 | C |
---|
| 5495 | DO 232 JA=1,KUAER |
---|
| 5496 | DO 231 JL=1, KDLON |
---|
| 5497 | ZUU(JL,JA)=PABCU(JL,JA,IN) |
---|
| 5498 | 231 CONTINUE |
---|
| 5499 | 232 CONTINUE |
---|
| 5500 | C |
---|
| 5501 | C |
---|
| 5502 | CALL LWTT(PGATOP(1,1,1), PGBTOP(1,1,1), ZUU, ZTT) |
---|
| 5503 | C |
---|
| 5504 | DO 234 JL = 1, KDLON |
---|
| 5505 | ZCNTOP(JL)=PBTOP(JL,1)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 5506 | 2 +PBTOP(JL,2)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 5507 | 3 +PBTOP(JL,3)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 5508 | 4 +PBTOP(JL,4)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 5509 | 5 +PBTOP(JL,5)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 5510 | 6 +PBTOP(JL,6)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 5511 | ZFD(JL)=ZCNTOP(JL)-PBINT(JL,JK)-PDISD(JL,JK)-PADJD(JL,JK) |
---|
| 5512 | PFLUC(JL,2,JK)=ZFD(JL) |
---|
| 5513 | 234 CONTINUE |
---|
| 5514 | C |
---|
| 5515 | 235 CONTINUE |
---|
| 5516 | C |
---|
| 5517 | JK = KFLEV+1 |
---|
| 5518 | IN=(JK-1)*NG1P1+1 |
---|
| 5519 | C |
---|
| 5520 | DO 236 JL = 1, KDLON |
---|
| 5521 | ZCNTOP(JL)= PBTOP(JL,1) |
---|
| 5522 | 1 + PBTOP(JL,2) |
---|
| 5523 | 2 + PBTOP(JL,3) |
---|
| 5524 | 3 + PBTOP(JL,4) |
---|
| 5525 | 4 + PBTOP(JL,5) |
---|
| 5526 | 5 + PBTOP(JL,6) |
---|
| 5527 | ZFD(JL)=ZCNTOP(JL)-PBINT(JL,JK)-PDISD(JL,JK)-PADJD(JL,JK) |
---|
| 5528 | PFLUC(JL,2,JK)=ZFD(JL) |
---|
| 5529 | 236 CONTINUE |
---|
| 5530 | C |
---|
| 5531 | C* 2.4 COOLING-TO-SPACE OF LAYERS ABOVE 10 HPA |
---|
| 5532 | C --------------------------------------- |
---|
| 5533 | C |
---|
| 5534 | 240 CONTINUE |
---|
| 5535 | C |
---|
| 5536 | C |
---|
| 5537 | C* 2.4.1 INITIALIZATION |
---|
| 5538 | C -------------- |
---|
| 5539 | C |
---|
| 5540 | 2410 CONTINUE |
---|
| 5541 | C |
---|
| 5542 | JLIM = KFLEV |
---|
| 5543 | C |
---|
| 5544 | IF (.NOT.LEVOIGT) THEN |
---|
| 5545 | DO 2412 JK = KFLEV,1,-1 |
---|
| 5546 | IF(PPMB(1,JK).LT.10.0) THEN |
---|
| 5547 | JLIM=JK |
---|
| 5548 | ENDIF |
---|
| 5549 | 2412 CONTINUE |
---|
| 5550 | ENDIF |
---|
| 5551 | KLIM=JLIM |
---|
| 5552 | C |
---|
| 5553 | IF (.NOT.LEVOIGT) THEN |
---|
| 5554 | DO 2414 JA=1,KTRAER |
---|
| 5555 | DO 2413 JL=1, KDLON |
---|
| 5556 | ZTT1(JL,JA)=1.0 |
---|
| 5557 | 2413 CONTINUE |
---|
| 5558 | 2414 CONTINUE |
---|
| 5559 | C |
---|
| 5560 | C* 2.4.2 LOOP OVER LAYERS ABOVE 10 HPA |
---|
| 5561 | C ----------------------------- |
---|
| 5562 | C |
---|
| 5563 | 2420 CONTINUE |
---|
| 5564 | C |
---|
| 5565 | DO 2427 JSTRA = KFLEV,JLIM,-1 |
---|
| 5566 | JSTRU=(JSTRA-1)*NG1P1+1 |
---|
| 5567 | C |
---|
| 5568 | DO 2423 JA=1,KUAER |
---|
| 5569 | DO 2422 JL=1, KDLON |
---|
| 5570 | ZUU(JL,JA)=PABCU(JL,JA,JSTRU) |
---|
| 5571 | 2422 CONTINUE |
---|
| 5572 | 2423 CONTINUE |
---|
| 5573 | C |
---|
| 5574 | C |
---|
| 5575 | CALL LWTT(PGA(1,1,1,JSTRA), PGB(1,1,1,JSTRA), ZUU, ZTT) |
---|
| 5576 | C |
---|
| 5577 | DO 2424 JL = 1, KDLON |
---|
| 5578 | ZCTSTR = |
---|
| 5579 | 1 (PB(JL,1,JSTRA)+PB(JL,1,JSTRA+1)) |
---|
| 5580 | 1 *(ZTT1(JL,1) *ZTT1(JL,10) |
---|
| 5581 | 1 - ZTT (JL,1) *ZTT (JL,10)) |
---|
| 5582 | 2 +(PB(JL,2,JSTRA)+PB(JL,2,JSTRA+1)) |
---|
| 5583 | 2 *(ZTT1(JL,2)*ZTT1(JL,7)*ZTT1(JL,11) |
---|
| 5584 | 2 - ZTT (JL,2)*ZTT (JL,7)*ZTT (JL,11)) |
---|
| 5585 | 3 +(PB(JL,3,JSTRA)+PB(JL,3,JSTRA+1)) |
---|
| 5586 | 3 *(ZTT1(JL,4)*ZTT1(JL,8)*ZTT1(JL,12) |
---|
| 5587 | 3 - ZTT (JL,4)*ZTT (JL,8)*ZTT (JL,12)) |
---|
| 5588 | 4 +(PB(JL,4,JSTRA)+PB(JL,4,JSTRA+1)) |
---|
| 5589 | 4 *(ZTT1(JL,5)*ZTT1(JL,9)*ZTT1(JL,13) |
---|
| 5590 | 4 - ZTT (JL,5)*ZTT (JL,9)*ZTT (JL,13)) |
---|
| 5591 | 5 +(PB(JL,5,JSTRA)+PB(JL,5,JSTRA+1)) |
---|
| 5592 | 5 *(ZTT1(JL,3) *ZTT1(JL,14) |
---|
| 5593 | 5 - ZTT (JL,3) *ZTT (JL,14)) |
---|
| 5594 | 6 +(PB(JL,6,JSTRA)+PB(JL,6,JSTRA+1)) |
---|
| 5595 | 6 *(ZTT1(JL,6) *ZTT1(JL,15) |
---|
| 5596 | 6 - ZTT (JL,6) *ZTT (JL,15)) |
---|
| 5597 | PCTS(JL,JSTRA)=ZCTSTR*0.5 |
---|
| 5598 | 2424 CONTINUE |
---|
| 5599 | DO 2426 JA=1,KTRAER |
---|
| 5600 | DO 2425 JL=1, KDLON |
---|
| 5601 | ZTT1(JL,JA)=ZTT(JL,JA) |
---|
| 5602 | 2425 CONTINUE |
---|
| 5603 | 2426 CONTINUE |
---|
| 5604 | 2427 CONTINUE |
---|
| 5605 | ENDIF |
---|
| 5606 | C Mise a zero de securite pour PCTS en cas de LEVOIGT |
---|
| 5607 | IF(LEVOIGT)THEN |
---|
| 5608 | DO 2429 JSTRA = 1,KFLEV |
---|
| 5609 | DO 2428 JL = 1, KDLON |
---|
| 5610 | PCTS(JL,JSTRA)=0. |
---|
| 5611 | 2428 CONTINUE |
---|
| 5612 | 2429 CONTINUE |
---|
| 5613 | ENDIF |
---|
| 5614 | C |
---|
| 5615 | C |
---|
| 5616 | C* 2.5 EXCHANGE WITH LOWER LIMIT |
---|
| 5617 | C ------------------------- |
---|
| 5618 | C |
---|
| 5619 | 250 CONTINUE |
---|
| 5620 | C |
---|
| 5621 | DO 251 JL = 1, KDLON |
---|
| 5622 | ZBGND(JL)=PBSUI(JL)*PEMIS(JL)-(1.-PEMIS(JL)) |
---|
| 5623 | S *PFLUC(JL,2,1)-PBINT(JL,1) |
---|
| 5624 | 251 CONTINUE |
---|
| 5625 | C |
---|
| 5626 | JK = 1 |
---|
| 5627 | IN=(JK-1)*NG1P1+1 |
---|
| 5628 | C |
---|
| 5629 | DO 252 JL = 1, KDLON |
---|
| 5630 | ZCNSOL(JL)=PBSUR(JL,1) |
---|
| 5631 | 1 +PBSUR(JL,2) |
---|
| 5632 | 2 +PBSUR(JL,3) |
---|
| 5633 | 3 +PBSUR(JL,4) |
---|
| 5634 | 4 +PBSUR(JL,5) |
---|
| 5635 | 5 +PBSUR(JL,6) |
---|
| 5636 | ZCNSOL(JL)=ZCNSOL(JL)*ZBGND(JL)/PBSUI(JL) |
---|
| 5637 | ZFU(JL)=ZCNSOL(JL)+PBINT(JL,JK)-PDISU(JL,JK)-PADJU(JL,JK) |
---|
| 5638 | PFLUC(JL,1,JK)=ZFU(JL) |
---|
| 5639 | 252 CONTINUE |
---|
| 5640 | C |
---|
| 5641 | DO 257 JK = 2 , KFLEV+1 |
---|
| 5642 | IN=(JK-1)*NG1P1+1 |
---|
| 5643 | C |
---|
| 5644 | C |
---|
| 5645 | DO 255 JA=1,KUAER |
---|
| 5646 | DO 254 JL=1, KDLON |
---|
| 5647 | ZUU(JL,JA)=PABCU(JL,JA,1)-PABCU(JL,JA,IN) |
---|
| 5648 | 254 CONTINUE |
---|
| 5649 | 255 CONTINUE |
---|
| 5650 | C |
---|
| 5651 | C |
---|
| 5652 | CALL LWTT(PGASUR(1,1,1), PGBSUR(1,1,1), ZUU, ZTT) |
---|
| 5653 | C |
---|
| 5654 | DO 256 JL = 1, KDLON |
---|
| 5655 | ZCNSOL(JL)=PBSUR(JL,1)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 5656 | 2 +PBSUR(JL,2)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 5657 | 3 +PBSUR(JL,3)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 5658 | 4 +PBSUR(JL,4)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 5659 | 5 +PBSUR(JL,5)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 5660 | 6 +PBSUR(JL,6)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 5661 | ZCNSOL(JL)=ZCNSOL(JL)*ZBGND(JL)/PBSUI(JL) |
---|
| 5662 | ZFU(JL)=ZCNSOL(JL)+PBINT(JL,JK)-PDISU(JL,JK)-PADJU(JL,JK) |
---|
| 5663 | PFLUC(JL,1,JK)=ZFU(JL) |
---|
| 5664 | 256 CONTINUE |
---|
| 5665 | C |
---|
| 5666 | C |
---|
| 5667 | 257 CONTINUE |
---|
| 5668 | C |
---|
| 5669 | C |
---|
| 5670 | C |
---|
| 5671 | C* 2.7 CLEAR-SKY FLUXES |
---|
| 5672 | C ---------------- |
---|
| 5673 | C |
---|
| 5674 | 270 CONTINUE |
---|
| 5675 | C |
---|
| 5676 | IF (.NOT.LEVOIGT) THEN |
---|
| 5677 | DO 271 JL = 1, KDLON |
---|
| 5678 | ZFN10(JL) = PFLUC(JL,1,JLIM) + PFLUC(JL,2,JLIM) |
---|
| 5679 | 271 CONTINUE |
---|
| 5680 | DO 273 JK = JLIM+1,KFLEV+1 |
---|
| 5681 | DO 272 JL = 1, KDLON |
---|
| 5682 | ZFN10(JL) = ZFN10(JL) + PCTS(JL,JK-1) |
---|
| 5683 | PFLUC(JL,1,JK) = ZFN10(JL) |
---|
| 5684 | PFLUC(JL,2,JK) = 0. |
---|
| 5685 | 272 CONTINUE |
---|
| 5686 | 273 CONTINUE |
---|
| 5687 | ENDIF |
---|
| 5688 | C |
---|
| 5689 | C ------------------------------------------------------------------ |
---|
| 5690 | C |
---|
| 5691 | RETURN |
---|
| 5692 | END |
---|
| 5693 | SUBROUTINE LWVD(KUAER,KTRAER |
---|
| 5694 | S , PABCU,PDBDT |
---|
| 5695 | R , PGA,PGB |
---|
| 5696 | S , PCNTRB,PDISD,PDISU) |
---|
| 5697 | IMPLICIT none |
---|
| 5698 | #include "dimensions.h" |
---|
| 5699 | #include "dimphy.h" |
---|
| 5700 | #include "raddim.h" |
---|
| 5701 | #include "raddimlw.h" |
---|
| 5702 | C |
---|
| 5703 | C----------------------------------------------------------------------- |
---|
| 5704 | C PURPOSE. |
---|
| 5705 | C -------- |
---|
| 5706 | C CARRIES OUT THE VERTICAL INTEGRATION ON THE DISTANT LAYERS |
---|
| 5707 | C |
---|
| 5708 | C METHOD. |
---|
| 5709 | C ------- |
---|
| 5710 | C |
---|
| 5711 | C 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 5712 | C CONTRIBUTIONS OF THE DISTANT LAYERS USING TRAPEZOIDAL RULE |
---|
| 5713 | C |
---|
| 5714 | C REFERENCE. |
---|
| 5715 | C ---------- |
---|
| 5716 | C |
---|
| 5717 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5718 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5719 | C |
---|
| 5720 | C AUTHOR. |
---|
| 5721 | C ------- |
---|
| 5722 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5723 | C |
---|
| 5724 | C MODIFICATIONS. |
---|
| 5725 | C -------------- |
---|
| 5726 | C ORIGINAL : 89-07-14 |
---|
| 5727 | C----------------------------------------------------------------------- |
---|
| 5728 | C* ARGUMENTS: |
---|
| 5729 | C |
---|
| 5730 | INTEGER KUAER,KTRAER |
---|
| 5731 | C |
---|
| 5732 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) ! ABSORBER AMOUNTS |
---|
| 5733 | REAL*8 PDBDT(KDLON,Ninter,KFLEV) ! LAYER PLANCK FUNCTION GRADIENT |
---|
| 5734 | REAL*8 PGA(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5735 | REAL*8 PGB(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5736 | C |
---|
| 5737 | REAL*8 PCNTRB(KDLON,KFLEV+1,KFLEV+1) ! ENERGY EXCHANGE MATRIX |
---|
| 5738 | REAL*8 PDISD(KDLON,KFLEV+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 5739 | REAL*8 PDISU(KDLON,KFLEV+1) ! CONTRIBUTION BY DISTANT LAYERS |
---|
| 5740 | C |
---|
| 5741 | C* LOCAL VARIABLES: |
---|
| 5742 | C |
---|
| 5743 | REAL*8 ZGLAYD(KDLON) |
---|
| 5744 | REAL*8 ZGLAYU(KDLON) |
---|
| 5745 | REAL*8 ZTT(KDLON,NTRA) |
---|
| 5746 | REAL*8 ZTT1(KDLON,NTRA) |
---|
| 5747 | REAL*8 ZTT2(KDLON,NTRA) |
---|
| 5748 | C |
---|
| 5749 | INTEGER jl, jk, ja, ikp1, ikn, ikd1, jkj, ikd2 |
---|
| 5750 | INTEGER ikjp1, ikm1, ikj, jlk, iku1, ijkl, iku2 |
---|
| 5751 | INTEGER ind1, ind2, ind3, ind4, itt |
---|
| 5752 | REAL*8 zww, zdzxdg, zdzxmg |
---|
| 5753 | C |
---|
| 5754 | C* 1. INITIALIZATION |
---|
| 5755 | C -------------- |
---|
| 5756 | C |
---|
| 5757 | 100 CONTINUE |
---|
| 5758 | C |
---|
| 5759 | C* 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 5760 | C ------------------------------ |
---|
| 5761 | C |
---|
| 5762 | 110 CONTINUE |
---|
| 5763 | C |
---|
| 5764 | DO 112 JK = 1, KFLEV+1 |
---|
| 5765 | DO 111 JL = 1, KDLON |
---|
| 5766 | PDISD(JL,JK) = 0. |
---|
| 5767 | PDISU(JL,JK) = 0. |
---|
| 5768 | 111 CONTINUE |
---|
| 5769 | 112 CONTINUE |
---|
| 5770 | C |
---|
| 5771 | C* 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 5772 | C --------------------------------- |
---|
| 5773 | C |
---|
| 5774 | 120 CONTINUE |
---|
| 5775 | C |
---|
| 5776 | C |
---|
| 5777 | DO 122 JA = 1, NTRA |
---|
| 5778 | DO 121 JL = 1, KDLON |
---|
| 5779 | ZTT (JL,JA) = 1.0 |
---|
| 5780 | ZTT1(JL,JA) = 1.0 |
---|
| 5781 | ZTT2(JL,JA) = 1.0 |
---|
| 5782 | 121 CONTINUE |
---|
| 5783 | 122 CONTINUE |
---|
| 5784 | C |
---|
| 5785 | C ------------------------------------------------------------------ |
---|
| 5786 | C |
---|
| 5787 | C* 2. VERTICAL INTEGRATION |
---|
| 5788 | C -------------------- |
---|
| 5789 | C |
---|
| 5790 | 200 CONTINUE |
---|
| 5791 | C |
---|
| 5792 | IND1=0 |
---|
| 5793 | IND3=0 |
---|
| 5794 | IND4=1 |
---|
| 5795 | IND2=1 |
---|
| 5796 | C |
---|
| 5797 | C |
---|
| 5798 | C* 2.2 CONTRIBUTION FROM DISTANT LAYERS |
---|
| 5799 | C --------------------------------- |
---|
| 5800 | C |
---|
| 5801 | 220 CONTINUE |
---|
| 5802 | C |
---|
| 5803 | C |
---|
| 5804 | C* 2.2.1 DISTANT AND ABOVE LAYERS |
---|
| 5805 | C ------------------------ |
---|
| 5806 | C |
---|
| 5807 | 2210 CONTINUE |
---|
| 5808 | C |
---|
| 5809 | C |
---|
| 5810 | C |
---|
| 5811 | C* 2.2.2 FIRST UPPER LEVEL |
---|
| 5812 | C ----------------- |
---|
| 5813 | C |
---|
| 5814 | 2220 CONTINUE |
---|
| 5815 | C |
---|
| 5816 | DO 225 JK = 1 , KFLEV-1 |
---|
| 5817 | IKP1=JK+1 |
---|
| 5818 | IKN=(JK-1)*NG1P1+1 |
---|
| 5819 | IKD1= JK *NG1P1+1 |
---|
| 5820 | C |
---|
| 5821 | CALL LWTTM(PGA(1,1,1,JK), PGB(1,1,1,JK) |
---|
| 5822 | 2 , PABCU(1,1,IKN),PABCU(1,1,IKD1),ZTT1) |
---|
| 5823 | C |
---|
| 5824 | C |
---|
| 5825 | C |
---|
| 5826 | C* 2.2.3 HIGHER UP |
---|
| 5827 | C --------- |
---|
| 5828 | C |
---|
| 5829 | 2230 CONTINUE |
---|
| 5830 | C |
---|
| 5831 | ITT=1 |
---|
| 5832 | DO 224 JKJ=IKP1,KFLEV |
---|
| 5833 | IF(ITT.EQ.1) THEN |
---|
| 5834 | ITT=2 |
---|
| 5835 | ELSE |
---|
| 5836 | ITT=1 |
---|
| 5837 | ENDIF |
---|
| 5838 | IKJP1=JKJ+1 |
---|
| 5839 | IKD2= JKJ *NG1P1+1 |
---|
| 5840 | C |
---|
| 5841 | IF(ITT.EQ.1) THEN |
---|
| 5842 | CALL LWTTM(PGA(1,1,1,JKJ),PGB(1,1,1,JKJ) |
---|
| 5843 | 2 , PABCU(1,1,IKN),PABCU(1,1,IKD2),ZTT1) |
---|
| 5844 | ELSE |
---|
| 5845 | CALL LWTTM(PGA(1,1,1,JKJ),PGB(1,1,1,JKJ) |
---|
| 5846 | 2 , PABCU(1,1,IKN),PABCU(1,1,IKD2),ZTT2) |
---|
| 5847 | ENDIF |
---|
| 5848 | C |
---|
| 5849 | DO 2235 JA = 1, KTRAER |
---|
| 5850 | DO 2234 JL = 1, KDLON |
---|
| 5851 | ZTT(JL,JA) = (ZTT1(JL,JA)+ZTT2(JL,JA))*0.5 |
---|
| 5852 | 2234 CONTINUE |
---|
| 5853 | 2235 CONTINUE |
---|
| 5854 | C |
---|
| 5855 | DO 2236 JL = 1, KDLON |
---|
| 5856 | ZWW=PDBDT(JL,1,JKJ)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 5857 | S +PDBDT(JL,2,JKJ)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 5858 | S +PDBDT(JL,3,JKJ)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 5859 | S +PDBDT(JL,4,JKJ)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 5860 | S +PDBDT(JL,5,JKJ)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 5861 | S +PDBDT(JL,6,JKJ)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 5862 | ZGLAYD(JL)=ZWW |
---|
| 5863 | ZDZXDG=ZGLAYD(JL) |
---|
| 5864 | PDISD(JL,JK)=PDISD(JL,JK)+ZDZXDG |
---|
| 5865 | PCNTRB(JL,JK,IKJP1)=ZDZXDG |
---|
| 5866 | 2236 CONTINUE |
---|
| 5867 | C |
---|
| 5868 | C |
---|
| 5869 | 224 CONTINUE |
---|
| 5870 | 225 CONTINUE |
---|
| 5871 | C |
---|
| 5872 | C |
---|
| 5873 | C* 2.2.4 DISTANT AND BELOW LAYERS |
---|
| 5874 | C ------------------------ |
---|
| 5875 | C |
---|
| 5876 | 2240 CONTINUE |
---|
| 5877 | C |
---|
| 5878 | C |
---|
| 5879 | C |
---|
| 5880 | C* 2.2.5 FIRST LOWER LEVEL |
---|
| 5881 | C ----------------- |
---|
| 5882 | C |
---|
| 5883 | 2250 CONTINUE |
---|
| 5884 | C |
---|
| 5885 | DO 228 JK=3,KFLEV+1 |
---|
| 5886 | IKN=(JK-1)*NG1P1+1 |
---|
| 5887 | IKM1=JK-1 |
---|
| 5888 | IKJ=JK-2 |
---|
| 5889 | IKU1= IKJ *NG1P1+1 |
---|
| 5890 | C |
---|
| 5891 | C |
---|
| 5892 | CALL LWTTM(PGA(1,1,1,IKJ),PGB(1,1,1,IKJ) |
---|
| 5893 | 2 , PABCU(1,1,IKU1),PABCU(1,1,IKN),ZTT1) |
---|
| 5894 | C |
---|
| 5895 | C |
---|
| 5896 | C |
---|
| 5897 | C* 2.2.6 DOWN BELOW |
---|
| 5898 | C ---------- |
---|
| 5899 | C |
---|
| 5900 | 2260 CONTINUE |
---|
| 5901 | C |
---|
| 5902 | ITT=1 |
---|
| 5903 | DO 227 JLK=1,IKJ |
---|
| 5904 | IF(ITT.EQ.1) THEN |
---|
| 5905 | ITT=2 |
---|
| 5906 | ELSE |
---|
| 5907 | ITT=1 |
---|
| 5908 | ENDIF |
---|
| 5909 | IJKL=IKM1-JLK |
---|
| 5910 | IKU2=(IJKL-1)*NG1P1+1 |
---|
| 5911 | C |
---|
| 5912 | C |
---|
| 5913 | IF(ITT.EQ.1) THEN |
---|
| 5914 | CALL LWTTM(PGA(1,1,1,IJKL),PGB(1,1,1,IJKL) |
---|
| 5915 | 2 , PABCU(1,1,IKU2),PABCU(1,1,IKN),ZTT1) |
---|
| 5916 | ELSE |
---|
| 5917 | CALL LWTTM(PGA(1,1,1,IJKL),PGB(1,1,1,IJKL) |
---|
| 5918 | 2 , PABCU(1,1,IKU2),PABCU(1,1,IKN),ZTT2) |
---|
| 5919 | ENDIF |
---|
| 5920 | C |
---|
| 5921 | DO 2265 JA = 1, KTRAER |
---|
| 5922 | DO 2264 JL = 1, KDLON |
---|
| 5923 | ZTT(JL,JA) = (ZTT1(JL,JA)+ZTT2(JL,JA))*0.5 |
---|
| 5924 | 2264 CONTINUE |
---|
| 5925 | 2265 CONTINUE |
---|
| 5926 | C |
---|
| 5927 | DO 2266 JL = 1, KDLON |
---|
| 5928 | ZWW=PDBDT(JL,1,IJKL)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 5929 | S +PDBDT(JL,2,IJKL)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 5930 | S +PDBDT(JL,3,IJKL)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 5931 | S +PDBDT(JL,4,IJKL)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 5932 | S +PDBDT(JL,5,IJKL)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 5933 | S +PDBDT(JL,6,IJKL)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 5934 | ZGLAYU(JL)=ZWW |
---|
| 5935 | ZDZXMG=ZGLAYU(JL) |
---|
| 5936 | PDISU(JL,JK)=PDISU(JL,JK)+ZDZXMG |
---|
| 5937 | PCNTRB(JL,JK,IJKL)=ZDZXMG |
---|
| 5938 | 2266 CONTINUE |
---|
| 5939 | C |
---|
| 5940 | C |
---|
| 5941 | 227 CONTINUE |
---|
| 5942 | 228 CONTINUE |
---|
| 5943 | C |
---|
| 5944 | RETURN |
---|
| 5945 | END |
---|
| 5946 | SUBROUTINE LWVN(KUAER,KTRAER |
---|
| 5947 | R , PABCU,PDBSL,PGA,PGB |
---|
| 5948 | S , PADJD,PADJU,PCNTRB,PDBDT) |
---|
| 5949 | IMPLICIT none |
---|
| 5950 | #include "dimensions.h" |
---|
| 5951 | #include "dimphy.h" |
---|
| 5952 | #include "raddim.h" |
---|
| 5953 | #include "raddimlw.h" |
---|
| 5954 | C |
---|
| 5955 | C----------------------------------------------------------------------- |
---|
| 5956 | C PURPOSE. |
---|
| 5957 | C -------- |
---|
| 5958 | C CARRIES OUT THE VERTICAL INTEGRATION ON NEARBY LAYERS |
---|
| 5959 | C TO GIVE LONGWAVE FLUXES OR RADIANCES |
---|
| 5960 | C |
---|
| 5961 | C METHOD. |
---|
| 5962 | C ------- |
---|
| 5963 | C |
---|
| 5964 | C 1. PERFORMS THE VERTICAL INTEGRATION CORRESPONDING TO THE |
---|
| 5965 | C CONTRIBUTIONS OF THE ADJACENT LAYERS USING A GAUSSIAN QUADRATURE |
---|
| 5966 | C |
---|
| 5967 | C REFERENCE. |
---|
| 5968 | C ---------- |
---|
| 5969 | C |
---|
| 5970 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 5971 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 5972 | C |
---|
| 5973 | C AUTHOR. |
---|
| 5974 | C ------- |
---|
| 5975 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 5976 | C |
---|
| 5977 | C MODIFICATIONS. |
---|
| 5978 | C -------------- |
---|
| 5979 | C ORIGINAL : 89-07-14 |
---|
| 5980 | C----------------------------------------------------------------------- |
---|
| 5981 | C |
---|
| 5982 | C* ARGUMENTS: |
---|
| 5983 | C |
---|
| 5984 | INTEGER KUAER,KTRAER |
---|
| 5985 | C |
---|
| 5986 | REAL*8 PABCU(KDLON,NUA,3*KFLEV+1) ! ABSORBER AMOUNTS |
---|
| 5987 | REAL*8 PDBSL(KDLON,Ninter,KFLEV*2) ! SUB-LAYER PLANCK FUNCTION GRADIENT |
---|
| 5988 | REAL*8 PGA(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5989 | REAL*8 PGB(KDLON,8,2,KFLEV) ! PADE APPROXIMANTS |
---|
| 5990 | C |
---|
| 5991 | REAL*8 PADJD(KDLON,KFLEV+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5992 | REAL*8 PADJU(KDLON,KFLEV+1) ! CONTRIBUTION OF ADJACENT LAYERS |
---|
| 5993 | REAL*8 PCNTRB(KDLON,KFLEV+1,KFLEV+1) ! CLEAR-SKY ENERGY EXCHANGE MATRIX |
---|
| 5994 | REAL*8 PDBDT(KDLON,Ninter,KFLEV) ! LAYER PLANCK FUNCTION GRADIENT |
---|
| 5995 | C |
---|
| 5996 | C* LOCAL ARRAYS: |
---|
| 5997 | C |
---|
| 5998 | REAL*8 ZGLAYD(KDLON) |
---|
| 5999 | REAL*8 ZGLAYU(KDLON) |
---|
| 6000 | REAL*8 ZTT(KDLON,NTRA) |
---|
| 6001 | REAL*8 ZTT1(KDLON,NTRA) |
---|
| 6002 | REAL*8 ZTT2(KDLON,NTRA) |
---|
| 6003 | REAL*8 ZUU(KDLON,NUA) |
---|
| 6004 | C |
---|
| 6005 | INTEGER jk, jl, ja, im12, ind, inu, ixu, jg |
---|
| 6006 | INTEGER ixd, ibs, idd, imu, jk1, jk2, jnu |
---|
| 6007 | REAL*8 zwtr |
---|
| 6008 | c |
---|
| 6009 | C* Data Block: |
---|
| 6010 | c |
---|
| 6011 | REAL*8 WG1(2) |
---|
| 6012 | SAVE WG1 |
---|
| 6013 | DATA (WG1(jk),jk=1,2) /1.0, 1.0/ |
---|
| 6014 | C----------------------------------------------------------------------- |
---|
| 6015 | C |
---|
| 6016 | C* 1. INITIALIZATION |
---|
| 6017 | C -------------- |
---|
| 6018 | C |
---|
| 6019 | 100 CONTINUE |
---|
| 6020 | C |
---|
| 6021 | C* 1.1 INITIALIZE LAYER CONTRIBUTIONS |
---|
| 6022 | C ------------------------------ |
---|
| 6023 | C |
---|
| 6024 | 110 CONTINUE |
---|
| 6025 | C |
---|
| 6026 | DO 112 JK = 1 , KFLEV+1 |
---|
| 6027 | DO 111 JL = 1, KDLON |
---|
| 6028 | PADJD(JL,JK) = 0. |
---|
| 6029 | PADJU(JL,JK) = 0. |
---|
| 6030 | 111 CONTINUE |
---|
| 6031 | 112 CONTINUE |
---|
| 6032 | C |
---|
| 6033 | C* 1.2 INITIALIZE TRANSMISSION FUNCTIONS |
---|
| 6034 | C --------------------------------- |
---|
| 6035 | C |
---|
| 6036 | 120 CONTINUE |
---|
| 6037 | C |
---|
| 6038 | DO 122 JA = 1 , NTRA |
---|
| 6039 | DO 121 JL = 1, KDLON |
---|
| 6040 | ZTT (JL,JA) = 1.0 |
---|
| 6041 | ZTT1(JL,JA) = 1.0 |
---|
| 6042 | ZTT2(JL,JA) = 1.0 |
---|
| 6043 | 121 CONTINUE |
---|
| 6044 | 122 CONTINUE |
---|
| 6045 | C |
---|
| 6046 | DO 124 JA = 1 , NUA |
---|
| 6047 | DO 123 JL = 1, KDLON |
---|
| 6048 | ZUU(JL,JA) = 0. |
---|
| 6049 | 123 CONTINUE |
---|
| 6050 | 124 CONTINUE |
---|
| 6051 | C |
---|
| 6052 | C ------------------------------------------------------------------ |
---|
| 6053 | C |
---|
| 6054 | C* 2. VERTICAL INTEGRATION |
---|
| 6055 | C -------------------- |
---|
| 6056 | C |
---|
| 6057 | 200 CONTINUE |
---|
| 6058 | C |
---|
| 6059 | C |
---|
| 6060 | C* 2.1 CONTRIBUTION FROM ADJACENT LAYERS |
---|
| 6061 | C --------------------------------- |
---|
| 6062 | C |
---|
| 6063 | 210 CONTINUE |
---|
| 6064 | C |
---|
| 6065 | DO 215 JK = 1 , KFLEV |
---|
| 6066 | C |
---|
| 6067 | C* 2.1.1 DOWNWARD LAYERS |
---|
| 6068 | C --------------- |
---|
| 6069 | C |
---|
| 6070 | 2110 CONTINUE |
---|
| 6071 | C |
---|
| 6072 | IM12 = 2 * (JK - 1) |
---|
| 6073 | IND = (JK - 1) * NG1P1 + 1 |
---|
| 6074 | IXD = IND |
---|
| 6075 | INU = JK * NG1P1 + 1 |
---|
| 6076 | IXU = IND |
---|
| 6077 | C |
---|
| 6078 | DO 2111 JL = 1, KDLON |
---|
| 6079 | ZGLAYD(JL) = 0. |
---|
| 6080 | ZGLAYU(JL) = 0. |
---|
| 6081 | 2111 CONTINUE |
---|
| 6082 | C |
---|
| 6083 | DO 213 JG = 1 , NG1 |
---|
| 6084 | IBS = IM12 + JG |
---|
| 6085 | IDD = IXD + JG |
---|
| 6086 | DO 2113 JA = 1 , KUAER |
---|
| 6087 | DO 2112 JL = 1, KDLON |
---|
| 6088 | ZUU(JL,JA) = PABCU(JL,JA,IND) - PABCU(JL,JA,IDD) |
---|
| 6089 | 2112 CONTINUE |
---|
| 6090 | 2113 CONTINUE |
---|
| 6091 | C |
---|
| 6092 | C |
---|
| 6093 | CALL LWTT(PGA(1,1,1,JK), PGB(1,1,1,JK), ZUU, ZTT) |
---|
| 6094 | C |
---|
| 6095 | DO 2114 JL = 1, KDLON |
---|
| 6096 | ZWTR=PDBSL(JL,1,IBS)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 6097 | S +PDBSL(JL,2,IBS)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 6098 | S +PDBSL(JL,3,IBS)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 6099 | S +PDBSL(JL,4,IBS)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 6100 | S +PDBSL(JL,5,IBS)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 6101 | S +PDBSL(JL,6,IBS)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 6102 | ZGLAYD(JL)=ZGLAYD(JL)+ZWTR*WG1(JG) |
---|
| 6103 | 2114 CONTINUE |
---|
| 6104 | C |
---|
| 6105 | C* 2.1.2 DOWNWARD LAYERS |
---|
| 6106 | C --------------- |
---|
| 6107 | C |
---|
| 6108 | 2120 CONTINUE |
---|
| 6109 | C |
---|
| 6110 | IMU = IXU + JG |
---|
| 6111 | DO 2122 JA = 1 , KUAER |
---|
| 6112 | DO 2121 JL = 1, KDLON |
---|
| 6113 | ZUU(JL,JA) = PABCU(JL,JA,IMU) - PABCU(JL,JA,INU) |
---|
| 6114 | 2121 CONTINUE |
---|
| 6115 | 2122 CONTINUE |
---|
| 6116 | C |
---|
| 6117 | C |
---|
| 6118 | CALL LWTT(PGA(1,1,1,JK), PGB(1,1,1,JK), ZUU, ZTT) |
---|
| 6119 | C |
---|
| 6120 | DO 2123 JL = 1, KDLON |
---|
| 6121 | ZWTR=PDBSL(JL,1,IBS)*ZTT(JL,1) *ZTT(JL,10) |
---|
| 6122 | S +PDBSL(JL,2,IBS)*ZTT(JL,2)*ZTT(JL,7)*ZTT(JL,11) |
---|
| 6123 | S +PDBSL(JL,3,IBS)*ZTT(JL,4)*ZTT(JL,8)*ZTT(JL,12) |
---|
| 6124 | S +PDBSL(JL,4,IBS)*ZTT(JL,5)*ZTT(JL,9)*ZTT(JL,13) |
---|
| 6125 | S +PDBSL(JL,5,IBS)*ZTT(JL,3) *ZTT(JL,14) |
---|
| 6126 | S +PDBSL(JL,6,IBS)*ZTT(JL,6) *ZTT(JL,15) |
---|
| 6127 | ZGLAYU(JL)=ZGLAYU(JL)+ZWTR*WG1(JG) |
---|
| 6128 | 2123 CONTINUE |
---|
| 6129 | C |
---|
| 6130 | 213 CONTINUE |
---|
| 6131 | C |
---|
| 6132 | DO 214 JL = 1, KDLON |
---|
| 6133 | PADJD(JL,JK) = ZGLAYD(JL) |
---|
| 6134 | PCNTRB(JL,JK,JK+1) = ZGLAYD(JL) |
---|
| 6135 | PADJU(JL,JK+1) = ZGLAYU(JL) |
---|
| 6136 | PCNTRB(JL,JK+1,JK) = ZGLAYU(JL) |
---|
| 6137 | PCNTRB(JL,JK ,JK) = 0.0 |
---|
| 6138 | 214 CONTINUE |
---|
| 6139 | C |
---|
| 6140 | 215 CONTINUE |
---|
| 6141 | C |
---|
| 6142 | DO 218 JK = 1 , KFLEV |
---|
| 6143 | JK2 = 2 * JK |
---|
| 6144 | JK1 = JK2 - 1 |
---|
| 6145 | DO 217 JNU = 1 , Ninter |
---|
| 6146 | DO 216 JL = 1, KDLON |
---|
| 6147 | PDBDT(JL,JNU,JK) = PDBSL(JL,JNU,JK1) + PDBSL(JL,JNU,JK2) |
---|
| 6148 | 216 CONTINUE |
---|
| 6149 | 217 CONTINUE |
---|
| 6150 | 218 CONTINUE |
---|
| 6151 | C |
---|
| 6152 | RETURN |
---|
| 6153 | C |
---|
| 6154 | END |
---|
| 6155 | SUBROUTINE LWTT(PGA,PGB,PUU, PTT) |
---|
| 6156 | IMPLICIT none |
---|
| 6157 | #include "dimensions.h" |
---|
| 6158 | #include "dimphy.h" |
---|
| 6159 | #include "raddim.h" |
---|
| 6160 | #include "raddimlw.h" |
---|
| 6161 | C |
---|
| 6162 | C----------------------------------------------------------------------- |
---|
| 6163 | C PURPOSE. |
---|
| 6164 | C -------- |
---|
| 6165 | C THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 6166 | C ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 6167 | C INTERVALS. |
---|
| 6168 | C |
---|
| 6169 | C METHOD. |
---|
| 6170 | C ------- |
---|
| 6171 | C |
---|
| 6172 | C 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 6173 | C COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 6174 | C 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 6175 | C 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 6176 | C A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 6177 | C |
---|
| 6178 | C REFERENCE. |
---|
| 6179 | C ---------- |
---|
| 6180 | C |
---|
| 6181 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 6182 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 6183 | C |
---|
| 6184 | C AUTHOR. |
---|
| 6185 | C ------- |
---|
| 6186 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 6187 | C |
---|
| 6188 | C MODIFICATIONS. |
---|
| 6189 | C -------------- |
---|
| 6190 | C ORIGINAL : 88-12-15 |
---|
| 6191 | C |
---|
| 6192 | C----------------------------------------------------------------------- |
---|
| 6193 | REAL*8 O1H, O2H |
---|
| 6194 | PARAMETER (O1H=2230.) |
---|
| 6195 | PARAMETER (O2H=100.) |
---|
| 6196 | REAL*8 RPIALF0 |
---|
| 6197 | PARAMETER (RPIALF0=2.0) |
---|
| 6198 | C |
---|
| 6199 | C* ARGUMENTS: |
---|
| 6200 | C |
---|
| 6201 | REAL*8 PUU(KDLON,NUA) |
---|
| 6202 | REAL*8 PTT(KDLON,NTRA) |
---|
| 6203 | REAL*8 PGA(KDLON,8,2) |
---|
| 6204 | REAL*8 PGB(KDLON,8,2) |
---|
| 6205 | C |
---|
| 6206 | C* LOCAL VARIABLES: |
---|
| 6207 | C |
---|
| 6208 | REAL*8 zz, zxd, zxn |
---|
| 6209 | REAL*8 zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 6210 | REAL*8 zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 6211 | REAL*8 zx, zy, zsq1, zsq2, zvxy, zuxy |
---|
| 6212 | REAL*8 zaercn, zto1, zto2, zxch4, zych4, zxn2o, zyn2o |
---|
| 6213 | REAL*8 zsqn21, zodn21, zsqh42, zodh42 |
---|
| 6214 | REAL*8 zsqh41, zodh41, zsqn22, zodn22, zttf11, zttf12 |
---|
| 6215 | REAL*8 zuu11, zuu12, za11, za12 |
---|
| 6216 | INTEGER jl, ja |
---|
| 6217 | C ------------------------------------------------------------------ |
---|
| 6218 | C |
---|
| 6219 | C* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 6220 | C ----------------------------------------------- |
---|
| 6221 | C |
---|
| 6222 | 100 CONTINUE |
---|
| 6223 | C |
---|
| 6224 | C |
---|
| 6225 | DO 130 JA = 1 , 8 |
---|
| 6226 | DO 120 JL = 1, KDLON |
---|
| 6227 | ZZ =SQRT(PUU(JL,JA)) |
---|
| 6228 | c ZXD(JL,1)=PGB( JL, 1,1) + ZZ(JL, 1)*(PGB( JL, 1,2) + ZZ(JL, 1)) |
---|
| 6229 | c ZXN(JL,1)=PGA( JL, 1,1) + ZZ(JL, 1)*(PGA( JL, 1,2) ) |
---|
| 6230 | c PTT(JL,1)=ZXN(JL,1)/ZXD(JL,1) |
---|
| 6231 | ZXD =PGB( JL,JA,1) + ZZ *(PGB( JL,JA,2) + ZZ ) |
---|
| 6232 | ZXN =PGA( JL,JA,1) + ZZ *(PGA( JL,JA,2) ) |
---|
| 6233 | PTT(JL,JA)=ZXN /ZXD |
---|
| 6234 | 120 CONTINUE |
---|
| 6235 | 130 CONTINUE |
---|
| 6236 | C |
---|
| 6237 | C ------------------------------------------------------------------ |
---|
| 6238 | C |
---|
| 6239 | C* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 6240 | C --------------------------------------------------- |
---|
| 6241 | C |
---|
| 6242 | 200 CONTINUE |
---|
| 6243 | C |
---|
| 6244 | DO 201 JL = 1, KDLON |
---|
| 6245 | PTT(JL, 9) = PTT(JL, 8) |
---|
| 6246 | C |
---|
| 6247 | C- CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 6248 | C |
---|
| 6249 | ZPU = 0.002 * PUU(JL,10) |
---|
| 6250 | ZPU10 = 112. * ZPU |
---|
| 6251 | ZPU11 = 6.25 * ZPU |
---|
| 6252 | ZPU12 = 5.00 * ZPU |
---|
| 6253 | ZPU13 = 80.0 * ZPU |
---|
| 6254 | ZEU = PUU(JL,11) |
---|
| 6255 | ZEU10 = 12. * ZEU |
---|
| 6256 | ZEU11 = 6.25 * ZEU |
---|
| 6257 | ZEU12 = 5.00 * ZEU |
---|
| 6258 | ZEU13 = 80.0 * ZEU |
---|
| 6259 | C |
---|
| 6260 | C- OZONE ABSORPTION |
---|
| 6261 | C |
---|
| 6262 | ZX = PUU(JL,12) |
---|
| 6263 | ZY = PUU(JL,13) |
---|
| 6264 | ZUXY = 4. * ZX * ZX / (RPIALF0 * ZY) |
---|
| 6265 | ZSQ1 = SQRT(1. + O1H * ZUXY ) - 1. |
---|
| 6266 | ZSQ2 = SQRT(1. + O2H * ZUXY ) - 1. |
---|
| 6267 | ZVXY = RPIALF0 * ZY / (2. * ZX) |
---|
| 6268 | ZAERCN = PUU(JL,17) + ZEU12 + ZPU12 |
---|
| 6269 | ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
---|
| 6270 | ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
---|
| 6271 | C |
---|
| 6272 | C-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 6273 | C |
---|
| 6274 | C* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6275 | C |
---|
| 6276 | c NEXOTIC=1 |
---|
| 6277 | c IF (NEXOTIC.EQ.1) THEN |
---|
| 6278 | ZXCH4 = PUU(JL,19) |
---|
| 6279 | ZYCH4 = PUU(JL,20) |
---|
| 6280 | ZUXY = 4. * ZXCH4*ZXCH4/(0.103*ZYCH4) |
---|
| 6281 | ZSQH41 = SQRT(1. + 33.7 * ZUXY) - 1. |
---|
| 6282 | ZVXY = 0.103 * ZYCH4 / (2. * ZXCH4) |
---|
| 6283 | ZODH41 = ZVXY * ZSQH41 |
---|
| 6284 | C |
---|
| 6285 | C* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6286 | C |
---|
| 6287 | ZXN2O = PUU(JL,21) |
---|
| 6288 | ZYN2O = PUU(JL,22) |
---|
| 6289 | ZUXY = 4. * ZXN2O*ZXN2O/(0.416*ZYN2O) |
---|
| 6290 | ZSQN21 = SQRT(1. + 21.3 * ZUXY) - 1. |
---|
| 6291 | ZVXY = 0.416 * ZYN2O / (2. * ZXN2O) |
---|
| 6292 | ZODN21 = ZVXY * ZSQN21 |
---|
| 6293 | C |
---|
| 6294 | C* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 6295 | C |
---|
| 6296 | ZUXY = 4. * ZXCH4*ZXCH4/(0.113*ZYCH4) |
---|
| 6297 | ZSQH42 = SQRT(1. + 400. * ZUXY) - 1. |
---|
| 6298 | ZVXY = 0.113 * ZYCH4 / (2. * ZXCH4) |
---|
| 6299 | ZODH42 = ZVXY * ZSQH42 |
---|
| 6300 | C |
---|
| 6301 | C* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 6302 | C |
---|
| 6303 | ZUXY = 4. * ZXN2O*ZXN2O/(0.197*ZYN2O) |
---|
| 6304 | ZSQN22 = SQRT(1. + 2000. * ZUXY) - 1. |
---|
| 6305 | ZVXY = 0.197 * ZYN2O / (2. * ZXN2O) |
---|
| 6306 | ZODN22 = ZVXY * ZSQN22 |
---|
| 6307 | C |
---|
| 6308 | C* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6309 | C |
---|
| 6310 | ZA11 = 2. * PUU(JL,23) * 4.404E+05 |
---|
| 6311 | ZTTF11 = 1. - ZA11 * 0.003225 |
---|
| 6312 | C |
---|
| 6313 | C* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6314 | C |
---|
| 6315 | ZA12 = 2. * PUU(JL,24) * 6.7435E+05 |
---|
| 6316 | ZTTF12 = 1. - ZA12 * 0.003225 |
---|
| 6317 | C |
---|
| 6318 | ZUU11 = - PUU(JL,15) - ZEU10 - ZPU10 |
---|
| 6319 | ZUU12 = - PUU(JL,16) - ZEU11 - ZPU11 - ZODH41 - ZODN21 |
---|
| 6320 | PTT(JL,10) = EXP( - PUU(JL,14) ) |
---|
| 6321 | PTT(JL,11) = EXP( ZUU11 ) |
---|
| 6322 | PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
---|
| 6323 | PTT(JL,13) = 0.7554 * ZTO1 + 0.2446 * ZTO2 |
---|
| 6324 | PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
---|
| 6325 | PTT(JL,15) = EXP ( - PUU(JL,14) - ZODH42 - ZODN22 ) |
---|
| 6326 | 201 CONTINUE |
---|
| 6327 | C |
---|
| 6328 | RETURN |
---|
| 6329 | END |
---|
| 6330 | SUBROUTINE LWTTM(PGA,PGB,PUU1,PUU2, PTT) |
---|
| 6331 | IMPLICIT none |
---|
| 6332 | #include "dimensions.h" |
---|
| 6333 | #include "dimphy.h" |
---|
| 6334 | #include "raddim.h" |
---|
| 6335 | #include "raddimlw.h" |
---|
| 6336 | C |
---|
| 6337 | C ------------------------------------------------------------------ |
---|
| 6338 | C PURPOSE. |
---|
| 6339 | C -------- |
---|
| 6340 | C THIS ROUTINE COMPUTES THE TRANSMISSION FUNCTIONS FOR ALL THE |
---|
| 6341 | C ABSORBERS (H2O, UNIFORMLY MIXED GASES, AND O3) IN ALL SIX SPECTRAL |
---|
| 6342 | C INTERVALS. |
---|
| 6343 | C |
---|
| 6344 | C METHOD. |
---|
| 6345 | C ------- |
---|
| 6346 | C |
---|
| 6347 | C 1. TRANSMISSION FUNCTION BY H2O AND UNIFORMLY MIXED GASES ARE |
---|
| 6348 | C COMPUTED USING PADE APPROXIMANTS AND HORNER'S ALGORITHM. |
---|
| 6349 | C 2. TRANSMISSION BY O3 IS EVALUATED WITH MALKMUS'S BAND MODEL. |
---|
| 6350 | C 3. TRANSMISSION BY H2O CONTINUUM AND AEROSOLS FOLLOW AN |
---|
| 6351 | C A SIMPLE EXPONENTIAL DECREASE WITH ABSORBER AMOUNT. |
---|
| 6352 | C |
---|
| 6353 | C REFERENCE. |
---|
| 6354 | C ---------- |
---|
| 6355 | C |
---|
| 6356 | C SEE RADIATION'S PART OF THE MODEL'S DOCUMENTATION AND |
---|
| 6357 | C ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE IFS |
---|
| 6358 | C |
---|
| 6359 | C AUTHOR. |
---|
| 6360 | C ------- |
---|
| 6361 | C JEAN-JACQUES MORCRETTE *ECMWF* |
---|
| 6362 | C |
---|
| 6363 | C MODIFICATIONS. |
---|
| 6364 | C -------------- |
---|
| 6365 | C ORIGINAL : 88-12-15 |
---|
| 6366 | C |
---|
| 6367 | C----------------------------------------------------------------------- |
---|
| 6368 | REAL*8 O1H, O2H |
---|
| 6369 | PARAMETER (O1H=2230.) |
---|
| 6370 | PARAMETER (O2H=100.) |
---|
| 6371 | REAL*8 RPIALF0 |
---|
| 6372 | PARAMETER (RPIALF0=2.0) |
---|
| 6373 | C |
---|
| 6374 | C* ARGUMENTS: |
---|
| 6375 | C |
---|
| 6376 | REAL*8 PGA(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 6377 | REAL*8 PGB(KDLON,8,2) ! PADE APPROXIMANTS |
---|
| 6378 | REAL*8 PUU1(KDLON,NUA) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 1 |
---|
| 6379 | REAL*8 PUU2(KDLON,NUA) ! ABSORBER AMOUNTS FROM TOP TO LEVEL 2 |
---|
| 6380 | REAL*8 PTT(KDLON,NTRA) ! TRANSMISSION FUNCTIONS |
---|
| 6381 | C |
---|
| 6382 | C* LOCAL VARIABLES: |
---|
| 6383 | C |
---|
| 6384 | INTEGER ja, jl |
---|
| 6385 | REAL*8 zz, zxd, zxn |
---|
| 6386 | REAL*8 zpu, zpu10, zpu11, zpu12, zpu13 |
---|
| 6387 | REAL*8 zeu, zeu10, zeu11, zeu12, zeu13 |
---|
| 6388 | REAL*8 zx, zy, zuxy, zsq1, zsq2, zvxy, zaercn, zto1, zto2 |
---|
| 6389 | REAL*8 zxch4, zych4, zsqh41, zodh41 |
---|
| 6390 | REAL*8 zxn2o, zyn2o, zsqn21, zodn21, zsqh42, zodh42 |
---|
| 6391 | REAL*8 zsqn22, zodn22, za11, zttf11, za12, zttf12 |
---|
| 6392 | REAL*8 zuu11, zuu12 |
---|
| 6393 | C ------------------------------------------------------------------ |
---|
| 6394 | C |
---|
| 6395 | C* 1. HORNER'S ALGORITHM FOR H2O AND CO2 TRANSMISSION |
---|
| 6396 | C ----------------------------------------------- |
---|
| 6397 | C |
---|
| 6398 | 100 CONTINUE |
---|
| 6399 | C |
---|
| 6400 | C |
---|
| 6401 | DO 130 JA = 1 , 8 |
---|
| 6402 | DO 120 JL = 1, KDLON |
---|
| 6403 | ZZ =SQRT(PUU1(JL,JA) - PUU2(JL,JA)) |
---|
| 6404 | ZXD =PGB( JL,JA,1) + ZZ *(PGB( JL,JA,2) + ZZ ) |
---|
| 6405 | ZXN =PGA( JL,JA,1) + ZZ *(PGA( JL,JA,2) ) |
---|
| 6406 | PTT(JL,JA)=ZXN /ZXD |
---|
| 6407 | 120 CONTINUE |
---|
| 6408 | 130 CONTINUE |
---|
| 6409 | C |
---|
| 6410 | C ------------------------------------------------------------------ |
---|
| 6411 | C |
---|
| 6412 | C* 2. CONTINUUM, OZONE AND AEROSOL TRANSMISSION FUNCTIONS |
---|
| 6413 | C --------------------------------------------------- |
---|
| 6414 | C |
---|
| 6415 | 200 CONTINUE |
---|
| 6416 | C |
---|
| 6417 | DO 201 JL = 1, KDLON |
---|
| 6418 | PTT(JL, 9) = PTT(JL, 8) |
---|
| 6419 | C |
---|
| 6420 | C- CONTINUUM ABSORPTION: E- AND P-TYPE |
---|
| 6421 | C |
---|
| 6422 | ZPU = 0.002 * (PUU1(JL,10) - PUU2(JL,10)) |
---|
| 6423 | ZPU10 = 112. * ZPU |
---|
| 6424 | ZPU11 = 6.25 * ZPU |
---|
| 6425 | ZPU12 = 5.00 * ZPU |
---|
| 6426 | ZPU13 = 80.0 * ZPU |
---|
| 6427 | ZEU = (PUU1(JL,11) - PUU2(JL,11)) |
---|
| 6428 | ZEU10 = 12. * ZEU |
---|
| 6429 | ZEU11 = 6.25 * ZEU |
---|
| 6430 | ZEU12 = 5.00 * ZEU |
---|
| 6431 | ZEU13 = 80.0 * ZEU |
---|
| 6432 | C |
---|
| 6433 | C- OZONE ABSORPTION |
---|
| 6434 | C |
---|
| 6435 | ZX = (PUU1(JL,12) - PUU2(JL,12)) |
---|
| 6436 | ZY = (PUU1(JL,13) - PUU2(JL,13)) |
---|
| 6437 | ZUXY = 4. * ZX * ZX / (RPIALF0 * ZY) |
---|
| 6438 | ZSQ1 = SQRT(1. + O1H * ZUXY ) - 1. |
---|
| 6439 | ZSQ2 = SQRT(1. + O2H * ZUXY ) - 1. |
---|
| 6440 | ZVXY = RPIALF0 * ZY / (2. * ZX) |
---|
| 6441 | ZAERCN = (PUU1(JL,17) -PUU2(JL,17)) + ZEU12 + ZPU12 |
---|
| 6442 | ZTO1 = EXP( - ZVXY * ZSQ1 - ZAERCN ) |
---|
| 6443 | ZTO2 = EXP( - ZVXY * ZSQ2 - ZAERCN ) |
---|
| 6444 | C |
---|
| 6445 | C-- TRACE GASES (CH4, N2O, CFC-11, CFC-12) |
---|
| 6446 | C |
---|
| 6447 | C* CH4 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6448 | C |
---|
| 6449 | ZXCH4 = (PUU1(JL,19) - PUU2(JL,19)) |
---|
| 6450 | ZYCH4 = (PUU1(JL,20) - PUU2(JL,20)) |
---|
| 6451 | ZUXY = 4. * ZXCH4*ZXCH4/(0.103*ZYCH4) |
---|
| 6452 | ZSQH41 = SQRT(1. + 33.7 * ZUXY) - 1. |
---|
| 6453 | ZVXY = 0.103 * ZYCH4 / (2. * ZXCH4) |
---|
| 6454 | ZODH41 = ZVXY * ZSQH41 |
---|
| 6455 | C |
---|
| 6456 | C* N2O IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6457 | C |
---|
| 6458 | ZXN2O = (PUU1(JL,21) - PUU2(JL,21)) |
---|
| 6459 | ZYN2O = (PUU1(JL,22) - PUU2(JL,22)) |
---|
| 6460 | ZUXY = 4. * ZXN2O*ZXN2O/(0.416*ZYN2O) |
---|
| 6461 | ZSQN21 = SQRT(1. + 21.3 * ZUXY) - 1. |
---|
| 6462 | ZVXY = 0.416 * ZYN2O / (2. * ZXN2O) |
---|
| 6463 | ZODN21 = ZVXY * ZSQN21 |
---|
| 6464 | C |
---|
| 6465 | C* CH4 IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 6466 | C |
---|
| 6467 | ZUXY = 4. * ZXCH4*ZXCH4/(0.113*ZYCH4) |
---|
| 6468 | ZSQH42 = SQRT(1. + 400. * ZUXY) - 1. |
---|
| 6469 | ZVXY = 0.113 * ZYCH4 / (2. * ZXCH4) |
---|
| 6470 | ZODH42 = ZVXY * ZSQH42 |
---|
| 6471 | C |
---|
| 6472 | C* N2O IN INTERVAL 1250-1450 + 1880-2820 CM-1 |
---|
| 6473 | C |
---|
| 6474 | ZUXY = 4. * ZXN2O*ZXN2O/(0.197*ZYN2O) |
---|
| 6475 | ZSQN22 = SQRT(1. + 2000. * ZUXY) - 1. |
---|
| 6476 | ZVXY = 0.197 * ZYN2O / (2. * ZXN2O) |
---|
| 6477 | ZODN22 = ZVXY * ZSQN22 |
---|
| 6478 | C |
---|
| 6479 | C* CFC-11 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6480 | C |
---|
| 6481 | ZA11 = (PUU1(JL,23) - PUU2(JL,23)) * 4.404E+05 |
---|
| 6482 | ZTTF11 = 1. - ZA11 * 0.003225 |
---|
| 6483 | C |
---|
| 6484 | C* CFC-12 IN INTERVAL 800-970 + 1110-1250 CM-1 |
---|
| 6485 | C |
---|
| 6486 | ZA12 = (PUU1(JL,24) - PUU2(JL,24)) * 6.7435E+05 |
---|
| 6487 | ZTTF12 = 1. - ZA12 * 0.003225 |
---|
| 6488 | C |
---|
| 6489 | ZUU11 = - (PUU1(JL,15) - PUU2(JL,15)) - ZEU10 - ZPU10 |
---|
| 6490 | ZUU12 = - (PUU1(JL,16) - PUU2(JL,16)) - ZEU11 - ZPU11 - |
---|
| 6491 | S ZODH41 - ZODN21 |
---|
| 6492 | PTT(JL,10) = EXP( - (PUU1(JL,14)- PUU2(JL,14)) ) |
---|
| 6493 | PTT(JL,11) = EXP( ZUU11 ) |
---|
| 6494 | PTT(JL,12) = EXP( ZUU12 ) * ZTTF11 * ZTTF12 |
---|
| 6495 | PTT(JL,13) = 0.7554 * ZTO1 + 0.2446 * ZTO2 |
---|
| 6496 | PTT(JL,14) = PTT(JL,10) * EXP( - ZEU13 - ZPU13 ) |
---|
| 6497 | PTT(JL,15) = EXP ( - (PUU1(JL,14) - PUU2(JL,14)) - ZODH42-ZODN22 ) |
---|
| 6498 | 201 CONTINUE |
---|
| 6499 | C |
---|
| 6500 | RETURN |
---|
| 6501 | END |
---|