1 | ! $Id: newmicro.F 1334 2010-03-31 12:54:07Z idelkadi $ |
---|
2 | ! |
---|
3 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
4 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
5 | . pch, pcl, pcm, pct, pctlwp, |
---|
6 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
7 | e ok_aie, |
---|
8 | e mass_solu_aero, mass_solu_aero_pi, |
---|
9 | e bl95_b0, bl95_b1, |
---|
10 | s cldtaupi, re, fl, reliq, reice) |
---|
11 | |
---|
12 | USE dimphy |
---|
13 | IMPLICIT none |
---|
14 | c====================================================================== |
---|
15 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
16 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
17 | c====================================================================== |
---|
18 | c Arguments: |
---|
19 | c t-------input-R-temperature |
---|
20 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
21 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
22 | c |
---|
23 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
24 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
25 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
26 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
27 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
28 | c |
---|
29 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
30 | c needed for the diagnostics of the aerosol indirect |
---|
31 | c radiative forcing (see radlwsw) |
---|
32 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
33 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
34 | c the averaging of the output. fl is the fraction of liquid |
---|
35 | c water clouds within a grid cell |
---|
36 | c pcltau--output-R-epaisseur optique des nuages |
---|
37 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
38 | c====================================================================== |
---|
39 | C |
---|
40 | #include "YOMCST.h" |
---|
41 | c |
---|
42 | cym#include "dimensions.h" |
---|
43 | cym#include "dimphy.h" |
---|
44 | #include "nuage.h" |
---|
45 | cIM cf. CR: include pour NOVLP et ZEPSEC |
---|
46 | #include "radepsi.h" |
---|
47 | #include "radopt.h" |
---|
48 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
49 | REAL t(klon,klev) |
---|
50 | c |
---|
51 | REAL pclc(klon,klev) |
---|
52 | REAL pqlwp(klon,klev) |
---|
53 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
54 | c |
---|
55 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
56 | c |
---|
57 | LOGICAL lo |
---|
58 | c |
---|
59 | REAL cetahb, cetamb |
---|
60 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
61 | C |
---|
62 | INTEGER i, k |
---|
63 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
64 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
65 | cIM: 091003 rajout |
---|
66 | REAL xflwp(klon), xfiwp(klon) |
---|
67 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
68 | c |
---|
69 | REAL radius, rad_chaud |
---|
70 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
71 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
72 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
73 | REAL coef, coef_froi, coef_chau |
---|
74 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
75 | REAL seuil_neb |
---|
76 | PARAMETER (seuil_neb=0.001) |
---|
77 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
78 | PARAMETER (nexpo=6) |
---|
79 | ccc PARAMETER (nexpo=1) |
---|
80 | |
---|
81 | c -- sb: |
---|
82 | logical ok_newmicro |
---|
83 | c parameter (ok_newmicro=.FALSE.) |
---|
84 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
85 | real rel, tc, rei, zfiwp(klon) |
---|
86 | real k_liq, k_ice0, k_ice, DF |
---|
87 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
88 | parameter (DF=1.66) ! diffusivity factor |
---|
89 | c sb -- |
---|
90 | cjq for the aerosol indirect effect |
---|
91 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
92 | cjq |
---|
93 | LOGICAL ok_aie ! Apply AIE or not? |
---|
94 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
95 | |
---|
96 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
97 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
98 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
99 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
100 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
101 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
102 | |
---|
103 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
104 | |
---|
105 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
106 | |
---|
107 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
108 | cjq-end |
---|
109 | cIM cf. CR:parametres supplementaires |
---|
110 | REAL zclear(klon) |
---|
111 | REAL zcloud(klon) |
---|
112 | |
---|
113 | c ************************** |
---|
114 | c * * |
---|
115 | c * DEBUT PARTIE OPTIMISEE * |
---|
116 | c * * |
---|
117 | c ************************** |
---|
118 | |
---|
119 | REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) |
---|
120 | REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var |
---|
121 | |
---|
122 | ! Abderrahmane oct 2009 |
---|
123 | Real reliq(klon, klev), reice(klon, klev) |
---|
124 | |
---|
125 | c |
---|
126 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
127 | c |
---|
128 | c IM inversion des DO |
---|
129 | xflwp = 0.d0 |
---|
130 | xfiwp = 0.d0 |
---|
131 | xflwc = 0.d0 |
---|
132 | xfiwc = 0.d0 |
---|
133 | |
---|
134 | ! Initialisation |
---|
135 | reliq=0. |
---|
136 | reice=0. |
---|
137 | |
---|
138 | DO k = 1, klev |
---|
139 | DO i = 1, klon |
---|
140 | diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
141 | ENDDO |
---|
142 | ENDDO |
---|
143 | |
---|
144 | IF (ok_newmicro) THEN |
---|
145 | |
---|
146 | |
---|
147 | DO k = 1, klev |
---|
148 | DO i = 1, klon |
---|
149 | c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
150 | zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
151 | & (t_glace_max-t_glace_min) |
---|
152 | zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) |
---|
153 | c IM Total Liquid/Ice water content |
---|
154 | xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) |
---|
155 | xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) |
---|
156 | c IM In-Cloud Liquid/Ice water content |
---|
157 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
158 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | |
---|
162 | IF (ok_aie) THEN |
---|
163 | DO k = 1, klev |
---|
164 | DO i = 1, klon |
---|
165 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
166 | ! |
---|
167 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
168 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
169 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
170 | ! to be within [20, 1000 cm^3] |
---|
171 | ! |
---|
172 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
173 | ! |
---|
174 | ! |
---|
175 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
176 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
---|
177 | & *1.e6 !-m-3 |
---|
178 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
179 | ENDDO |
---|
180 | ENDDO |
---|
181 | DO k = 1, klev |
---|
182 | DO i = 1, klon |
---|
183 | ! rad_chaud_tab(i,k) = |
---|
184 | ! & MAX(1.1e6 |
---|
185 | ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
186 | ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) |
---|
187 | rad_chaud_tab(i,k) = |
---|
188 | & 1.1 |
---|
189 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
190 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
191 | rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | ELSE |
---|
195 | DO k = 1, MIN(3,klev) |
---|
196 | DO i = 1, klon |
---|
197 | rad_chaud_tab(i,k) = rad_chau2 |
---|
198 | ENDDO |
---|
199 | ENDDO |
---|
200 | DO k = MIN(3,klev)+1, klev |
---|
201 | DO i = 1, klon |
---|
202 | rad_chaud_tab(i,k) = rad_chau1 |
---|
203 | ENDDO |
---|
204 | ENDDO |
---|
205 | |
---|
206 | ENDIF |
---|
207 | |
---|
208 | DO k = 1, klev |
---|
209 | ! IF(.not.ok_aie) THEN |
---|
210 | rad_chaud = rad_chau1 |
---|
211 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
212 | ! ENDIF |
---|
213 | DO i = 1, klon |
---|
214 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
215 | |
---|
216 | c -- effective cloud droplet radius (microns): |
---|
217 | |
---|
218 | c for liquid water clouds: |
---|
219 | ! For output diagnostics |
---|
220 | ! |
---|
221 | ! Cloud droplet effective radius [um] |
---|
222 | ! |
---|
223 | ! we multiply here with f * xl (fraction of liquid water |
---|
224 | ! clouds in the grid cell) to avoid problems in the |
---|
225 | ! averaging of the output. |
---|
226 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
227 | ! effective radius as re/fl |
---|
228 | ! |
---|
229 | |
---|
230 | fl(i,k) = seuil_neb*(1.-zfice2(i,k)) |
---|
231 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
232 | |
---|
233 | rel = 0. |
---|
234 | rei = 0. |
---|
235 | pclc(i,k) = 0.0 |
---|
236 | pcltau(i,k) = 0.0 |
---|
237 | pclemi(i,k) = 0.0 |
---|
238 | cldtaupi(i,k) = 0.0 |
---|
239 | ELSE |
---|
240 | |
---|
241 | c -- liquid/ice cloud water paths: |
---|
242 | |
---|
243 | zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
244 | & *diff_paprs(i,k) |
---|
245 | zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
246 | & *diff_paprs(i,k) |
---|
247 | |
---|
248 | c -- effective cloud droplet radius (microns): |
---|
249 | |
---|
250 | c for liquid water clouds: |
---|
251 | |
---|
252 | IF (ok_aie) THEN |
---|
253 | radius = |
---|
254 | & 1.1 |
---|
255 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
256 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
257 | radius = MAX(radius*1e6, 5.) |
---|
258 | |
---|
259 | tc = t(i,k)-273.15 |
---|
260 | rei = 0.71*tc + 61.29 |
---|
261 | if (tc.le.-81.4) rei = 3.5 |
---|
262 | if (zflwp_var.eq.0.) radius = 1. |
---|
263 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
264 | cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
265 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
266 | |
---|
267 | ENDIF ! ok_aie |
---|
268 | ! For output diagnostics |
---|
269 | ! |
---|
270 | ! Cloud droplet effective radius [um] |
---|
271 | ! |
---|
272 | ! we multiply here with f * xl (fraction of liquid water |
---|
273 | ! clouds in the grid cell) to avoid problems in the |
---|
274 | ! averaging of the output. |
---|
275 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
276 | ! effective radius as re/fl |
---|
277 | ! |
---|
278 | |
---|
279 | fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) |
---|
280 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
281 | |
---|
282 | rel = rad_chaud_tab(i,k) |
---|
283 | c for ice clouds: as a function of the ambiant temperature |
---|
284 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
285 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
286 | c consistent with observations of Heymsfield et al. 1986]: |
---|
287 | tc = t(i,k)-273.15 |
---|
288 | rei = 0.71*tc + 61.29 |
---|
289 | if (tc.le.-81.4) rei = 3.5 |
---|
290 | c -- cloud optical thickness : |
---|
291 | |
---|
292 | c [for liquid clouds, traditional formula, |
---|
293 | c for ice clouds, Ebert & Curry (1992)] |
---|
294 | |
---|
295 | if (zflwp_var.eq.0.) rel = 1. |
---|
296 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
297 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
298 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
299 | c -- cloud infrared emissivity: |
---|
300 | |
---|
301 | c [the broadband infrared absorption coefficient is parameterized |
---|
302 | c as a function of the effective cld droplet radius] |
---|
303 | |
---|
304 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
305 | k_ice = k_ice0 + 1.0/rei |
---|
306 | |
---|
307 | pclemi(i,k) = 1.0 |
---|
308 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
309 | |
---|
310 | ENDIF |
---|
311 | reliq(i,k)=rel |
---|
312 | reice(i,k)=rei |
---|
313 | ! if (i.eq.1) then |
---|
314 | ! print*,'Dans newmicro rel, rei :',rel, rei |
---|
315 | ! print*,'Dans newmicro reliq, reice :', |
---|
316 | ! $ reliq(i,k),reice(i,k) |
---|
317 | ! endif |
---|
318 | |
---|
319 | ENDDO |
---|
320 | ENDDO |
---|
321 | |
---|
322 | DO k = 1, klev |
---|
323 | DO i = 1, klon |
---|
324 | xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) |
---|
325 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) |
---|
326 | ENDDO |
---|
327 | ENDDO |
---|
328 | |
---|
329 | ELSE |
---|
330 | DO k = 1, klev |
---|
331 | rad_chaud = rad_chau1 |
---|
332 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
333 | DO i = 1, klon |
---|
334 | |
---|
335 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
336 | |
---|
337 | pclc(i,k) = 0.0 |
---|
338 | pcltau(i,k) = 0.0 |
---|
339 | pclemi(i,k) = 0.0 |
---|
340 | cldtaupi(i,k) = 0.0 |
---|
341 | |
---|
342 | ELSE |
---|
343 | |
---|
344 | zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) |
---|
345 | & /pclc(i,k) |
---|
346 | |
---|
347 | zfice1 = MIN( |
---|
348 | & MAX( 1.0 - (t(i,k)-t_glace_min) / |
---|
349 | & (t_glace_max-t_glace_min),0.0),1.0)**nexpo |
---|
350 | |
---|
351 | radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 |
---|
352 | coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 |
---|
353 | |
---|
354 | pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) |
---|
355 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) |
---|
356 | |
---|
357 | ENDIF |
---|
358 | |
---|
359 | ENDDO |
---|
360 | ENDDO |
---|
361 | ENDIF |
---|
362 | |
---|
363 | IF (.NOT.ok_aie) THEN |
---|
364 | DO k = 1, klev |
---|
365 | DO i = 1, klon |
---|
366 | cldtaupi(i,k)=pcltau(i,k) |
---|
367 | ENDDO |
---|
368 | ENDDO |
---|
369 | ENDIF |
---|
370 | |
---|
371 | ccc DO k = 1, klev |
---|
372 | ccc DO i = 1, klon |
---|
373 | ccc t(i,k) = t(i,k) |
---|
374 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
375 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
376 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
377 | ccc . /(rg*pclc(i,k)) |
---|
378 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
379 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
380 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
381 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
382 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
383 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
384 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
385 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
386 | ccc ENDDO |
---|
387 | ccc ENDDO |
---|
388 | ccccc print*, 'pas de nuage dans le rayonnement' |
---|
389 | ccccc DO k = 1, klev |
---|
390 | ccccc DO i = 1, klon |
---|
391 | ccccc pclc(i,k) = 0.0 |
---|
392 | ccccc pcltau(i,k) = 0.0 |
---|
393 | ccccc pclemi(i,k) = 0.0 |
---|
394 | ccccc ENDDO |
---|
395 | ccccc ENDDO |
---|
396 | C |
---|
397 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
398 | C |
---|
399 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
400 | c initialisations |
---|
401 | DO i=1,klon |
---|
402 | zclear(i)=1. |
---|
403 | zcloud(i)=0. |
---|
404 | pch(i)=1.0 |
---|
405 | pcm(i) = 1.0 |
---|
406 | pcl(i) = 1.0 |
---|
407 | pctlwp(i) = 0.0 |
---|
408 | ENDDO |
---|
409 | C |
---|
410 | cIM cf CR DO k=1,klev |
---|
411 | DO k = klev, 1, -1 |
---|
412 | DO i = 1, klon |
---|
413 | pctlwp(i) = pctlwp(i) |
---|
414 | & + pqlwp(i,k)*diff_paprs(i,k) |
---|
415 | ENDDO |
---|
416 | ENDDO |
---|
417 | c IM cf. CR |
---|
418 | IF (NOVLP.EQ.1) THEN |
---|
419 | DO k = klev, 1, -1 |
---|
420 | DO i = 1, klon |
---|
421 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
422 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
423 | pct(i)=1.-zclear(i) |
---|
424 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
425 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
426 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
427 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
428 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
429 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
430 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
431 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
432 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
433 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
434 | endif |
---|
435 | zcloud(i)=pclc(i,k) |
---|
436 | ENDDO |
---|
437 | ENDDO |
---|
438 | ELSE IF (NOVLP.EQ.2) THEN |
---|
439 | DO k = klev, 1, -1 |
---|
440 | DO i = 1, klon |
---|
441 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
442 | pct(i)=zcloud(i) |
---|
443 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
444 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
445 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
446 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
447 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
448 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
449 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
450 | endif |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | ELSE IF (NOVLP.EQ.3) THEN |
---|
454 | DO k = klev, 1, -1 |
---|
455 | DO i = 1, klon |
---|
456 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
457 | pct(i)=1-zclear(i) |
---|
458 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
459 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
460 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
461 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
462 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
463 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
464 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
465 | endif |
---|
466 | ENDDO |
---|
467 | ENDDO |
---|
468 | ENDIF |
---|
469 | |
---|
470 | C |
---|
471 | DO i = 1, klon |
---|
472 | c IM cf. CR pct(i)=1.-pct(i) |
---|
473 | pch(i)=1.-pch(i) |
---|
474 | pcm(i)=1.-pcm(i) |
---|
475 | pcl(i)=1.-pcl(i) |
---|
476 | ENDDO |
---|
477 | |
---|
478 | C |
---|
479 | RETURN |
---|
480 | END |
---|