1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | c |
---|
5 | c |
---|
6 | SUBROUTINE cv3_param(nd,delt) |
---|
7 | implicit none |
---|
8 | |
---|
9 | c------------------------------------------------------------ |
---|
10 | c Set parameters for convectL for iflag_con = 3 |
---|
11 | c------------------------------------------------------------ |
---|
12 | |
---|
13 | C |
---|
14 | C *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
15 | C *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
16 | C *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
17 | C *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
18 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
19 | C *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
20 | C *** OF CLOUD *** |
---|
21 | C |
---|
22 | C [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
23 | C *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
24 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
25 | C *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
26 | C *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
27 | C |
---|
28 | C *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
29 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
30 | C *** IT MUST BE LESS THAN 0 *** |
---|
31 | |
---|
32 | #include "cv3param.h" |
---|
33 | #include "conema3.h" |
---|
34 | |
---|
35 | integer nd |
---|
36 | real delt ! timestep (seconds) |
---|
37 | |
---|
38 | c noff: integer limit for convection (nd-noff) |
---|
39 | c minorig: First level of convection |
---|
40 | |
---|
41 | c -- limit levels for convection: |
---|
42 | |
---|
43 | noff = 1 |
---|
44 | minorig = 1 |
---|
45 | nl=nd-noff |
---|
46 | nlp=nl+1 |
---|
47 | nlm=nl-1 |
---|
48 | |
---|
49 | c -- "microphysical" parameters: |
---|
50 | sigdz=0.01 |
---|
51 | c sigd=0.003 |
---|
52 | c sigd = 0.01 |
---|
53 | cCR:test sur la fraction des descentes precipitantes |
---|
54 | spfac = 0.15 |
---|
55 | pbcrit = 150.0 |
---|
56 | ptcrit = 500.0 |
---|
57 | epmax = 0.993 |
---|
58 | |
---|
59 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
60 | |
---|
61 | c -- misc: |
---|
62 | |
---|
63 | dtovsh = -0.2 ! dT for overshoot |
---|
64 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
65 | ccc dttrig = 5. ! (loose) condition for triggering |
---|
66 | dttrig = 10. ! (loose) condition for triggering |
---|
67 | |
---|
68 | c -- rate of approach to quasi-equilibrium: |
---|
69 | |
---|
70 | dtcrit = -2.0 |
---|
71 | c dtcrit = -5.0 |
---|
72 | c tau = 3000. |
---|
73 | cc tau = 1800. |
---|
74 | tau=8000. |
---|
75 | beta = 1.0 - delt/tau |
---|
76 | alpha1 = 1.5e-3 |
---|
77 | alpha = alpha1 * delt/tau |
---|
78 | c increase alpha to compensate W decrease: |
---|
79 | alpha = alpha*1.5 |
---|
80 | |
---|
81 | c -- interface cloud parameterization: |
---|
82 | |
---|
83 | delta=0.01 ! cld |
---|
84 | |
---|
85 | c -- interface with boundary-layer (gust factor): (sb) |
---|
86 | |
---|
87 | betad=10.0 ! original value (from convect 4.3) |
---|
88 | |
---|
89 | return |
---|
90 | end |
---|
91 | |
---|
92 | SUBROUTINE cv3_prelim(len,nd,ndp1,t,q,p,ph |
---|
93 | : ,lv,cpn,tv,gz,h,hm,th) |
---|
94 | implicit none |
---|
95 | |
---|
96 | !===================================================================== |
---|
97 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
98 | ! "ori": from convect4.3 (vectorized) |
---|
99 | ! "convect3": to be exactly consistent with convect3 |
---|
100 | !===================================================================== |
---|
101 | |
---|
102 | c inputs: |
---|
103 | integer len, nd, ndp1 |
---|
104 | real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) |
---|
105 | |
---|
106 | c outputs: |
---|
107 | real lv(len,nd), cpn(len,nd), tv(len,nd) |
---|
108 | real gz(len,nd), h(len,nd), hm(len,nd) |
---|
109 | real th(len,nd) |
---|
110 | |
---|
111 | c local variables: |
---|
112 | integer k, i |
---|
113 | real rdcp |
---|
114 | real tvx,tvy ! convect3 |
---|
115 | real cpx(len,nd) |
---|
116 | |
---|
117 | #include "cvthermo.h" |
---|
118 | #include "cv3param.h" |
---|
119 | |
---|
120 | |
---|
121 | c ori do 110 k=1,nlp |
---|
122 | do 110 k=1,nl ! convect3 |
---|
123 | do 100 i=1,len |
---|
124 | cdebug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
125 | lv(i,k)= lv0-clmcpv*(t(i,k)-273.15) |
---|
126 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
127 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
128 | c ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
129 | tv(i,k)=t(i,k)*(1.0+q(i,k)/eps-q(i,k)) |
---|
130 | rdcp=(rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i,k) |
---|
131 | th(i,k)=t(i,k)*(1000.0/p(i,k))**rdcp |
---|
132 | 100 continue |
---|
133 | 110 continue |
---|
134 | c |
---|
135 | c gz = phi at the full levels (same as p). |
---|
136 | c |
---|
137 | do 120 i=1,len |
---|
138 | gz(i,1)=0.0 |
---|
139 | 120 continue |
---|
140 | c ori do 140 k=2,nlp |
---|
141 | do 140 k=2,nl ! convect3 |
---|
142 | do 130 i=1,len |
---|
143 | tvx=t(i,k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
---|
144 | tvy=t(i,k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
---|
145 | gz(i,k)=gz(i,k-1)+0.5*rrd*(tvx+tvy) !convect3 |
---|
146 | & *(p(i,k-1)-p(i,k))/ph(i,k) !convect3 |
---|
147 | c |
---|
148 | cc print *,' gz(',k,')',gz(i,k),' tvx',tvx,' tvy ',tvy |
---|
149 | c |
---|
150 | c ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
151 | c ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
152 | 130 continue |
---|
153 | 140 continue |
---|
154 | c |
---|
155 | c h = phi + cpT (dry static energy). |
---|
156 | c hm = phi + cp(T-Tbase)+Lq |
---|
157 | c |
---|
158 | c ori do 170 k=1,nlp |
---|
159 | do 170 k=1,nl ! convect3 |
---|
160 | do 160 i=1,len |
---|
161 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
162 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
163 | 160 continue |
---|
164 | 170 continue |
---|
165 | |
---|
166 | return |
---|
167 | end |
---|
168 | |
---|
169 | SUBROUTINE cv3_feed(len,nd,t,q,u,v,p,ph,hm,gz |
---|
170 | : ,p1feed,p2feed,wght |
---|
171 | : ,wghti,tnk,thnk,qnk,qsnk,unk,vnk |
---|
172 | : ,cpnk,hnk,nk,icb,icbmax,iflag,gznk,plcl) |
---|
173 | implicit none |
---|
174 | |
---|
175 | C================================================================ |
---|
176 | C Purpose: CONVECTIVE FEED |
---|
177 | C |
---|
178 | C Main differences with cv_feed: |
---|
179 | C - ph added in input |
---|
180 | C - here, nk(i)=minorig |
---|
181 | C - icb defined differently (plcl compared with ph instead of p) |
---|
182 | C |
---|
183 | C Main differences with convect3: |
---|
184 | C - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
185 | C - values iflag different (but tests identical) |
---|
186 | C - A,B explicitely defined (!...) |
---|
187 | C================================================================ |
---|
188 | |
---|
189 | #include "cv3param.h" |
---|
190 | #include "cvthermo.h" |
---|
191 | |
---|
192 | c inputs: |
---|
193 | integer len, nd |
---|
194 | real t(len,nd), q(len,nd), p(len,nd) |
---|
195 | real u(len,nd), v(len,nd) |
---|
196 | real hm(len,nd), gz(len,nd) |
---|
197 | real ph(len,nd+1) |
---|
198 | real p1feed(len) |
---|
199 | c, wght(len) |
---|
200 | real wght(nd) |
---|
201 | c input-output |
---|
202 | real p2feed(len) |
---|
203 | c outputs: |
---|
204 | integer iflag(len), nk(len), icb(len), icbmax |
---|
205 | c real wghti(len) |
---|
206 | real wghti(len,nd) |
---|
207 | real tnk(len), thnk(len), qnk(len), qsnk(len) |
---|
208 | real unk(len), vnk(len) |
---|
209 | real cpnk(len), hnk(len), gznk(len) |
---|
210 | real plcl(len) |
---|
211 | |
---|
212 | c local variables: |
---|
213 | integer i, k, iter, niter |
---|
214 | integer ihmin(len) |
---|
215 | real work(len) |
---|
216 | real pup(len),plo(len),pfeed(len) |
---|
217 | real plclup(len),plcllo(len),plclfeed(len) |
---|
218 | real posit(len) |
---|
219 | logical nocond(len) |
---|
220 | ! |
---|
221 | !------------------------------------------------------------------- |
---|
222 | ! --- Origin level of ascending parcels for convect3: |
---|
223 | !------------------------------------------------------------------- |
---|
224 | |
---|
225 | do 220 i=1,len |
---|
226 | nk(i)=minorig |
---|
227 | gznk(i)=gz(i,nk(i)) |
---|
228 | 220 continue |
---|
229 | ! |
---|
230 | !------------------------------------------------------------------- |
---|
231 | ! --- Adjust feeding layer thickness so that lifting up to the top of |
---|
232 | ! --- the feeding layer does not induce condensation (i.e. so that |
---|
233 | ! --- plcl < p2feed). |
---|
234 | ! --- Method : iterative secant method. |
---|
235 | !------------------------------------------------------------------- |
---|
236 | ! |
---|
237 | c 1- First bracketing of the solution : ph(nk+1), p2feed |
---|
238 | c |
---|
239 | c 1.a- LCL associated to p2feed |
---|
240 | do i = 1,len |
---|
241 | pup(i) = p2feed(i) |
---|
242 | enddo |
---|
243 | call cv3_vertmix(len,nd,iflag,p1feed,pup,p,ph |
---|
244 | i ,t,q,u,v,wght |
---|
245 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plclup) |
---|
246 | c 1.b- LCL associated to ph(nk+1) |
---|
247 | do i = 1,len |
---|
248 | plo(i) = ph(i,nk(i)+1) |
---|
249 | enddo |
---|
250 | call cv3_vertmix(len,nd,iflag,p1feed,plo,p,ph |
---|
251 | i ,t,q,u,v,wght |
---|
252 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plcllo) |
---|
253 | c 2- Iterations |
---|
254 | niter = 5 |
---|
255 | do iter = 1,niter |
---|
256 | do i = 1,len |
---|
257 | plcllo(i) = min(plo(i),plcllo(i)) |
---|
258 | plclup(i) = max(pup(i),plclup(i)) |
---|
259 | nocond(i) = plclup(i).le.pup(i) |
---|
260 | enddo |
---|
261 | do i = 1,len |
---|
262 | if(nocond(i)) then |
---|
263 | pfeed(i)=pup(i) |
---|
264 | else |
---|
265 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i))+ |
---|
266 | : plo(i)*(plclup(i)-pup(i)))/ |
---|
267 | : (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
---|
268 | endif |
---|
269 | enddo |
---|
270 | call cv3_vertmix(len,nd,iflag,p1feed,pfeed,p,ph |
---|
271 | i ,t,q,u,v,wght |
---|
272 | o ,wghti,nk,tnk,thnk,qnk,qsnk,unk,vnk,plclfeed) |
---|
273 | do i = 1,len |
---|
274 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i))+1.)*0.5 |
---|
275 | if (plclfeed(i) .eq. pfeed(i)) posit(i) = 1. |
---|
276 | c- posit = 1 when lcl is below top of feeding layer (plclfeed>pfeed) |
---|
277 | c- => pup=pfeed |
---|
278 | c- posit = 0 when lcl is above top of feeding layer (plclfeed<pfeed) |
---|
279 | c- => plo=pfeed |
---|
280 | pup(i) = posit(i)*pfeed(i) + (1.-posit(i))*pup(i) |
---|
281 | plo(i) = (1.-posit(i))*pfeed(i) + posit(i)*plo(i) |
---|
282 | plclup(i) = posit(i)*plclfeed(i) + (1.-posit(i))*plclup(i) |
---|
283 | plcllo(i) = (1.-posit(i))*plclfeed(i) + posit(i)*plcllo(i) |
---|
284 | enddo |
---|
285 | enddo ! iter |
---|
286 | do i = 1,len |
---|
287 | p2feed(i) = pfeed(i) |
---|
288 | plcl(i) = plclfeed(i) |
---|
289 | enddo |
---|
290 | ! |
---|
291 | do 175 i=1,len |
---|
292 | cpnk(i)=cpd*(1.0-qnk(i))+cpv*qnk(i) |
---|
293 | hnk(i)=gz(i,1)+cpnk(i)*tnk(i) |
---|
294 | 175 continue |
---|
295 | ! |
---|
296 | !------------------------------------------------------------------- |
---|
297 | ! --- Check whether parcel level temperature and specific humidity |
---|
298 | ! --- are reasonable |
---|
299 | !------------------------------------------------------------------- |
---|
300 | do 250 i=1,len |
---|
301 | if( ( ( tnk(i).lt.250.0 ) |
---|
302 | & .or.( qnk(i).le.0.0 ) ) |
---|
303 | & .and. |
---|
304 | & ( iflag(i).eq.0) ) iflag(i)=7 |
---|
305 | 250 continue |
---|
306 | c |
---|
307 | !------------------------------------------------------------------- |
---|
308 | ! --- Calculate first level above lcl (=icb) |
---|
309 | !------------------------------------------------------------------- |
---|
310 | |
---|
311 | c@ do 270 i=1,len |
---|
312 | c@ icb(i)=nlm |
---|
313 | c@ 270 continue |
---|
314 | c@c |
---|
315 | c@ do 290 k=minorig,nl |
---|
316 | c@ do 280 i=1,len |
---|
317 | c@ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
318 | c@ & icb(i)=min(icb(i),k) |
---|
319 | c@ 280 continue |
---|
320 | c@ 290 continue |
---|
321 | c@c |
---|
322 | c@ do 300 i=1,len |
---|
323 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
324 | c@ 300 continue |
---|
325 | |
---|
326 | do 270 i=1,len |
---|
327 | icb(i)=nlm |
---|
328 | 270 continue |
---|
329 | c |
---|
330 | c la modification consiste a comparer plcl a ph et non a p: |
---|
331 | c icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
332 | c@ do 290 k=minorig,nl |
---|
333 | do 290 k=3,nl-1 ! modif pour que icb soit sup/egal a 2 |
---|
334 | do 280 i=1,len |
---|
335 | if( ph(i,k).lt.plcl(i) ) icb(i)=min(icb(i),k) |
---|
336 | 280 continue |
---|
337 | 290 continue |
---|
338 | c |
---|
339 | |
---|
340 | c print*,'icb dans cv3_feed ' |
---|
341 | c write(*,'(64i2)') icb(2:len-1) |
---|
342 | c call dump2d(64,43,'plcl dans cv3_feed ',plcl(2:len-1)) |
---|
343 | |
---|
344 | do 300 i=1,len |
---|
345 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
346 | if((icb(i).eq.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
347 | 300 continue |
---|
348 | |
---|
349 | do 400 i=1,len |
---|
350 | icb(i) = icb(i)-1 ! icb sup ou egal a 2 |
---|
351 | 400 continue |
---|
352 | c |
---|
353 | c Compute icbmax. |
---|
354 | c |
---|
355 | icbmax=2 |
---|
356 | do 310 i=1,len |
---|
357 | c! icbmax=max(icbmax,icb(i)) |
---|
358 | if (iflag(i).lt.7) icbmax=max(icbmax,icb(i)) ! sb Jun7th02 |
---|
359 | 310 continue |
---|
360 | |
---|
361 | return |
---|
362 | end |
---|
363 | |
---|
364 | SUBROUTINE cv3_undilute1(len,nd,t,qs,gz,plcl,p,icb,tnk,qnk,gznk |
---|
365 | : ,tp,tvp,clw,icbs) |
---|
366 | implicit none |
---|
367 | |
---|
368 | !---------------------------------------------------------------- |
---|
369 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
370 | ! |
---|
371 | ! Differences with convect4: |
---|
372 | ! - specify plcl in input |
---|
373 | ! - icbs is the first level above LCL (may differ from icb) |
---|
374 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
375 | ! - many minor differences in the iterations |
---|
376 | ! - tvp is computed in only one time |
---|
377 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
378 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
379 | !---------------------------------------------------------------- |
---|
380 | |
---|
381 | #include "cvthermo.h" |
---|
382 | #include "cv3param.h" |
---|
383 | |
---|
384 | c inputs: |
---|
385 | integer len, nd |
---|
386 | integer icb(len) |
---|
387 | real t(len,nd), qs(len,nd), gz(len,nd) |
---|
388 | real tnk(len), qnk(len), gznk(len) |
---|
389 | real p(len,nd) |
---|
390 | real plcl(len) ! convect3 |
---|
391 | |
---|
392 | c outputs: |
---|
393 | real tp(len,nd), tvp(len,nd), clw(len,nd) |
---|
394 | |
---|
395 | c local variables: |
---|
396 | integer i, k |
---|
397 | integer icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
398 | real tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
399 | real ah0(len), cpp(len) |
---|
400 | real ticb(len), gzicb(len) |
---|
401 | real qsicb(len) ! convect3 |
---|
402 | real cpinv(len) ! convect3 |
---|
403 | |
---|
404 | !------------------------------------------------------------------- |
---|
405 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
406 | ! --- the actual temperature, and the adiabatic |
---|
407 | ! --- liquid water content. The procedure is to solve the equation. |
---|
408 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
409 | !------------------------------------------------------------------- |
---|
410 | |
---|
411 | c |
---|
412 | c *** Calculate certain parcel quantities, including static energy *** |
---|
413 | c |
---|
414 | do 330 i=1,len |
---|
415 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
416 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
417 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
418 | cpinv(i)=1./cpp(i) |
---|
419 | 330 continue |
---|
420 | c |
---|
421 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
422 | c |
---|
423 | do i=1,len !convect3 |
---|
424 | icb1(i)=MAX(icb(i),2) !convect3 |
---|
425 | icb1(i)=MIN(icb(i),nl) !convect3 |
---|
426 | c if icb is below LCL, start loop at ICB+1: |
---|
427 | c (icbs est le premier niveau au-dessus du LCL) |
---|
428 | icbs(i)=icb1(i) !convect3 |
---|
429 | if (plcl(i).lt.p(i,icb1(i))) then |
---|
430 | icbs(i)=MIN(icbs(i)+1,nl) !convect3 |
---|
431 | endif |
---|
432 | enddo !convect3 |
---|
433 | |
---|
434 | do i=1,len !convect3 |
---|
435 | ticb(i)=t(i,icbs(i)) !convect3 |
---|
436 | gzicb(i)=gz(i,icbs(i)) !convect3 |
---|
437 | qsicb(i)=qs(i,icbs(i)) !convect3 |
---|
438 | enddo !convect3 |
---|
439 | |
---|
440 | c |
---|
441 | c Re-compute icbsmax (icbsmax2): !convect3 |
---|
442 | c !convect3 |
---|
443 | icbsmax2=2 !convect3 |
---|
444 | do 310 i=1,len !convect3 |
---|
445 | icbsmax2=max(icbsmax2,icbs(i)) !convect3 |
---|
446 | 310 continue !convect3 |
---|
447 | |
---|
448 | c initialization outputs: |
---|
449 | |
---|
450 | do k=1,icbsmax2 ! convect3 |
---|
451 | do i=1,len ! convect3 |
---|
452 | tp(i,k) = 0.0 ! convect3 |
---|
453 | tvp(i,k) = 0.0 ! convect3 |
---|
454 | clw(i,k) = 0.0 ! convect3 |
---|
455 | enddo ! convect3 |
---|
456 | enddo ! convect3 |
---|
457 | |
---|
458 | c tp and tvp below cloud base: |
---|
459 | |
---|
460 | do 350 k=minorig,icbsmax2-1 |
---|
461 | do 340 i=1,len |
---|
462 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))*cpinv(i) |
---|
463 | tvp(i,k)=tp(i,k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
---|
464 | 340 continue |
---|
465 | 350 continue |
---|
466 | c |
---|
467 | c *** Find lifted parcel quantities above cloud base *** |
---|
468 | c |
---|
469 | do 360 i=1,len |
---|
470 | tg=ticb(i) |
---|
471 | c ori qg=qs(i,icb(i)) |
---|
472 | qg=qsicb(i) ! convect3 |
---|
473 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
474 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
475 | c |
---|
476 | c First iteration. |
---|
477 | c |
---|
478 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
479 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
480 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
481 | s=1./s |
---|
482 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
483 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
484 | tg=tg+s*(ah0(i)-ahg) |
---|
485 | c ori tg=max(tg,35.0) |
---|
486 | cdebug tc=tg-t0 |
---|
487 | tc=tg-273.15 |
---|
488 | denom=243.5+tc |
---|
489 | denom=MAX(denom,1.0) ! convect3 |
---|
490 | c ori if(tc.ge.0.0)then |
---|
491 | es=6.112*exp(17.67*tc/denom) |
---|
492 | c ori else |
---|
493 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
494 | c ori endif |
---|
495 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
496 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
497 | c |
---|
498 | c Second iteration. |
---|
499 | c |
---|
500 | |
---|
501 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
502 | c ori s=1./s |
---|
503 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
504 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
505 | tg=tg+s*(ah0(i)-ahg) |
---|
506 | c ori tg=max(tg,35.0) |
---|
507 | cdebug tc=tg-t0 |
---|
508 | tc=tg-273.15 |
---|
509 | denom=243.5+tc |
---|
510 | denom=MAX(denom,1.0) ! convect3 |
---|
511 | c ori if(tc.ge.0.0)then |
---|
512 | es=6.112*exp(17.67*tc/denom) |
---|
513 | c ori else |
---|
514 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
515 | c ori end if |
---|
516 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
517 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
518 | |
---|
519 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
520 | |
---|
521 | c ori c approximation here: |
---|
522 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
523 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
524 | |
---|
525 | c convect3: no approximation: |
---|
526 | tp(i,icbs(i))=(ah0(i)-gz(i,icbs(i))-alv*qg) |
---|
527 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
528 | |
---|
529 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
530 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
531 | clw(i,icbs(i))=qnk(i)-qg |
---|
532 | clw(i,icbs(i))=max(0.0,clw(i,icbs(i))) |
---|
533 | |
---|
534 | rg=qg/(1.-qnk(i)) |
---|
535 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
536 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
537 | tvp(i,icbs(i))=tp(i,icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
---|
538 | |
---|
539 | 360 continue |
---|
540 | c |
---|
541 | c ori do 380 k=minorig,icbsmax2 |
---|
542 | c ori do 370 i=1,len |
---|
543 | c ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
544 | c ori 370 continue |
---|
545 | c ori 380 continue |
---|
546 | c |
---|
547 | |
---|
548 | c -- The following is only for convect3: |
---|
549 | c |
---|
550 | c * icbs is the first level above the LCL: |
---|
551 | c if plcl<p(icb), then icbs=icb+1 |
---|
552 | c if plcl>p(icb), then icbs=icb |
---|
553 | c |
---|
554 | c * the routine above computes tvp from minorig to icbs (included). |
---|
555 | c |
---|
556 | c * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
557 | c must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
558 | c |
---|
559 | c * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
560 | c (tvp at other levels will be computed in cv3_undilute2.F) |
---|
561 | c |
---|
562 | |
---|
563 | do i=1,len |
---|
564 | ticb(i)=t(i,icb(i)+1) |
---|
565 | gzicb(i)=gz(i,icb(i)+1) |
---|
566 | qsicb(i)=qs(i,icb(i)+1) |
---|
567 | enddo |
---|
568 | |
---|
569 | do 460 i=1,len |
---|
570 | tg=ticb(i) |
---|
571 | qg=qsicb(i) ! convect3 |
---|
572 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
573 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
574 | c |
---|
575 | c First iteration. |
---|
576 | c |
---|
577 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
578 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
579 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
580 | s=1./s |
---|
581 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
582 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
583 | tg=tg+s*(ah0(i)-ahg) |
---|
584 | c ori tg=max(tg,35.0) |
---|
585 | cdebug tc=tg-t0 |
---|
586 | tc=tg-273.15 |
---|
587 | denom=243.5+tc |
---|
588 | denom=MAX(denom,1.0) ! convect3 |
---|
589 | c ori if(tc.ge.0.0)then |
---|
590 | es=6.112*exp(17.67*tc/denom) |
---|
591 | c ori else |
---|
592 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
593 | c ori endif |
---|
594 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
595 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
596 | c |
---|
597 | c Second iteration. |
---|
598 | c |
---|
599 | |
---|
600 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
601 | c ori s=1./s |
---|
602 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
603 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
604 | tg=tg+s*(ah0(i)-ahg) |
---|
605 | c ori tg=max(tg,35.0) |
---|
606 | cdebug tc=tg-t0 |
---|
607 | tc=tg-273.15 |
---|
608 | denom=243.5+tc |
---|
609 | denom=MAX(denom,1.0) ! convect3 |
---|
610 | c ori if(tc.ge.0.0)then |
---|
611 | es=6.112*exp(17.67*tc/denom) |
---|
612 | c ori else |
---|
613 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
614 | c ori end if |
---|
615 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
616 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
617 | |
---|
618 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
619 | |
---|
620 | c ori c approximation here: |
---|
621 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
622 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
623 | |
---|
624 | c convect3: no approximation: |
---|
625 | tp(i,icb(i)+1)=(ah0(i)-gz(i,icb(i)+1)-alv*qg) |
---|
626 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
627 | |
---|
628 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
629 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
630 | clw(i,icb(i)+1)=qnk(i)-qg |
---|
631 | clw(i,icb(i)+1)=max(0.0,clw(i,icb(i)+1)) |
---|
632 | |
---|
633 | rg=qg/(1.-qnk(i)) |
---|
634 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
635 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
636 | tvp(i,icb(i)+1)=tp(i,icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
---|
637 | |
---|
638 | 460 continue |
---|
639 | |
---|
640 | return |
---|
641 | end |
---|
642 | |
---|
643 | SUBROUTINE cv3_trigger(len,nd,icb,plcl,p,th,tv,tvp,thnk, |
---|
644 | o pbase,buoybase,iflag,sig,w0) |
---|
645 | implicit none |
---|
646 | |
---|
647 | !------------------------------------------------------------------- |
---|
648 | ! --- TRIGGERING |
---|
649 | ! |
---|
650 | ! - computes the cloud base |
---|
651 | ! - triggering (crude in this version) |
---|
652 | ! - relaxation of sig and w0 when no convection |
---|
653 | ! |
---|
654 | ! Caution1: if no convection, we set iflag=4 |
---|
655 | ! (it used to be 0 in convect3) |
---|
656 | ! |
---|
657 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
658 | ! through icb only! |
---|
659 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
660 | !------------------------------------------------------------------- |
---|
661 | |
---|
662 | #include "cv3param.h" |
---|
663 | |
---|
664 | c input: |
---|
665 | integer len, nd |
---|
666 | integer icb(len) |
---|
667 | real plcl(len), p(len,nd) |
---|
668 | real th(len,nd), tv(len,nd), tvp(len,nd) |
---|
669 | real thnk(len) |
---|
670 | |
---|
671 | c output: |
---|
672 | real pbase(len), buoybase(len) |
---|
673 | |
---|
674 | c input AND output: |
---|
675 | integer iflag(len) |
---|
676 | real sig(len,nd), w0(len,nd) |
---|
677 | |
---|
678 | c local variables: |
---|
679 | integer i,k |
---|
680 | real tvpbase, tvbase, tdif, ath, ath1 |
---|
681 | |
---|
682 | c |
---|
683 | c *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
684 | c |
---|
685 | do 100 i=1,len |
---|
686 | pbase(i) = plcl(i) + dpbase |
---|
687 | tvpbase = tvp(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
688 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
689 | : + tvp(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
690 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
691 | tvbase = tv(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
692 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
693 | : + tv(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
694 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
695 | buoybase(i) = tvpbase - tvbase |
---|
696 | 100 continue |
---|
697 | |
---|
698 | c |
---|
699 | c *** make sure that column is dry adiabatic between the surface *** |
---|
700 | c *** and cloud base, and that lifted air is positively buoyant *** |
---|
701 | c *** at cloud base *** |
---|
702 | c *** if not, return to calling program after resetting *** |
---|
703 | c *** sig(i) and w0(i) *** |
---|
704 | c |
---|
705 | |
---|
706 | c oct3 do 200 i=1,len |
---|
707 | c oct3 |
---|
708 | c oct3 tdif = buoybase(i) |
---|
709 | c oct3 ath1 = th(i,1) |
---|
710 | c oct3 ath = th(i,icb(i)-1) - dttrig |
---|
711 | c oct3 |
---|
712 | c oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
713 | c oct3 do 60 k=1,nl |
---|
714 | c oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
715 | c oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
716 | c oct3 w0(i,k) = beta*w0(i,k) |
---|
717 | c oct3 60 continue |
---|
718 | c oct3 iflag(i)=4 ! pour version vectorisee |
---|
719 | c oct3c convect3 iflag(i)=0 |
---|
720 | c oct3cccc return |
---|
721 | c oct3 endif |
---|
722 | c oct3 |
---|
723 | c oct3200 continue |
---|
724 | |
---|
725 | c -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
726 | |
---|
727 | do 60 k=1,nl |
---|
728 | do 200 i=1,len |
---|
729 | |
---|
730 | tdif = buoybase(i) |
---|
731 | ath1 = thnk(i) |
---|
732 | ath = th(i,icb(i)-1) - dttrig |
---|
733 | |
---|
734 | if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
735 | sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
736 | sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
737 | w0(i,k) = beta*w0(i,k) |
---|
738 | iflag(i)=4 ! pour version vectorisee |
---|
739 | c convect3 iflag(i)=0 |
---|
740 | endif |
---|
741 | |
---|
742 | 200 continue |
---|
743 | 60 continue |
---|
744 | |
---|
745 | c fin oct3 -- |
---|
746 | |
---|
747 | return |
---|
748 | end |
---|
749 | |
---|
750 | SUBROUTINE cv3_compress( len,nloc,ncum,nd,ntra |
---|
751 | : ,iflag1,nk1,icb1,icbs1 |
---|
752 | : ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 |
---|
753 | : ,t1,q1,qs1,u1,v1,gz1,th1 |
---|
754 | : ,tra1 |
---|
755 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
756 | : ,sig1,w01 |
---|
757 | o ,iflag,nk,icb,icbs |
---|
758 | o ,plcl,tnk,qnk,gznk,pbase,buoybase |
---|
759 | o ,t,q,qs,u,v,gz,th |
---|
760 | o ,tra |
---|
761 | o ,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
762 | o ,sig,w0 ) |
---|
763 | implicit none |
---|
764 | |
---|
765 | #include "cv3param.h" |
---|
766 | |
---|
767 | c inputs: |
---|
768 | integer len,ncum,nd,ntra,nloc |
---|
769 | integer iflag1(len),nk1(len),icb1(len),icbs1(len) |
---|
770 | real plcl1(len),tnk1(len),qnk1(len),gznk1(len) |
---|
771 | real pbase1(len),buoybase1(len) |
---|
772 | real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) |
---|
773 | real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) |
---|
774 | real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) |
---|
775 | real tvp1(len,nd),clw1(len,nd) |
---|
776 | real th1(len,nd) |
---|
777 | real sig1(len,nd), w01(len,nd) |
---|
778 | real tra1(len,nd,ntra) |
---|
779 | |
---|
780 | c outputs: |
---|
781 | c en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
782 | integer iflag(nloc),nk(nloc),icb(nloc),icbs(nloc) |
---|
783 | real plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
784 | real pbase(nloc),buoybase(nloc) |
---|
785 | real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) |
---|
786 | real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) |
---|
787 | real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) |
---|
788 | real tvp(nloc,nd),clw(nloc,nd) |
---|
789 | real th(nloc,nd) |
---|
790 | real sig(nloc,nd), w0(nloc,nd) |
---|
791 | real tra(nloc,nd,ntra) |
---|
792 | |
---|
793 | c local variables: |
---|
794 | integer i,k,nn,j |
---|
795 | |
---|
796 | |
---|
797 | do 110 k=1,nl+1 |
---|
798 | nn=0 |
---|
799 | do 100 i=1,len |
---|
800 | if(iflag1(i).eq.0)then |
---|
801 | nn=nn+1 |
---|
802 | sig(nn,k)=sig1(i,k) |
---|
803 | w0(nn,k)=w01(i,k) |
---|
804 | t(nn,k)=t1(i,k) |
---|
805 | q(nn,k)=q1(i,k) |
---|
806 | qs(nn,k)=qs1(i,k) |
---|
807 | u(nn,k)=u1(i,k) |
---|
808 | v(nn,k)=v1(i,k) |
---|
809 | gz(nn,k)=gz1(i,k) |
---|
810 | h(nn,k)=h1(i,k) |
---|
811 | lv(nn,k)=lv1(i,k) |
---|
812 | cpn(nn,k)=cpn1(i,k) |
---|
813 | p(nn,k)=p1(i,k) |
---|
814 | ph(nn,k)=ph1(i,k) |
---|
815 | tv(nn,k)=tv1(i,k) |
---|
816 | tp(nn,k)=tp1(i,k) |
---|
817 | tvp(nn,k)=tvp1(i,k) |
---|
818 | clw(nn,k)=clw1(i,k) |
---|
819 | th(nn,k)=th1(i,k) |
---|
820 | endif |
---|
821 | 100 continue |
---|
822 | 110 continue |
---|
823 | |
---|
824 | do 121 j=1,ntra |
---|
825 | ccccc do 111 k=1,nl+1 |
---|
826 | do 111 k=1,nd |
---|
827 | nn=0 |
---|
828 | do 101 i=1,len |
---|
829 | if(iflag1(i).eq.0)then |
---|
830 | nn=nn+1 |
---|
831 | tra(nn,k,j)=tra1(i,k,j) |
---|
832 | endif |
---|
833 | 101 continue |
---|
834 | 111 continue |
---|
835 | 121 continue |
---|
836 | |
---|
837 | if (nn.ne.ncum) then |
---|
838 | print*,'strange! nn not equal to ncum: ',nn,ncum |
---|
839 | stop |
---|
840 | endif |
---|
841 | |
---|
842 | nn=0 |
---|
843 | do 150 i=1,len |
---|
844 | if(iflag1(i).eq.0)then |
---|
845 | nn=nn+1 |
---|
846 | pbase(nn)=pbase1(i) |
---|
847 | buoybase(nn)=buoybase1(i) |
---|
848 | plcl(nn)=plcl1(i) |
---|
849 | tnk(nn)=tnk1(i) |
---|
850 | qnk(nn)=qnk1(i) |
---|
851 | gznk(nn)=gznk1(i) |
---|
852 | nk(nn)=nk1(i) |
---|
853 | icb(nn)=icb1(i) |
---|
854 | icbs(nn)=icbs1(i) |
---|
855 | iflag(nn)=iflag1(i) |
---|
856 | endif |
---|
857 | 150 continue |
---|
858 | |
---|
859 | return |
---|
860 | end |
---|
861 | |
---|
862 | SUBROUTINE cv3_undilute2(nloc,ncum,nd,icb,icbs,nk |
---|
863 | : ,tnk,qnk,gznk,hnk,t,q,qs,gz |
---|
864 | : ,p,h,tv,lv,pbase,buoybase,plcl |
---|
865 | o ,inb,tp,tvp,clw,hp,ep,sigp,buoy) |
---|
866 | implicit none |
---|
867 | |
---|
868 | C--------------------------------------------------------------------- |
---|
869 | C Purpose: |
---|
870 | C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
871 | C & |
---|
872 | C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
873 | C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
874 | C & |
---|
875 | C FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
876 | C |
---|
877 | C Main differences convect3/convect4: |
---|
878 | C - icbs (input) is the first level above LCL (may differ from icb) |
---|
879 | C - many minor differences in the iterations |
---|
880 | C - condensed water not removed from tvp in convect3 |
---|
881 | C - vertical profile of buoyancy computed here (use of buoybase) |
---|
882 | C - the determination of inb is different |
---|
883 | C - no inb1, only inb in output |
---|
884 | C--------------------------------------------------------------------- |
---|
885 | |
---|
886 | #include "cvthermo.h" |
---|
887 | #include "cv3param.h" |
---|
888 | #include "conema3.h" |
---|
889 | |
---|
890 | c inputs: |
---|
891 | integer ncum, nd, nloc |
---|
892 | integer icb(nloc), icbs(nloc), nk(nloc) |
---|
893 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) |
---|
894 | real p(nloc,nd) |
---|
895 | real tnk(nloc), qnk(nloc), gznk(nloc) |
---|
896 | real hnk(nloc) |
---|
897 | real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) |
---|
898 | real pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
899 | |
---|
900 | c outputs: |
---|
901 | integer inb(nloc) |
---|
902 | real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) |
---|
903 | real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) |
---|
904 | real buoy(nloc,nd) |
---|
905 | |
---|
906 | c local variables: |
---|
907 | integer i, k |
---|
908 | real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit |
---|
909 | real by, defrac, pden |
---|
910 | real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
911 | logical lcape(nloc) |
---|
912 | integer iposit(nloc) |
---|
913 | |
---|
914 | !===================================================================== |
---|
915 | ! --- SOME INITIALIZATIONS |
---|
916 | !===================================================================== |
---|
917 | |
---|
918 | do 170 k=1,nl |
---|
919 | do 160 i=1,ncum |
---|
920 | ep(i,k)=0.0 |
---|
921 | sigp(i,k)=spfac |
---|
922 | 160 continue |
---|
923 | 170 continue |
---|
924 | |
---|
925 | !===================================================================== |
---|
926 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
927 | !===================================================================== |
---|
928 | c |
---|
929 | c --- The procedure is to solve the equation. |
---|
930 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
931 | c |
---|
932 | c *** Calculate certain parcel quantities, including static energy *** |
---|
933 | c |
---|
934 | c |
---|
935 | do 240 i=1,ncum |
---|
936 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
937 | cdebug & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
938 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
939 | 240 continue |
---|
940 | c |
---|
941 | c |
---|
942 | c *** Find lifted parcel quantities above cloud base *** |
---|
943 | c |
---|
944 | c |
---|
945 | do 300 k=minorig+1,nl |
---|
946 | do 290 i=1,ncum |
---|
947 | c ori if(k.ge.(icb(i)+1))then |
---|
948 | if(k.ge.(icbs(i)+1))then ! convect3 |
---|
949 | tg=t(i,k) |
---|
950 | qg=qs(i,k) |
---|
951 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
952 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
953 | c |
---|
954 | c First iteration. |
---|
955 | c |
---|
956 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
957 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
958 | : +alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
---|
959 | s=1./s |
---|
960 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
961 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
962 | tg=tg+s*(ah0(i)-ahg) |
---|
963 | c ori tg=max(tg,35.0) |
---|
964 | cdebug tc=tg-t0 |
---|
965 | tc=tg-273.15 |
---|
966 | denom=243.5+tc |
---|
967 | denom=MAX(denom,1.0) ! convect3 |
---|
968 | c ori if(tc.ge.0.0)then |
---|
969 | es=6.112*exp(17.67*tc/denom) |
---|
970 | c ori else |
---|
971 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
972 | c ori endif |
---|
973 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
974 | c |
---|
975 | c Second iteration. |
---|
976 | c |
---|
977 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
978 | c ori s=1./s |
---|
979 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
980 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
981 | tg=tg+s*(ah0(i)-ahg) |
---|
982 | c ori tg=max(tg,35.0) |
---|
983 | cdebug tc=tg-t0 |
---|
984 | tc=tg-273.15 |
---|
985 | denom=243.5+tc |
---|
986 | denom=MAX(denom,1.0) ! convect3 |
---|
987 | c ori if(tc.ge.0.0)then |
---|
988 | es=6.112*exp(17.67*tc/denom) |
---|
989 | c ori else |
---|
990 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
991 | c ori endif |
---|
992 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
993 | c |
---|
994 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
995 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
996 | c print*,'cpd dans convect2 ',cpd |
---|
997 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
998 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
999 | |
---|
1000 | c ori c approximation here: |
---|
1001 | c ori tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
1002 | |
---|
1003 | c convect3: no approximation: |
---|
1004 | tp(i,k)=(ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
1005 | |
---|
1006 | clw(i,k)=qnk(i)-qg |
---|
1007 | clw(i,k)=max(0.0,clw(i,k)) |
---|
1008 | rg=qg/(1.-qnk(i)) |
---|
1009 | c ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
1010 | c convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
1011 | tvp(i,k)=tp(i,k)*(1.+qg/eps-qnk(i)) ! whole thing |
---|
1012 | endif |
---|
1013 | 290 continue |
---|
1014 | 300 continue |
---|
1015 | c |
---|
1016 | !===================================================================== |
---|
1017 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
1018 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
1019 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
1020 | !===================================================================== |
---|
1021 | c |
---|
1022 | c ori do 320 k=minorig+1,nl |
---|
1023 | do 320 k=1,nl ! convect3 |
---|
1024 | do 310 i=1,ncum |
---|
1025 | pden=ptcrit-pbcrit |
---|
1026 | ep(i,k)=(plcl(i)-p(i,k)-pbcrit)/pden*epmax |
---|
1027 | ep(i,k)=amax1(ep(i,k),0.0) |
---|
1028 | ep(i,k)=amin1(ep(i,k),epmax) |
---|
1029 | sigp(i,k)=spfac |
---|
1030 | c ori if(k.ge.(nk(i)+1))then |
---|
1031 | c ori tca=tp(i,k)-t0 |
---|
1032 | c ori if(tca.ge.0.0)then |
---|
1033 | c ori elacrit=elcrit |
---|
1034 | c ori else |
---|
1035 | c ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
1036 | c ori endif |
---|
1037 | c ori elacrit=max(elacrit,0.0) |
---|
1038 | c ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
1039 | c ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
1040 | c ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
1041 | c ori sigp(i,k)=sigs |
---|
1042 | c ori endif |
---|
1043 | 310 continue |
---|
1044 | 320 continue |
---|
1045 | c |
---|
1046 | !===================================================================== |
---|
1047 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
1048 | ! --- VIRTUAL TEMPERATURE |
---|
1049 | !===================================================================== |
---|
1050 | c |
---|
1051 | c dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
1052 | c l'eau condensee (~> reversible CAPE) |
---|
1053 | c |
---|
1054 | c ori do 340 k=minorig+1,nl |
---|
1055 | c ori do 330 i=1,ncum |
---|
1056 | c ori if(k.ge.(icb(i)+1))then |
---|
1057 | c ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
1058 | c oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
1059 | c oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
1060 | c ori endif |
---|
1061 | c ori 330 continue |
---|
1062 | c ori 340 continue |
---|
1063 | |
---|
1064 | c ori do 350 i=1,ncum |
---|
1065 | c ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
1066 | c ori 350 continue |
---|
1067 | |
---|
1068 | do 350 i=1,ncum ! convect3 |
---|
1069 | tp(i,nlp)=tp(i,nl) ! convect3 |
---|
1070 | 350 continue ! convect3 |
---|
1071 | c |
---|
1072 | c===================================================================== |
---|
1073 | c --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
1074 | c===================================================================== |
---|
1075 | |
---|
1076 | c-- this is for convect3 only: |
---|
1077 | |
---|
1078 | c first estimate of buoyancy: |
---|
1079 | |
---|
1080 | do 500 i=1,ncum |
---|
1081 | do 501 k=1,nl |
---|
1082 | buoy(i,k)=tvp(i,k)-tv(i,k) |
---|
1083 | 501 continue |
---|
1084 | 500 continue |
---|
1085 | |
---|
1086 | c set buoyancy=buoybase for all levels below base |
---|
1087 | c for safety, set buoy(icb)=buoybase |
---|
1088 | |
---|
1089 | do 505 i=1,ncum |
---|
1090 | do 506 k=1,nl |
---|
1091 | if((k.ge.icb(i)).and.(k.le.nl).and.(p(i,k).ge.pbase(i)))then |
---|
1092 | buoy(i,k)=buoybase(i) |
---|
1093 | endif |
---|
1094 | 506 continue |
---|
1095 | c buoy(icb(i),k)=buoybase(i) |
---|
1096 | buoy(i,icb(i))=buoybase(i) |
---|
1097 | 505 continue |
---|
1098 | |
---|
1099 | c-- end convect3 |
---|
1100 | |
---|
1101 | c===================================================================== |
---|
1102 | c --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
1103 | c --- LEVEL OF NEUTRAL BUOYANCY |
---|
1104 | c===================================================================== |
---|
1105 | c |
---|
1106 | c-- this is for convect3 only: |
---|
1107 | |
---|
1108 | do 510 i=1,ncum |
---|
1109 | inb(i)=nl-1 |
---|
1110 | iposit(i) = nl |
---|
1111 | 510 continue |
---|
1112 | |
---|
1113 | c |
---|
1114 | c-- iposit(i) = first level, above icb, with positive buoyancy |
---|
1115 | do k = 1,nl-1 |
---|
1116 | do i = 1,ncum |
---|
1117 | if (k .ge. icb(i) .and. buoy(i,k) .gt. 0.) then |
---|
1118 | iposit(i) = min(iposit(i),k) |
---|
1119 | endif |
---|
1120 | enddo |
---|
1121 | enddo |
---|
1122 | |
---|
1123 | do i = 1,ncum |
---|
1124 | if (iposit(i) .eq. nl) then |
---|
1125 | iposit(i) = icb(i) |
---|
1126 | endif |
---|
1127 | enddo |
---|
1128 | |
---|
1129 | do 530 i=1,ncum |
---|
1130 | do 535 k=1,nl-1 |
---|
1131 | if ((k.ge.iposit(i)).and.(buoy(i,k).lt.dtovsh)) then |
---|
1132 | inb(i)=MIN(inb(i),k) |
---|
1133 | endif |
---|
1134 | 535 continue |
---|
1135 | 530 continue |
---|
1136 | |
---|
1137 | c-- end convect3 |
---|
1138 | |
---|
1139 | c ori do 510 i=1,ncum |
---|
1140 | c ori cape(i)=0.0 |
---|
1141 | c ori capem(i)=0.0 |
---|
1142 | c ori inb(i)=icb(i)+1 |
---|
1143 | c ori inb1(i)=inb(i) |
---|
1144 | c ori 510 continue |
---|
1145 | c |
---|
1146 | c Originial Code |
---|
1147 | c |
---|
1148 | c do 530 k=minorig+1,nl-1 |
---|
1149 | c do 520 i=1,ncum |
---|
1150 | c if(k.ge.(icb(i)+1))then |
---|
1151 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1152 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1153 | c cape(i)=cape(i)+by |
---|
1154 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
1155 | c if(cape(i).gt.0.0)then |
---|
1156 | c inb(i)=k+1 |
---|
1157 | c capem(i)=cape(i) |
---|
1158 | c endif |
---|
1159 | c endif |
---|
1160 | c520 continue |
---|
1161 | c530 continue |
---|
1162 | c do 540 i=1,ncum |
---|
1163 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
1164 | c cape(i)=capem(i)+byp |
---|
1165 | c defrac=capem(i)-cape(i) |
---|
1166 | c defrac=max(defrac,0.001) |
---|
1167 | c frac(i)=-cape(i)/defrac |
---|
1168 | c frac(i)=min(frac(i),1.0) |
---|
1169 | c frac(i)=max(frac(i),0.0) |
---|
1170 | c540 continue |
---|
1171 | c |
---|
1172 | c K Emanuel fix |
---|
1173 | c |
---|
1174 | c call zilch(byp,ncum) |
---|
1175 | c do 530 k=minorig+1,nl-1 |
---|
1176 | c do 520 i=1,ncum |
---|
1177 | c if(k.ge.(icb(i)+1))then |
---|
1178 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1179 | c cape(i)=cape(i)+by |
---|
1180 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
1181 | c if(cape(i).gt.0.0)then |
---|
1182 | c inb(i)=k+1 |
---|
1183 | c capem(i)=cape(i) |
---|
1184 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1185 | c endif |
---|
1186 | c endif |
---|
1187 | c520 continue |
---|
1188 | c530 continue |
---|
1189 | c do 540 i=1,ncum |
---|
1190 | c inb(i)=max(inb(i),inb1(i)) |
---|
1191 | c cape(i)=capem(i)+byp(i) |
---|
1192 | c defrac=capem(i)-cape(i) |
---|
1193 | c defrac=max(defrac,0.001) |
---|
1194 | c frac(i)=-cape(i)/defrac |
---|
1195 | c frac(i)=min(frac(i),1.0) |
---|
1196 | c frac(i)=max(frac(i),0.0) |
---|
1197 | c540 continue |
---|
1198 | c |
---|
1199 | c J Teixeira fix |
---|
1200 | c |
---|
1201 | c ori call zilch(byp,ncum) |
---|
1202 | c ori do 515 i=1,ncum |
---|
1203 | c ori lcape(i)=.true. |
---|
1204 | c ori 515 continue |
---|
1205 | c ori do 530 k=minorig+1,nl-1 |
---|
1206 | c ori do 520 i=1,ncum |
---|
1207 | c ori if(cape(i).lt.0.0)lcape(i)=.false. |
---|
1208 | c ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
1209 | c ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1210 | c ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1211 | c ori cape(i)=cape(i)+by |
---|
1212 | c ori if(by.ge.0.0)inb1(i)=k+1 |
---|
1213 | c ori if(cape(i).gt.0.0)then |
---|
1214 | c ori inb(i)=k+1 |
---|
1215 | c ori capem(i)=cape(i) |
---|
1216 | c ori endif |
---|
1217 | c ori endif |
---|
1218 | c ori 520 continue |
---|
1219 | c ori 530 continue |
---|
1220 | c ori do 540 i=1,ncum |
---|
1221 | c ori cape(i)=capem(i)+byp(i) |
---|
1222 | c ori defrac=capem(i)-cape(i) |
---|
1223 | c ori defrac=max(defrac,0.001) |
---|
1224 | c ori frac(i)=-cape(i)/defrac |
---|
1225 | c ori frac(i)=min(frac(i),1.0) |
---|
1226 | c ori frac(i)=max(frac(i),0.0) |
---|
1227 | c ori 540 continue |
---|
1228 | c |
---|
1229 | c===================================================================== |
---|
1230 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
1231 | c===================================================================== |
---|
1232 | c |
---|
1233 | do k = 1,nd |
---|
1234 | do i=1,ncum |
---|
1235 | hp(i,k)=h(i,k) |
---|
1236 | enddo |
---|
1237 | enddo |
---|
1238 | |
---|
1239 | do 600 k=minorig+1,nl |
---|
1240 | do 590 i=1,ncum |
---|
1241 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
1242 | hp(i,k)=hnk(i)+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
1243 | endif |
---|
1244 | 590 continue |
---|
1245 | 600 continue |
---|
1246 | |
---|
1247 | return |
---|
1248 | end |
---|
1249 | |
---|
1250 | SUBROUTINE cv3_closure(nloc,ncum,nd,icb,inb |
---|
1251 | : ,pbase,p,ph,tv,buoy |
---|
1252 | o ,sig,w0,cape,m,iflag) |
---|
1253 | implicit none |
---|
1254 | |
---|
1255 | !=================================================================== |
---|
1256 | ! --- CLOSURE OF CONVECT3 |
---|
1257 | ! |
---|
1258 | ! vectorization: S. Bony |
---|
1259 | !=================================================================== |
---|
1260 | |
---|
1261 | #include "cvthermo.h" |
---|
1262 | #include "cv3param.h" |
---|
1263 | |
---|
1264 | c input: |
---|
1265 | integer ncum, nd, nloc |
---|
1266 | integer icb(nloc), inb(nloc) |
---|
1267 | real pbase(nloc) |
---|
1268 | real p(nloc,nd), ph(nloc,nd+1) |
---|
1269 | real tv(nloc,nd), buoy(nloc,nd) |
---|
1270 | |
---|
1271 | c input/output: |
---|
1272 | real sig(nloc,nd), w0(nloc,nd) |
---|
1273 | integer iflag(nloc) |
---|
1274 | |
---|
1275 | c output: |
---|
1276 | real cape(nloc) |
---|
1277 | real m(nloc,nd) |
---|
1278 | |
---|
1279 | c local variables: |
---|
1280 | integer i, j, k, icbmax |
---|
1281 | real deltap, fac, w, amu |
---|
1282 | real dtmin(nloc,nd), sigold(nloc,nd) |
---|
1283 | real cbmflast(nloc) |
---|
1284 | |
---|
1285 | |
---|
1286 | c ------------------------------------------------------- |
---|
1287 | c -- Initialization |
---|
1288 | c ------------------------------------------------------- |
---|
1289 | |
---|
1290 | do k=1,nl |
---|
1291 | do i=1,ncum |
---|
1292 | m(i,k)=0.0 |
---|
1293 | enddo |
---|
1294 | enddo |
---|
1295 | |
---|
1296 | c ------------------------------------------------------- |
---|
1297 | c -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
1298 | c ------------------------------------------------------- |
---|
1299 | |
---|
1300 | c update sig and w0 above LNB: |
---|
1301 | |
---|
1302 | do 100 k=1,nl-1 |
---|
1303 | do 110 i=1,ncum |
---|
1304 | if ((inb(i).lt.(nl-1)).and.(k.ge.(inb(i)+1)))then |
---|
1305 | sig(i,k)=beta*sig(i,k) |
---|
1306 | : +2.*alpha*buoy(i,inb(i))*ABS(buoy(i,inb(i))) |
---|
1307 | sig(i,k)=AMAX1(sig(i,k),0.0) |
---|
1308 | w0(i,k)=beta*w0(i,k) |
---|
1309 | endif |
---|
1310 | 110 continue |
---|
1311 | 100 continue |
---|
1312 | |
---|
1313 | c compute icbmax: |
---|
1314 | |
---|
1315 | icbmax=2 |
---|
1316 | do 200 i=1,ncum |
---|
1317 | icbmax=MAX(icbmax,icb(i)) |
---|
1318 | 200 continue |
---|
1319 | |
---|
1320 | c update sig and w0 below cloud base: |
---|
1321 | |
---|
1322 | do 300 k=1,icbmax |
---|
1323 | do 310 i=1,ncum |
---|
1324 | if (k.le.icb(i))then |
---|
1325 | sig(i,k)=beta*sig(i,k)-2.*alpha*buoy(i,icb(i))*buoy(i,icb(i)) |
---|
1326 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
1327 | w0(i,k)=beta*w0(i,k) |
---|
1328 | endif |
---|
1329 | 310 continue |
---|
1330 | 300 continue |
---|
1331 | |
---|
1332 | c! if(inb.lt.(nl-1))then |
---|
1333 | c! do 85 i=inb+1,nl-1 |
---|
1334 | c! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
1335 | c! 1 abs(buoy(inb)) |
---|
1336 | c! sig(i)=amax1(sig(i),0.0) |
---|
1337 | c! w0(i)=beta*w0(i) |
---|
1338 | c! 85 continue |
---|
1339 | c! end if |
---|
1340 | |
---|
1341 | c! do 87 i=1,icb |
---|
1342 | c! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
1343 | c! sig(i)=amax1(sig(i),0.0) |
---|
1344 | c! w0(i)=beta*w0(i) |
---|
1345 | c! 87 continue |
---|
1346 | |
---|
1347 | c ------------------------------------------------------------- |
---|
1348 | c -- Reset fractional areas of updrafts and w0 at initial time |
---|
1349 | c -- and after 10 time steps of no convection |
---|
1350 | c ------------------------------------------------------------- |
---|
1351 | |
---|
1352 | do 400 k=1,nl-1 |
---|
1353 | do 410 i=1,ncum |
---|
1354 | if (sig(i,nd).lt.1.5.or.sig(i,nd).gt.12.0)then |
---|
1355 | sig(i,k)=0.0 |
---|
1356 | w0(i,k)=0.0 |
---|
1357 | endif |
---|
1358 | 410 continue |
---|
1359 | 400 continue |
---|
1360 | |
---|
1361 | c ------------------------------------------------------------- |
---|
1362 | c -- Calculate convective available potential energy (cape), |
---|
1363 | c -- vertical velocity (w), fractional area covered by |
---|
1364 | c -- undilute updraft (sig), and updraft mass flux (m) |
---|
1365 | c ------------------------------------------------------------- |
---|
1366 | |
---|
1367 | do 500 i=1,ncum |
---|
1368 | cape(i)=0.0 |
---|
1369 | 500 continue |
---|
1370 | |
---|
1371 | c compute dtmin (minimum buoyancy between ICB and given level k): |
---|
1372 | |
---|
1373 | do i=1,ncum |
---|
1374 | do k=1,nl |
---|
1375 | dtmin(i,k)=100.0 |
---|
1376 | enddo |
---|
1377 | enddo |
---|
1378 | |
---|
1379 | do 550 i=1,ncum |
---|
1380 | do 560 k=1,nl |
---|
1381 | do 570 j=minorig,nl |
---|
1382 | if ( (k.ge.(icb(i)+1)).and.(k.le.inb(i)).and. |
---|
1383 | : (j.ge.icb(i)).and.(j.le.(k-1)) )then |
---|
1384 | dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
1385 | endif |
---|
1386 | 570 continue |
---|
1387 | 560 continue |
---|
1388 | 550 continue |
---|
1389 | |
---|
1390 | c the interval on which cape is computed starts at pbase : |
---|
1391 | |
---|
1392 | do 600 k=1,nl |
---|
1393 | do 610 i=1,ncum |
---|
1394 | |
---|
1395 | if ((k.ge.(icb(i)+1)).and.(k.le.inb(i))) then |
---|
1396 | |
---|
1397 | deltap = MIN(pbase(i),ph(i,k-1))-MIN(pbase(i),ph(i,k)) |
---|
1398 | cape(i)=cape(i)+rrd*buoy(i,k-1)*deltap/p(i,k-1) |
---|
1399 | cape(i)=AMAX1(0.0,cape(i)) |
---|
1400 | sigold(i,k)=sig(i,k) |
---|
1401 | |
---|
1402 | c dtmin(i,k)=100.0 |
---|
1403 | c do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
1404 | c dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
1405 | c 97 continue |
---|
1406 | |
---|
1407 | sig(i,k)=beta*sig(i,k)+alpha*dtmin(i,k)*ABS(dtmin(i,k)) |
---|
1408 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
1409 | sig(i,k)=amin1(sig(i,k),0.01) |
---|
1410 | fac=AMIN1(((dtcrit-dtmin(i,k))/dtcrit),1.0) |
---|
1411 | w=(1.-beta)*fac*SQRT(cape(i))+beta*w0(i,k) |
---|
1412 | amu=0.5*(sig(i,k)+sigold(i,k))*w |
---|
1413 | m(i,k)=amu*0.007*p(i,k)*(ph(i,k)-ph(i,k+1))/tv(i,k) |
---|
1414 | w0(i,k)=w |
---|
1415 | endif |
---|
1416 | |
---|
1417 | 610 continue |
---|
1418 | 600 continue |
---|
1419 | |
---|
1420 | do 700 i=1,ncum |
---|
1421 | w0(i,icb(i))=0.5*w0(i,icb(i)+1) |
---|
1422 | m(i,icb(i))=0.5*m(i,icb(i)+1) |
---|
1423 | : *(ph(i,icb(i))-ph(i,icb(i)+1)) |
---|
1424 | : /(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
---|
1425 | sig(i,icb(i))=sig(i,icb(i)+1) |
---|
1426 | sig(i,icb(i)-1)=sig(i,icb(i)) |
---|
1427 | 700 continue |
---|
1428 | c |
---|
1429 | cccc 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
1430 | cccc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
1431 | cccc the final mass flux (cbmflast) is greater than the target mass flux |
---|
1432 | cccc (cbmf) ??). |
---|
1433 | ccc |
---|
1434 | cc do i = 1,ncum |
---|
1435 | cc cbmflast(i) = 0. |
---|
1436 | cc enddo |
---|
1437 | ccc |
---|
1438 | cc do k= 1,nl |
---|
1439 | cc do i = 1,ncum |
---|
1440 | cc IF (k .ge. icb(i) .and. k .le. inb(i)) THEN |
---|
1441 | cc cbmflast(i) = cbmflast(i)+M(i,k) |
---|
1442 | cc ENDIF |
---|
1443 | cc enddo |
---|
1444 | cc enddo |
---|
1445 | ccc |
---|
1446 | cc do i = 1,ncum |
---|
1447 | cc IF (cbmflast(i) .lt. 1.e-6) THEN |
---|
1448 | cc iflag(i) = 3 |
---|
1449 | cc ENDIF |
---|
1450 | cc enddo |
---|
1451 | ccc |
---|
1452 | cc do k= 1,nl |
---|
1453 | cc do i = 1,ncum |
---|
1454 | cc IF (iflag(i) .ge. 3) THEN |
---|
1455 | cc M(i,k) = 0. |
---|
1456 | cc sig(i,k) = 0. |
---|
1457 | cc w0(i,k) = 0. |
---|
1458 | cc ENDIF |
---|
1459 | cc enddo |
---|
1460 | cc enddo |
---|
1461 | ccc |
---|
1462 | c! cape=0.0 |
---|
1463 | c! do 98 i=icb+1,inb |
---|
1464 | c! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
1465 | c! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
1466 | c! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
1467 | c! dlnp=deltap/p(i-1) |
---|
1468 | c! cape=amax1(0.0,cape) |
---|
1469 | c! sigold=sig(i) |
---|
1470 | |
---|
1471 | c! dtmin=100.0 |
---|
1472 | c! do 97 j=icb,i-1 |
---|
1473 | c! dtmin=amin1(dtmin,buoy(j)) |
---|
1474 | c! 97 continue |
---|
1475 | |
---|
1476 | c! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
1477 | c! sig(i)=amax1(sig(i),0.0) |
---|
1478 | c! sig(i)=amin1(sig(i),0.01) |
---|
1479 | c! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
1480 | c! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
1481 | c! amu=0.5*(sig(i)+sigold)*w |
---|
1482 | c! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
1483 | c! w0(i)=w |
---|
1484 | c! 98 continue |
---|
1485 | c! w0(icb)=0.5*w0(icb+1) |
---|
1486 | c! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
1487 | c! sig(icb)=sig(icb+1) |
---|
1488 | c! sig(icb-1)=sig(icb) |
---|
1489 | |
---|
1490 | return |
---|
1491 | end |
---|
1492 | |
---|
1493 | SUBROUTINE cv3_mixing(nloc,ncum,nd,na,ntra,icb,nk,inb |
---|
1494 | : ,ph,t,rr,rs,u,v,tra,h,lv,qnk |
---|
1495 | : ,unk,vnk,hp,tv,tvp,ep,clw,m,sig |
---|
1496 | : ,ment,qent,uent,vent,sij,elij,ments,qents,traent) |
---|
1497 | implicit none |
---|
1498 | |
---|
1499 | !--------------------------------------------------------------------- |
---|
1500 | ! a faire: |
---|
1501 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
1502 | !--------------------------------------------------------------------- |
---|
1503 | |
---|
1504 | #include "cvthermo.h" |
---|
1505 | #include "cv3param.h" |
---|
1506 | |
---|
1507 | c inputs: |
---|
1508 | integer ncum, nd, na, ntra, nloc |
---|
1509 | integer icb(nloc), inb(nloc), nk(nloc) |
---|
1510 | real sig(nloc,nd) |
---|
1511 | real qnk(nloc),unk(nloc),vnk(nloc) |
---|
1512 | real ph(nloc,nd+1) |
---|
1513 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
1514 | real u(nloc,nd), v(nloc,nd) |
---|
1515 | real tra(nloc,nd,ntra) ! input of convect3 |
---|
1516 | real lv(nloc,na), h(nloc,na), hp(nloc,na) |
---|
1517 | real tv(nloc,na), tvp(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
1518 | real m(nloc,na) ! input of convect3 |
---|
1519 | |
---|
1520 | c outputs: |
---|
1521 | real ment(nloc,na,na), qent(nloc,na,na) |
---|
1522 | real uent(nloc,na,na), vent(nloc,na,na) |
---|
1523 | real sij(nloc,na,na), elij(nloc,na,na) |
---|
1524 | real traent(nloc,nd,nd,ntra) |
---|
1525 | real ments(nloc,nd,nd), qents(nloc,nd,nd) |
---|
1526 | real sigij(nloc,nd,nd) |
---|
1527 | |
---|
1528 | c local variables: |
---|
1529 | integer i, j, k, il, im, jm |
---|
1530 | integer num1, num2 |
---|
1531 | integer nent(nloc,na) |
---|
1532 | real rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
1533 | real alt, smid, sjmin, sjmax, delp, delm |
---|
1534 | real asij(nloc), smax(nloc), scrit(nloc) |
---|
1535 | real asum(nloc,nd),bsum(nloc,nd),csum(nloc,nd) |
---|
1536 | real wgh |
---|
1537 | real zm(nloc,na) |
---|
1538 | logical lwork(nloc) |
---|
1539 | |
---|
1540 | c===================================================================== |
---|
1541 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
1542 | c===================================================================== |
---|
1543 | |
---|
1544 | c ori do 360 i=1,ncum*nlp |
---|
1545 | do 361 j=1,nl |
---|
1546 | do 360 i=1,ncum |
---|
1547 | nent(i,j)=0 |
---|
1548 | c in convect3, m is computed in cv3_closure |
---|
1549 | c ori m(i,1)=0.0 |
---|
1550 | 360 continue |
---|
1551 | 361 continue |
---|
1552 | |
---|
1553 | c ori do 400 k=1,nlp |
---|
1554 | c ori do 390 j=1,nlp |
---|
1555 | do 400 j=1,nl |
---|
1556 | do 390 k=1,nl |
---|
1557 | do 385 i=1,ncum |
---|
1558 | qent(i,k,j)=rr(i,j) |
---|
1559 | uent(i,k,j)=u(i,j) |
---|
1560 | vent(i,k,j)=v(i,j) |
---|
1561 | elij(i,k,j)=0.0 |
---|
1562 | cym ment(i,k,j)=0.0 |
---|
1563 | cym sij(i,k,j)=0.0 |
---|
1564 | 385 continue |
---|
1565 | 390 continue |
---|
1566 | 400 continue |
---|
1567 | |
---|
1568 | cym |
---|
1569 | ment(1:ncum,1:nd,1:nd)=0.0 |
---|
1570 | sij(1:ncum,1:nd,1:nd)=0.0 |
---|
1571 | |
---|
1572 | do k=1,ntra |
---|
1573 | do j=1,nd ! instead nlp |
---|
1574 | do i=1,nd ! instead nlp |
---|
1575 | do il=1,ncum |
---|
1576 | traent(il,i,j,k)=tra(il,j,k) |
---|
1577 | enddo |
---|
1578 | enddo |
---|
1579 | enddo |
---|
1580 | enddo |
---|
1581 | zm(:,:)=0. |
---|
1582 | |
---|
1583 | c===================================================================== |
---|
1584 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
1585 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
1586 | c --- FRACTION (sij) |
---|
1587 | c===================================================================== |
---|
1588 | |
---|
1589 | do 750 i=minorig+1, nl |
---|
1590 | |
---|
1591 | do 710 j=minorig,nl |
---|
1592 | do 700 il=1,ncum |
---|
1593 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
1594 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
1595 | |
---|
1596 | rti=qnk(il)-ep(il,i)*clw(il,i) |
---|
1597 | bf2=1.+lv(il,j)*lv(il,j)*rs(il,j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
1598 | anum=h(il,j)-hp(il,i)+(cpv-cpd)*t(il,j)*(rti-rr(il,j)) |
---|
1599 | denom=h(il,i)-hp(il,i)+(cpd-cpv)*(rr(il,i)-rti)*t(il,j) |
---|
1600 | dei=denom |
---|
1601 | if(abs(dei).lt.0.01)dei=0.01 |
---|
1602 | sij(il,i,j)=anum/dei |
---|
1603 | sij(il,i,i)=1.0 |
---|
1604 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
1605 | altem=altem/bf2 |
---|
1606 | cwat=clw(il,j)*(1.-ep(il,j)) |
---|
1607 | stemp=sij(il,i,j) |
---|
1608 | if((stemp.lt.0.0.or.stemp.gt.1.0.or.altem.gt.cwat) |
---|
1609 | : .and.j.gt.i)then |
---|
1610 | anum=anum-lv(il,j)*(rti-rs(il,j)-cwat*bf2) |
---|
1611 | denom=denom+lv(il,j)*(rr(il,i)-rti) |
---|
1612 | if(abs(denom).lt.0.01)denom=0.01 |
---|
1613 | sij(il,i,j)=anum/denom |
---|
1614 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
1615 | altem=altem-(bf2-1.)*cwat |
---|
1616 | end if |
---|
1617 | if(sij(il,i,j).gt.0.0.and.sij(il,i,j).lt.0.95)then |
---|
1618 | qent(il,i,j)=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti |
---|
1619 | uent(il,i,j)=sij(il,i,j)*u(il,i)+(1.-sij(il,i,j))*unk(il) |
---|
1620 | vent(il,i,j)=sij(il,i,j)*v(il,i)+(1.-sij(il,i,j))*vnk(il) |
---|
1621 | c!!! do k=1,ntra |
---|
1622 | c!!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1623 | c!!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1624 | c!!! end do |
---|
1625 | elij(il,i,j)=altem |
---|
1626 | elij(il,i,j)=amax1(0.0,elij(il,i,j)) |
---|
1627 | ment(il,i,j)=m(il,i)/(1.-sij(il,i,j)) |
---|
1628 | nent(il,i)=nent(il,i)+1 |
---|
1629 | end if |
---|
1630 | sij(il,i,j)=amax1(0.0,sij(il,i,j)) |
---|
1631 | sij(il,i,j)=amin1(1.0,sij(il,i,j)) |
---|
1632 | endif ! new |
---|
1633 | 700 continue |
---|
1634 | 710 continue |
---|
1635 | |
---|
1636 | do k=1,ntra |
---|
1637 | do j=minorig,nl |
---|
1638 | do il=1,ncum |
---|
1639 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
1640 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
1641 | traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1642 | : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1643 | endif |
---|
1644 | enddo |
---|
1645 | enddo |
---|
1646 | enddo |
---|
1647 | |
---|
1648 | c |
---|
1649 | c *** if no air can entrain at level i assume that updraft detrains *** |
---|
1650 | c *** at that level and calculate detrained air flux and properties *** |
---|
1651 | c |
---|
1652 | |
---|
1653 | c@ do 170 i=icb(il),inb(il) |
---|
1654 | |
---|
1655 | do 740 il=1,ncum |
---|
1656 | if ((i.ge.icb(il)).and.(i.le.inb(il)).and.(nent(il,i).eq.0)) then |
---|
1657 | c@ if(nent(il,i).eq.0)then |
---|
1658 | ment(il,i,i)=m(il,i) |
---|
1659 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
1660 | uent(il,i,i)=unk(il) |
---|
1661 | vent(il,i,i)=vnk(il) |
---|
1662 | elij(il,i,i)=clw(il,i) |
---|
1663 | cMAF sij(il,i,i)=1.0 |
---|
1664 | sij(il,i,i)=0.0 |
---|
1665 | end if |
---|
1666 | 740 continue |
---|
1667 | 750 continue |
---|
1668 | |
---|
1669 | do j=1,ntra |
---|
1670 | do i=minorig+1,nl |
---|
1671 | do il=1,ncum |
---|
1672 | if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
---|
1673 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
1674 | endif |
---|
1675 | enddo |
---|
1676 | enddo |
---|
1677 | enddo |
---|
1678 | |
---|
1679 | do 100 j=minorig,nl |
---|
1680 | do 101 i=minorig,nl |
---|
1681 | do 102 il=1,ncum |
---|
1682 | if ((j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
1683 | : .and.(i.ge.icb(il)).and.(i.le.inb(il)))then |
---|
1684 | sigij(il,i,j)=sij(il,i,j) |
---|
1685 | endif |
---|
1686 | 102 continue |
---|
1687 | 101 continue |
---|
1688 | 100 continue |
---|
1689 | c@ enddo |
---|
1690 | |
---|
1691 | c@170 continue |
---|
1692 | |
---|
1693 | c===================================================================== |
---|
1694 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
1695 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
1696 | c===================================================================== |
---|
1697 | |
---|
1698 | call zilch(asum,nloc*nd) |
---|
1699 | call zilch(csum,nloc*nd) |
---|
1700 | call zilch(csum,nloc*nd) |
---|
1701 | |
---|
1702 | do il=1,ncum |
---|
1703 | lwork(il) = .FALSE. |
---|
1704 | enddo |
---|
1705 | |
---|
1706 | DO 789 i=minorig+1,nl |
---|
1707 | |
---|
1708 | num1=0 |
---|
1709 | do il=1,ncum |
---|
1710 | if ( i.ge.icb(il) .and. i.le.inb(il) ) num1=num1+1 |
---|
1711 | enddo |
---|
1712 | if (num1.le.0) goto 789 |
---|
1713 | |
---|
1714 | |
---|
1715 | do 781 il=1,ncum |
---|
1716 | if ( i.ge.icb(il) .and. i.le.inb(il) ) then |
---|
1717 | lwork(il)=(nent(il,i).ne.0) |
---|
1718 | qp=qnk(il)-ep(il,i)*clw(il,i) |
---|
1719 | anum=h(il,i)-hp(il,i)-lv(il,i)*(qp-rs(il,i)) |
---|
1720 | : +(cpv-cpd)*t(il,i)*(qp-rr(il,i)) |
---|
1721 | denom=h(il,i)-hp(il,i)+lv(il,i)*(rr(il,i)-qp) |
---|
1722 | : +(cpd-cpv)*t(il,i)*(rr(il,i)-qp) |
---|
1723 | if(abs(denom).lt.0.01)denom=0.01 |
---|
1724 | scrit(il)=anum/denom |
---|
1725 | alt=qp-rs(il,i)+scrit(il)*(rr(il,i)-qp) |
---|
1726 | if(scrit(il).le.0.0.or.alt.le.0.0)scrit(il)=1.0 |
---|
1727 | smax(il)=0.0 |
---|
1728 | asij(il)=0.0 |
---|
1729 | endif |
---|
1730 | 781 continue |
---|
1731 | |
---|
1732 | do 175 j=nl,minorig,-1 |
---|
1733 | |
---|
1734 | num2=0 |
---|
1735 | do il=1,ncum |
---|
1736 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
1737 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
1738 | : .and. lwork(il) ) num2=num2+1 |
---|
1739 | enddo |
---|
1740 | if (num2.le.0) goto 175 |
---|
1741 | |
---|
1742 | do 782 il=1,ncum |
---|
1743 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
1744 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
1745 | : .and. lwork(il) ) then |
---|
1746 | |
---|
1747 | if(sij(il,i,j).gt.1.0e-16.and.sij(il,i,j).lt.0.95)then |
---|
1748 | wgh=1.0 |
---|
1749 | if(j.gt.i)then |
---|
1750 | sjmax=amax1(sij(il,i,j+1),smax(il)) |
---|
1751 | sjmax=amin1(sjmax,scrit(il)) |
---|
1752 | smax(il)=amax1(sij(il,i,j),smax(il)) |
---|
1753 | sjmin=amax1(sij(il,i,j-1),smax(il)) |
---|
1754 | sjmin=amin1(sjmin,scrit(il)) |
---|
1755 | if(sij(il,i,j).lt.(smax(il)-1.0e-16))wgh=0.0 |
---|
1756 | smid=amin1(sij(il,i,j),scrit(il)) |
---|
1757 | else |
---|
1758 | sjmax=amax1(sij(il,i,j+1),scrit(il)) |
---|
1759 | smid=amax1(sij(il,i,j),scrit(il)) |
---|
1760 | sjmin=0.0 |
---|
1761 | if(j.gt.1)sjmin=sij(il,i,j-1) |
---|
1762 | sjmin=amax1(sjmin,scrit(il)) |
---|
1763 | endif |
---|
1764 | delp=abs(sjmax-smid) |
---|
1765 | delm=abs(sjmin-smid) |
---|
1766 | asij(il)=asij(il)+wgh*(delp+delm) |
---|
1767 | ment(il,i,j)=ment(il,i,j)*(delp+delm)*wgh |
---|
1768 | endif |
---|
1769 | endif |
---|
1770 | 782 continue |
---|
1771 | |
---|
1772 | 175 continue |
---|
1773 | |
---|
1774 | do il=1,ncum |
---|
1775 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
1776 | asij(il)=amax1(1.0e-16,asij(il)) |
---|
1777 | asij(il)=1.0/asij(il) |
---|
1778 | asum(il,i)=0.0 |
---|
1779 | bsum(il,i)=0.0 |
---|
1780 | csum(il,i)=0.0 |
---|
1781 | endif |
---|
1782 | enddo |
---|
1783 | |
---|
1784 | do 180 j=minorig,nl |
---|
1785 | do il=1,ncum |
---|
1786 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1787 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
1788 | ment(il,i,j)=ment(il,i,j)*asij(il) |
---|
1789 | endif |
---|
1790 | enddo |
---|
1791 | 180 continue |
---|
1792 | |
---|
1793 | do 190 j=minorig,nl |
---|
1794 | do il=1,ncum |
---|
1795 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1796 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
1797 | asum(il,i)=asum(il,i)+ment(il,i,j) |
---|
1798 | ment(il,i,j)=ment(il,i,j)*sig(il,j) |
---|
1799 | bsum(il,i)=bsum(il,i)+ment(il,i,j) |
---|
1800 | endif |
---|
1801 | enddo |
---|
1802 | 190 continue |
---|
1803 | |
---|
1804 | do il=1,ncum |
---|
1805 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
1806 | bsum(il,i)=amax1(bsum(il,i),1.0e-16) |
---|
1807 | bsum(il,i)=1.0/bsum(il,i) |
---|
1808 | endif |
---|
1809 | enddo |
---|
1810 | |
---|
1811 | do 195 j=minorig,nl |
---|
1812 | do il=1,ncum |
---|
1813 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1814 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
1815 | ment(il,i,j)=ment(il,i,j)*asum(il,i)*bsum(il,i) |
---|
1816 | endif |
---|
1817 | enddo |
---|
1818 | 195 continue |
---|
1819 | |
---|
1820 | do 197 j=minorig,nl |
---|
1821 | do il=1,ncum |
---|
1822 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1823 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
1824 | csum(il,i)=csum(il,i)+ment(il,i,j) |
---|
1825 | endif |
---|
1826 | enddo |
---|
1827 | 197 continue |
---|
1828 | |
---|
1829 | do il=1,ncum |
---|
1830 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1831 | : .and. csum(il,i).lt.m(il,i) ) then |
---|
1832 | nent(il,i)=0 |
---|
1833 | ment(il,i,i)=m(il,i) |
---|
1834 | qent(il,i,i)=qnk(il)-ep(il,i)*clw(il,i) |
---|
1835 | uent(il,i,i)=unk(il) |
---|
1836 | vent(il,i,i)=vnk(il) |
---|
1837 | elij(il,i,i)=clw(il,i) |
---|
1838 | cMAF sij(il,i,i)=1.0 |
---|
1839 | sij(il,i,i)=0.0 |
---|
1840 | endif |
---|
1841 | enddo ! il |
---|
1842 | |
---|
1843 | do j=1,ntra |
---|
1844 | do il=1,ncum |
---|
1845 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
1846 | : .and. csum(il,i).lt.m(il,i) ) then |
---|
1847 | traent(il,i,i,j)=tra(il,nk(il),j) |
---|
1848 | endif |
---|
1849 | enddo |
---|
1850 | enddo |
---|
1851 | 789 continue |
---|
1852 | c |
---|
1853 | c MAF: renormalisation de MENT |
---|
1854 | call zilch(zm,nloc*na) |
---|
1855 | do jm=1,nd |
---|
1856 | do im=1,nd |
---|
1857 | do il=1,ncum |
---|
1858 | zm(il,im)=zm(il,im)+(1.-sij(il,im,jm))*ment(il,im,jm) |
---|
1859 | end do |
---|
1860 | end do |
---|
1861 | end do |
---|
1862 | c |
---|
1863 | do jm=1,nd |
---|
1864 | do im=1,nd |
---|
1865 | do il=1,ncum |
---|
1866 | if(zm(il,im).ne.0.) then |
---|
1867 | ment(il,im,jm)=ment(il,im,jm)*m(il,im)/zm(il,im) |
---|
1868 | endif |
---|
1869 | end do |
---|
1870 | end do |
---|
1871 | end do |
---|
1872 | c |
---|
1873 | do jm=1,nd |
---|
1874 | do im=1,nd |
---|
1875 | do 999 il=1,ncum |
---|
1876 | qents(il,im,jm)=qent(il,im,jm) |
---|
1877 | ments(il,im,jm)=ment(il,im,jm) |
---|
1878 | 999 continue |
---|
1879 | enddo |
---|
1880 | enddo |
---|
1881 | |
---|
1882 | return |
---|
1883 | end |
---|
1884 | |
---|
1885 | SUBROUTINE cv3_unsat(nloc,ncum,nd,na,ntra,icb,inb,iflag |
---|
1886 | : ,t,rr,rs,gz,u,v,tra,p,ph |
---|
1887 | : ,th,tv,lv,cpn,ep,sigp,clw |
---|
1888 | : ,m,ment,elij,delt,plcl,coef_clos |
---|
1889 | o ,mp,rp,up,vp,trap,wt,water,evap,b,sigd) |
---|
1890 | implicit none |
---|
1891 | |
---|
1892 | |
---|
1893 | #include "cvthermo.h" |
---|
1894 | #include "cv3param.h" |
---|
1895 | #include "cvflag.h" |
---|
1896 | |
---|
1897 | c inputs: |
---|
1898 | integer ncum, nd, na, ntra, nloc |
---|
1899 | integer icb(nloc), inb(nloc) |
---|
1900 | real delt, plcl(nloc) |
---|
1901 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd),gz(nloc,na) |
---|
1902 | real u(nloc,nd), v(nloc,nd) |
---|
1903 | real tra(nloc,nd,ntra) |
---|
1904 | real p(nloc,nd), ph(nloc,nd+1) |
---|
1905 | real ep(nloc,na), sigp(nloc,na), clw(nloc,na) |
---|
1906 | real th(nloc,na),tv(nloc,na),lv(nloc,na),cpn(nloc,na) |
---|
1907 | real m(nloc,na), ment(nloc,na,na), elij(nloc,na,na) |
---|
1908 | real coef_clos(nloc) |
---|
1909 | c |
---|
1910 | c input/output |
---|
1911 | integer iflag(nloc) |
---|
1912 | c |
---|
1913 | c outputs: |
---|
1914 | real mp(nloc,na), rp(nloc,na), up(nloc,na), vp(nloc,na) |
---|
1915 | real water(nloc,na), evap(nloc,na), wt(nloc,na) |
---|
1916 | real trap(nloc,na,ntra) |
---|
1917 | real b(nloc,na), sigd(nloc) |
---|
1918 | |
---|
1919 | c local variables |
---|
1920 | integer i,j,k,il,num1,ndp1 |
---|
1921 | real tinv, delti |
---|
1922 | real awat, afac, afac1, afac2, bfac |
---|
1923 | real pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
1924 | real amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
1925 | real ampmax |
---|
1926 | real lvcp(nloc,na) |
---|
1927 | real h(nloc,na),hm(nloc,na) |
---|
1928 | real wdtrain(nloc) |
---|
1929 | logical lwork(nloc) |
---|
1930 | |
---|
1931 | |
---|
1932 | c------------------------------------------------------ |
---|
1933 | |
---|
1934 | delti = 1./delt |
---|
1935 | tinv=1./3. |
---|
1936 | |
---|
1937 | mp(:,:)=0. |
---|
1938 | |
---|
1939 | do i=1,nl |
---|
1940 | do il=1,ncum |
---|
1941 | mp(il,i)=0.0 |
---|
1942 | rp(il,i)=rr(il,i) |
---|
1943 | up(il,i)=u(il,i) |
---|
1944 | vp(il,i)=v(il,i) |
---|
1945 | wt(il,i)=0.001 |
---|
1946 | water(il,i)=0.0 |
---|
1947 | evap(il,i)=0.0 |
---|
1948 | b(il,i)=0.0 |
---|
1949 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
1950 | enddo |
---|
1951 | enddo |
---|
1952 | do k=1,ntra |
---|
1953 | do i=1,nd |
---|
1954 | do il=1,ncum |
---|
1955 | trap(il,i,k)=tra(il,i,k) |
---|
1956 | enddo |
---|
1957 | enddo |
---|
1958 | enddo |
---|
1959 | c |
---|
1960 | c *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
1961 | c *** downdraft calculation *** |
---|
1962 | c |
---|
1963 | |
---|
1964 | do il=1,ncum |
---|
1965 | lwork(il)=.TRUE. |
---|
1966 | if(ep(il,inb(il)).lt.0.0001)lwork(il)=.FALSE. |
---|
1967 | enddo |
---|
1968 | |
---|
1969 | call zilch(wdtrain,ncum) |
---|
1970 | |
---|
1971 | c *** Set the fractionnal area sigd of precipitating downdraughts |
---|
1972 | do il = 1,ncum |
---|
1973 | sigd(il) = sigdz*coef_clos(il) |
---|
1974 | enddo |
---|
1975 | |
---|
1976 | DO 400 i=nl+1,1,-1 |
---|
1977 | |
---|
1978 | num1=0 |
---|
1979 | do il=1,ncum |
---|
1980 | if ( i.le.inb(il) .and. lwork(il) ) num1=num1+1 |
---|
1981 | enddo |
---|
1982 | if (num1.le.0) goto 400 |
---|
1983 | |
---|
1984 | c |
---|
1985 | c *** integrate liquid water equation to find condensed water *** |
---|
1986 | c *** and condensed water flux *** |
---|
1987 | c |
---|
1988 | |
---|
1989 | c |
---|
1990 | c *** begin downdraft loop *** |
---|
1991 | c |
---|
1992 | |
---|
1993 | c |
---|
1994 | c *** calculate detrained precipitation *** |
---|
1995 | c |
---|
1996 | do il=1,ncum |
---|
1997 | if (i.le.inb(il) .and. lwork(il)) then |
---|
1998 | if (cvflag_grav) then |
---|
1999 | wdtrain(il)=grav*ep(il,i)*m(il,i)*clw(il,i) |
---|
2000 | else |
---|
2001 | wdtrain(il)=10.0*ep(il,i)*m(il,i)*clw(il,i) |
---|
2002 | endif |
---|
2003 | endif |
---|
2004 | enddo |
---|
2005 | |
---|
2006 | if(i.gt.1)then |
---|
2007 | do 320 j=1,i-1 |
---|
2008 | do il=1,ncum |
---|
2009 | if (i.le.inb(il) .and. lwork(il)) then |
---|
2010 | awat=elij(il,j,i)-(1.-ep(il,i))*clw(il,i) |
---|
2011 | awat=amax1(awat,0.0) |
---|
2012 | if (cvflag_grav) then |
---|
2013 | wdtrain(il)=wdtrain(il)+grav*awat*ment(il,j,i) |
---|
2014 | else |
---|
2015 | wdtrain(il)=wdtrain(il)+10.0*awat*ment(il,j,i) |
---|
2016 | endif |
---|
2017 | endif |
---|
2018 | enddo |
---|
2019 | 320 continue |
---|
2020 | endif |
---|
2021 | |
---|
2022 | c |
---|
2023 | c *** find rain water and evaporation using provisional *** |
---|
2024 | c *** estimates of rp(i)and rp(i-1) *** |
---|
2025 | c |
---|
2026 | |
---|
2027 | do 999 il=1,ncum |
---|
2028 | |
---|
2029 | if (i.le.inb(il) .and. lwork(il)) then |
---|
2030 | |
---|
2031 | wt(il,i)=45.0 |
---|
2032 | |
---|
2033 | if(i.lt.inb(il))then |
---|
2034 | rp(il,i)=rp(il,i+1) |
---|
2035 | : +(cpd*(t(il,i+1)-t(il,i))+gz(il,i+1)-gz(il,i))/lv(il,i) |
---|
2036 | rp(il,i)=0.5*(rp(il,i)+rr(il,i)) |
---|
2037 | endif |
---|
2038 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
2039 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
2040 | rp(il,inb(il))=rr(il,inb(il)) |
---|
2041 | |
---|
2042 | if(i.eq.1)then |
---|
2043 | afac=p(il,1)*(rs(il,1)-rp(il,1))/(1.0e4+2000.0*p(il,1)*rs(il,1)) |
---|
2044 | else |
---|
2045 | rp(il,i-1)=rp(il,i) |
---|
2046 | : +(cpd*(t(il,i)-t(il,i-1))+gz(il,i)-gz(il,i-1))/lv(il,i) |
---|
2047 | rp(il,i-1)=0.5*(rp(il,i-1)+rr(il,i-1)) |
---|
2048 | rp(il,i-1)=amin1(rp(il,i-1),rs(il,i-1)) |
---|
2049 | rp(il,i-1)=amax1(rp(il,i-1),0.0) |
---|
2050 | afac1=p(il,i)*(rs(il,i)-rp(il,i))/(1.0e4+2000.0*p(il,i)*rs(il,i)) |
---|
2051 | afac2=p(il,i-1)*(rs(il,i-1)-rp(il,i-1)) |
---|
2052 | : /(1.0e4+2000.0*p(il,i-1)*rs(il,i-1)) |
---|
2053 | afac=0.5*(afac1+afac2) |
---|
2054 | endif |
---|
2055 | if(i.eq.inb(il))afac=0.0 |
---|
2056 | afac=amax1(afac,0.0) |
---|
2057 | bfac=1./(sigd(il)*wt(il,i)) |
---|
2058 | c |
---|
2059 | cjyg1 |
---|
2060 | ccc sigt=1.0 |
---|
2061 | ccc if(i.ge.icb)sigt=sigp(i) |
---|
2062 | c prise en compte de la variation progressive de sigt dans |
---|
2063 | c les couches icb et icb-1: |
---|
2064 | c pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
2065 | c pour plcl>ph(i), pr1=1 & pr2=0 |
---|
2066 | c pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
2067 | c sur le nuage, et pr2 est la proportion sous la base du |
---|
2068 | c nuage. |
---|
2069 | pr1=(plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
---|
2070 | pr1=max(0.,min(1.,pr1)) |
---|
2071 | pr2=(ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
---|
2072 | pr2=max(0.,min(1.,pr2)) |
---|
2073 | sigt=sigp(il,i)*pr1+pr2 |
---|
2074 | cjyg2 |
---|
2075 | c |
---|
2076 | cjyg---- |
---|
2077 | b6 = bfac*100.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
2078 | c6 = water(il,i+1) + wdtrain(il)*bfac |
---|
2079 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
2080 | evap(il,i)=sigt*afac*revap |
---|
2081 | water(il,i)=revap*revap |
---|
2082 | cc print *,' i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) ', |
---|
2083 | cc $ i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) |
---|
2084 | cc---end jyg--- |
---|
2085 | c |
---|
2086 | c--------retour à la formulation originale d'Emanuel. |
---|
2087 | if (1.eq.0) then |
---|
2088 | b6=bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
2089 | c6=water(il,i+1)+bfac*wdtrain(il) |
---|
2090 | : -50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il,i+1) |
---|
2091 | if(c6.gt.0.0)then |
---|
2092 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
2093 | evap(il,i)=sigt*afac*revap |
---|
2094 | water(il,i)=revap*revap |
---|
2095 | else |
---|
2096 | evap(il,i)=-evap(il,i+1) |
---|
2097 | : +(wdtrain(il)+sigd(il)*wt(il,i)*water(il,i+1)) |
---|
2098 | : /(sigd(il)*(ph(il,i)-ph(il,i+1))*50.) |
---|
2099 | end if |
---|
2100 | endif |
---|
2101 | ccc |
---|
2102 | c *** calculate precipitating downdraft mass flux under *** |
---|
2103 | c *** hydrostatic approximation *** |
---|
2104 | c |
---|
2105 | if (i.ne.1) then |
---|
2106 | |
---|
2107 | tevap=amax1(0.0,evap(il,i)) |
---|
2108 | delth=amax1(0.001,(th(il,i)-th(il,i-1))) |
---|
2109 | if (cvflag_grav) then |
---|
2110 | mp(il,i)=100.*ginv*lvcp(il,i)*sigd(il)*tevap |
---|
2111 | : *(p(il,i-1)-p(il,i))/delth |
---|
2112 | else |
---|
2113 | mp(il,i)=10.*lvcp(il,i)*sigd(il)*tevap |
---|
2114 | : *(p(il,i-1)-p(il,i))/delth |
---|
2115 | endif |
---|
2116 | c |
---|
2117 | c *** if hydrostatic assumption fails, *** |
---|
2118 | c *** solve cubic difference equation for downdraft theta *** |
---|
2119 | c *** and mass flux from two simultaneous differential eqns *** |
---|
2120 | c |
---|
2121 | amfac=sigd(il)*sigd(il)*70.0*ph(il,i)*(p(il,i-1)-p(il,i)) |
---|
2122 | : *(th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
---|
2123 | amp2=abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
---|
2124 | if(amp2.gt.(0.1*amfac))then |
---|
2125 | xf=100.0*sigd(il)*sigd(il)*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2126 | tf=b(il,i)-5.0*(th(il,i)-th(il,i-1))*t(il,i) |
---|
2127 | : /(lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2128 | af=xf*tf+mp(il,i+1)*mp(il,i+1)*tinv |
---|
2129 | bf=2.*(tinv*mp(il,i+1))**3+tinv*mp(il,i+1)*xf*tf |
---|
2130 | : +50.*(p(il,i-1)-p(il,i))*xf*tevap |
---|
2131 | fac2=1.0 |
---|
2132 | if(bf.lt.0.0)fac2=-1.0 |
---|
2133 | bf=abs(bf) |
---|
2134 | ur=0.25*bf*bf-af*af*af*tinv*tinv*tinv |
---|
2135 | if(ur.ge.0.0)then |
---|
2136 | sru=sqrt(ur) |
---|
2137 | fac=1.0 |
---|
2138 | if((0.5*bf-sru).lt.0.0)fac=-1.0 |
---|
2139 | mp(il,i)=mp(il,i+1)*tinv+(0.5*bf+sru)**tinv |
---|
2140 | : +fac*(abs(0.5*bf-sru))**tinv |
---|
2141 | else |
---|
2142 | d=atan(2.*sqrt(-ur)/(bf+1.0e-28)) |
---|
2143 | if(fac2.lt.0.0)d=3.14159-d |
---|
2144 | mp(il,i)=mp(il,i+1)*tinv+2.*sqrt(af*tinv)*cos(d*tinv) |
---|
2145 | endif |
---|
2146 | mp(il,i)=amax1(0.0,mp(il,i)) |
---|
2147 | |
---|
2148 | if (cvflag_grav) then |
---|
2149 | Cjyg : il y a vraisemblablement une erreur dans la ligne 2 suivante: |
---|
2150 | C il faut diviser par (mp(il,i)*sigd(il)*grav) et non par (mp(il,i)+sigd(il)*0.1). |
---|
2151 | C Et il faut bien revoir les facteurs 100. |
---|
2152 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
2153 | 2 /(mp(il,i)+sigd(il)*0.1) |
---|
2154 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i) |
---|
2155 | : *sigd(il)*th(il,i)) |
---|
2156 | else |
---|
2157 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
2158 | 2 /(mp(il,i)+sigd(il)*0.1) |
---|
2159 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i) |
---|
2160 | : *sigd(il)*th(il,i)) |
---|
2161 | endif |
---|
2162 | b(il,i-1)=amax1(b(il,i-1),0.0) |
---|
2163 | endif |
---|
2164 | c |
---|
2165 | c *** limit magnitude of mp(i) to meet cfl condition *** |
---|
2166 | c |
---|
2167 | ampmax=2.0*(ph(il,i)-ph(il,i+1))*delti |
---|
2168 | amp2=2.0*(ph(il,i-1)-ph(il,i))*delti |
---|
2169 | ampmax=amin1(ampmax,amp2) |
---|
2170 | mp(il,i)=amin1(mp(il,i),ampmax) |
---|
2171 | c |
---|
2172 | c *** force mp to decrease linearly to zero *** |
---|
2173 | c *** between cloud base and the surface *** |
---|
2174 | c |
---|
2175 | c |
---|
2176 | cc if(p(il,i).gt.p(il,icb(il)))then |
---|
2177 | cc mp(il,i)=mp(il,icb(il))*(p(il,1)-p(il,i))/(p(il,1)-p(il,icb(il))) |
---|
2178 | cc endif |
---|
2179 | if(ph(il,i) .gt. 0.9*plcl(il)) then |
---|
2180 | mp(il,i) = mp(il,i)*(ph(il,1)-ph(il,i))/ |
---|
2181 | $ (ph(il,1)-0.9*plcl(il)) |
---|
2182 | endif |
---|
2183 | |
---|
2184 | 360 continue |
---|
2185 | endif ! i.eq.1 |
---|
2186 | c |
---|
2187 | c *** find mixing ratio of precipitating downdraft *** |
---|
2188 | c |
---|
2189 | |
---|
2190 | if (i.ne.inb(il)) then |
---|
2191 | |
---|
2192 | rp(il,i)=rr(il,i) |
---|
2193 | |
---|
2194 | if(mp(il,i).gt.mp(il,i+1))then |
---|
2195 | |
---|
2196 | if (cvflag_grav) then |
---|
2197 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
2198 | : +100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2199 | : *(evap(il,i+1)+evap(il,i)) |
---|
2200 | else |
---|
2201 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
2202 | : +5.*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2203 | : *(evap(il,i+1)+evap(il,i)) |
---|
2204 | endif |
---|
2205 | rp(il,i)=rp(il,i)/mp(il,i) |
---|
2206 | up(il,i)=up(il,i+1)*mp(il,i+1)+u(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
2207 | up(il,i)=up(il,i)/mp(il,i) |
---|
2208 | vp(il,i)=vp(il,i+1)*mp(il,i+1)+v(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
2209 | vp(il,i)=vp(il,i)/mp(il,i) |
---|
2210 | |
---|
2211 | do j=1,ntra |
---|
2212 | trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
2213 | : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
2214 | trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
2215 | end do |
---|
2216 | |
---|
2217 | else |
---|
2218 | |
---|
2219 | if(mp(il,i+1).gt.1.0e-16)then |
---|
2220 | if (cvflag_grav) then |
---|
2221 | rp(il,i)=rp(il,i+1) |
---|
2222 | : +100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2223 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
2224 | else |
---|
2225 | rp(il,i)=rp(il,i+1) |
---|
2226 | : +5.*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2227 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
2228 | endif |
---|
2229 | up(il,i)=up(il,i+1) |
---|
2230 | vp(il,i)=vp(il,i+1) |
---|
2231 | |
---|
2232 | do j=1,ntra |
---|
2233 | trap(il,i,j)=trap(il,i+1,j) |
---|
2234 | end do |
---|
2235 | |
---|
2236 | endif |
---|
2237 | endif |
---|
2238 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
2239 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
2240 | |
---|
2241 | endif |
---|
2242 | endif |
---|
2243 | 999 continue |
---|
2244 | |
---|
2245 | 400 continue |
---|
2246 | |
---|
2247 | return |
---|
2248 | end |
---|
2249 | |
---|
2250 | SUBROUTINE cv3_yield(nloc,ncum,nd,na,ntra |
---|
2251 | : ,icb,inb,delt |
---|
2252 | : ,t,rr,t_wake,rr_wake,u,v,tra |
---|
2253 | : ,gz,p,ph,h,hp,lv,cpn,th |
---|
2254 | : ,ep,clw,m,tp,mp,rp,up,vp,trap |
---|
2255 | : ,wt,water,evap,b,sigd |
---|
2256 | : ,ment,qent,hent,iflag_mix,uent,vent |
---|
2257 | : ,nent,elij,traent,sig |
---|
2258 | : ,tv,tvp,wghti |
---|
2259 | : ,iflag,precip,Vprecip,ft,fr,fu,fv,ftra |
---|
2260 | : ,cbmf,upwd,dnwd,dnwd0,ma,mip |
---|
2261 | : ,tls,tps,qcondc,wd |
---|
2262 | : ,ftd,fqd) |
---|
2263 | |
---|
2264 | implicit none |
---|
2265 | |
---|
2266 | #include "cvthermo.h" |
---|
2267 | #include "cv3param.h" |
---|
2268 | #include "cvflag.h" |
---|
2269 | #include "conema3.h" |
---|
2270 | |
---|
2271 | c inputs: |
---|
2272 | c print*,'cv3_yield apres include' |
---|
2273 | integer iflag_mix |
---|
2274 | integer ncum,nd,na,ntra,nloc |
---|
2275 | integer icb(nloc), inb(nloc) |
---|
2276 | real delt |
---|
2277 | real t(nloc,nd), rr(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
2278 | real t_wake(nloc,nd), rr_wake(nloc,nd) |
---|
2279 | real tra(nloc,nd,ntra), sig(nloc,nd) |
---|
2280 | real gz(nloc,na), ph(nloc,nd+1), h(nloc,na), hp(nloc,na) |
---|
2281 | real th(nloc,na), p(nloc,nd), tp(nloc,na) |
---|
2282 | real lv(nloc,na), cpn(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
2283 | real m(nloc,na), mp(nloc,na), rp(nloc,na), up(nloc,na) |
---|
2284 | real vp(nloc,na), wt(nloc,nd), trap(nloc,nd,ntra) |
---|
2285 | real water(nloc,na), evap(nloc,na), b(nloc,na), sigd(nloc) |
---|
2286 | real ment(nloc,na,na), qent(nloc,na,na), uent(nloc,na,na) |
---|
2287 | real hent(nloc,na,na) |
---|
2288 | real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
2289 | real traent(nloc,na,na,ntra) |
---|
2290 | real tv(nloc,nd), tvp(nloc,nd), wghti(nloc,nd) |
---|
2291 | c print*,'cv3_yield declarations 1' |
---|
2292 | c input/output: |
---|
2293 | integer iflag(nloc) |
---|
2294 | |
---|
2295 | c outputs: |
---|
2296 | real precip(nloc) |
---|
2297 | real ft(nloc,nd), fr(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
2298 | real ftd(nloc,nd), fqd(nloc,nd) |
---|
2299 | real ftra(nloc,nd,ntra) |
---|
2300 | real upwd(nloc,nd), dnwd(nloc,nd), ma(nloc,nd) |
---|
2301 | real dnwd0(nloc,nd), mip(nloc,nd) |
---|
2302 | real Vprecip(nloc,nd) |
---|
2303 | real tls(nloc,nd), tps(nloc,nd) |
---|
2304 | real qcondc(nloc,nd) ! cld |
---|
2305 | real wd(nloc) ! gust |
---|
2306 | real cbmf(nloc) |
---|
2307 | c print*,'cv3_yield declarations 2' |
---|
2308 | c local variables: |
---|
2309 | integer i,k,il,n,j,num1 |
---|
2310 | real rat, delti |
---|
2311 | real ax, bx, cx, dx, ex |
---|
2312 | real cpinv, rdcp, dpinv |
---|
2313 | real awat(nloc) |
---|
2314 | real lvcp(nloc,na), mke(nloc,na) |
---|
2315 | real am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
2316 | c!! real up1(nloc), dn1(nloc) |
---|
2317 | real up1(nloc,nd,nd), dn1(nloc,nd,nd) |
---|
2318 | real asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
2319 | real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld |
---|
2320 | real siga(nloc,nd), sax(nloc,nd), mac(nloc,nd) ! cld |
---|
2321 | |
---|
2322 | c print*,'cv3_yield declarations 3' |
---|
2323 | c------------------------------------------------------------- |
---|
2324 | |
---|
2325 | c initialization: |
---|
2326 | |
---|
2327 | delti = 1.0/delt |
---|
2328 | c print*,'cv3_yield initialisation delt', delt |
---|
2329 | cprecip,Vprecip,ft,fr,fu,fv,ftra |
---|
2330 | c : ,cbmf,upwd,dnwd,dnwd0,ma,mip |
---|
2331 | c : ,tls,tps,qcondc,wd |
---|
2332 | c : ,ftd,fqd ) |
---|
2333 | do il=1,ncum |
---|
2334 | precip(il)=0.0 |
---|
2335 | c Vprecip(il,nd+1)=0.0 |
---|
2336 | wd(il)=0.0 ! gust |
---|
2337 | enddo |
---|
2338 | |
---|
2339 | do i=1,nd |
---|
2340 | do il=1,ncum |
---|
2341 | Vprecip(il,i)=0.0 |
---|
2342 | ft(il,i)=0.0 |
---|
2343 | fr(il,i)=0.0 |
---|
2344 | fu(il,i)=0.0 |
---|
2345 | fv(il,i)=0.0 |
---|
2346 | upwd(il,i)=0.0 |
---|
2347 | dnwd(il,i)=0.0 |
---|
2348 | dnwd0(il,i)=0.0 |
---|
2349 | mip(il,i)=0.0 |
---|
2350 | ftd(il,i)=0.0 |
---|
2351 | fqd(il,i)=0.0 |
---|
2352 | qcondc(il,i)=0.0 ! cld |
---|
2353 | qcond(il,i)=0.0 ! cld |
---|
2354 | nqcond(il,i)=0.0 ! cld |
---|
2355 | enddo |
---|
2356 | enddo |
---|
2357 | c print*,'cv3_yield initialisation 2' |
---|
2358 | do j=1,ntra |
---|
2359 | do i=1,nd |
---|
2360 | do il=1,ncum |
---|
2361 | ftra(il,i,j)=0.0 |
---|
2362 | enddo |
---|
2363 | enddo |
---|
2364 | enddo |
---|
2365 | c print*,'cv3_yield initialisation 3' |
---|
2366 | do i=1,nl |
---|
2367 | do il=1,ncum |
---|
2368 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
2369 | enddo |
---|
2370 | enddo |
---|
2371 | |
---|
2372 | |
---|
2373 | c |
---|
2374 | c *** calculate surface precipitation in mm/day *** |
---|
2375 | c |
---|
2376 | do il=1,ncum |
---|
2377 | if(ep(il,inb(il)).ge.0.0001 .and. iflag(il) .le. 1)then |
---|
2378 | if (cvflag_grav) then |
---|
2379 | precip(il)=wt(il,1)*sigd(il)*water(il,1)*86400.*1000. |
---|
2380 | : /(rowl*grav) |
---|
2381 | else |
---|
2382 | precip(il)=wt(il,1)*sigd(il)*water(il,1)*8640. |
---|
2383 | endif |
---|
2384 | endif |
---|
2385 | enddo |
---|
2386 | c print*,'cv3_yield apres calcul precip' |
---|
2387 | |
---|
2388 | C |
---|
2389 | C === calculate vertical profile of precipitation in kg/m2/s === |
---|
2390 | C |
---|
2391 | do i = 1,nl |
---|
2392 | do il=1,ncum |
---|
2393 | if(ep(il,inb(il)).ge.0.0001 .and. i.le.inb(il) |
---|
2394 | : .and. iflag(il) .le. 1)then |
---|
2395 | if (cvflag_grav) then |
---|
2396 | VPrecip(il,i) = wt(il,i)*sigd(il)*water(il,i)/grav |
---|
2397 | else |
---|
2398 | VPrecip(il,i) = wt(il,i)*sigd(il)*water(il,i)/10. |
---|
2399 | endif |
---|
2400 | endif |
---|
2401 | enddo |
---|
2402 | enddo |
---|
2403 | C |
---|
2404 | c |
---|
2405 | c *** Calculate downdraft velocity scale *** |
---|
2406 | c *** NE PAS UTILISER POUR L'INSTANT *** |
---|
2407 | c |
---|
2408 | c! do il=1,ncum |
---|
2409 | c! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
2410 | c! : /(sigd(il)*p(il,icb(il))) |
---|
2411 | c! enddo |
---|
2412 | |
---|
2413 | c |
---|
2414 | c *** calculate tendencies of lowest level potential temperature *** |
---|
2415 | c *** and mixing ratio *** |
---|
2416 | c |
---|
2417 | do il=1,ncum |
---|
2418 | work(il)=1.0/(ph(il,1)-ph(il,2)) |
---|
2419 | cbmf(il)=0.0 |
---|
2420 | enddo |
---|
2421 | |
---|
2422 | do k=2,nl |
---|
2423 | do il=1,ncum |
---|
2424 | if (k.ge.icb(il)) then |
---|
2425 | cbmf(il)=cbmf(il)+m(il,k) |
---|
2426 | endif |
---|
2427 | enddo |
---|
2428 | enddo |
---|
2429 | |
---|
2430 | c print*,'cv3_yield avant ft' |
---|
2431 | c AM is the part of cbmf taken from the first level |
---|
2432 | do il=1,ncum |
---|
2433 | am(il)=cbmf(il)*wghti(il,1) |
---|
2434 | enddo |
---|
2435 | c |
---|
2436 | do il=1,ncum |
---|
2437 | if (iflag(il) .le. 1) then |
---|
2438 | c convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
2439 | cjyg Correction pour conserver l'eau |
---|
2440 | ccc ft(il,1)=-0.5*lvcp(il,1)*sigd(il)*(evap(il,1)+evap(il,2)) !precip |
---|
2441 | ft(il,1)=-lvcp(il,1)*sigd(il)*evap(il,1) !precip |
---|
2442 | |
---|
2443 | if (cvflag_grav) then |
---|
2444 | ft(il,1)=ft(il,1)-0.009*grav*sigd(il)*mp(il,2) |
---|
2445 | : *t_wake(il,1)*b(il,1)*work(il) |
---|
2446 | else |
---|
2447 | ft(il,1)=ft(il,1)-0.09*sigd(il)*mp(il,2) |
---|
2448 | : *t_wake(il,1)*b(il,1)*work(il) |
---|
2449 | endif |
---|
2450 | |
---|
2451 | ft(il,1)=ft(il,1)+0.01*sigd(il)*wt(il,1)*(cl-cpd)*water(il,2) |
---|
2452 | : *(t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il,1) |
---|
2453 | |
---|
2454 | ftd(il,1) = ft(il,1) ! fin precip |
---|
2455 | |
---|
2456 | if (cvflag_grav) then !sature |
---|
2457 | if((0.01*grav*work(il)*am(il)).ge.delti)iflag(il)=1!consist vect |
---|
2458 | ft(il,1)=ft(il,1)+0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
2459 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
2460 | else |
---|
2461 | if((0.1*work(il)*am(il)).ge.delti)iflag(il)=1 !consistency vect |
---|
2462 | ft(il,1)=ft(il,1)+0.1*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
2463 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
2464 | endif |
---|
2465 | endif ! iflag |
---|
2466 | enddo |
---|
2467 | |
---|
2468 | do j=2,nl |
---|
2469 | IF (iflag_mix .gt. 0) then |
---|
2470 | do il=1,ncum |
---|
2471 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2472 | if (cvflag_grav) then |
---|
2473 | ft(il,1)=ft(il,1) |
---|
2474 | : +0.01*grav*work(il)*ment(il,j,1)*(hent(il,j,1)-h(il,1) |
---|
2475 | : +t(il,1)*(cpv-cpd)*(rr(il,1)-Qent(il,j,1)))*cpinv |
---|
2476 | else |
---|
2477 | ft(il,1)=ft(il,1) |
---|
2478 | : +0.1*work(il)*ment(il,j,1)*(hent(il,j,1)-h(il,1) |
---|
2479 | : +t(il,1)*(cpv-cpd)*(rr(il,1)-Qent(il,j,1)))*cpinv |
---|
2480 | endif ! cvflag_grav |
---|
2481 | endif ! j |
---|
2482 | enddo |
---|
2483 | ENDIF |
---|
2484 | enddo |
---|
2485 | ! fin sature |
---|
2486 | |
---|
2487 | |
---|
2488 | do il=1,ncum |
---|
2489 | if (iflag(il) .le. 1) then |
---|
2490 | if (cvflag_grav) then |
---|
2491 | Cjyg1 Correction pour mieux conserver l'eau (conformite avec CONVECT4.3) |
---|
2492 | fr(il,1)=0.01*grav*mp(il,2)*(rp(il,2)-rr_wake(il,1))*work(il) |
---|
2493 | : +sigd(il)*evap(il,1) |
---|
2494 | ccc : +sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
---|
2495 | |
---|
2496 | fqd(il,1)=fr(il,1) !precip |
---|
2497 | |
---|
2498 | fr(il,1)=fr(il,1)+0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) !sature |
---|
2499 | |
---|
2500 | fu(il,1)=fu(il,1)+0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
2501 | : +am(il)*(u(il,2)-u(il,1))) |
---|
2502 | fv(il,1)=fv(il,1)+0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
2503 | : +am(il)*(v(il,2)-v(il,1))) |
---|
2504 | else ! cvflag_grav |
---|
2505 | fr(il,1)=0.1*mp(il,2)*(rp(il,2)-rr_wake(il,1))*work(il) |
---|
2506 | : +sigd(il)*evap(il,1) |
---|
2507 | ccc : +sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
---|
2508 | fqd(il,1)=fr(il,1) !precip |
---|
2509 | fr(il,1)=fr(il,1)+0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
2510 | fu(il,1)=fu(il,1)+0.1*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
2511 | : +am(il)*(u(il,2)-u(il,1))) |
---|
2512 | fv(il,1)=fv(il,1)+0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
2513 | : +am(il)*(v(il,2)-v(il,1))) |
---|
2514 | endif ! cvflag_grav |
---|
2515 | endif ! iflag |
---|
2516 | enddo ! il |
---|
2517 | |
---|
2518 | |
---|
2519 | do j=1,ntra |
---|
2520 | do il=1,ncum |
---|
2521 | if (iflag(il) .le. 1) then |
---|
2522 | if (cvflag_grav) then |
---|
2523 | ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
2524 | : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
2525 | : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
2526 | else |
---|
2527 | ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
2528 | : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
2529 | : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
2530 | endif |
---|
2531 | endif ! iflag |
---|
2532 | enddo |
---|
2533 | enddo |
---|
2534 | |
---|
2535 | do j=2,nl |
---|
2536 | do il=1,ncum |
---|
2537 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2538 | if (cvflag_grav) then |
---|
2539 | fr(il,1)=fr(il,1) |
---|
2540 | : +0.01*grav*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
2541 | fu(il,1)=fu(il,1) |
---|
2542 | : +0.01*grav*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
2543 | fv(il,1)=fv(il,1) |
---|
2544 | : +0.01*grav*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) |
---|
2545 | else ! cvflag_grav |
---|
2546 | fr(il,1)=fr(il,1) |
---|
2547 | : +0.1*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
2548 | fu(il,1)=fu(il,1) |
---|
2549 | : +0.1*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
2550 | fv(il,1)=fv(il,1) |
---|
2551 | : +0.1*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) ! fin sature |
---|
2552 | endif ! cvflag_grav |
---|
2553 | endif ! j |
---|
2554 | enddo |
---|
2555 | enddo |
---|
2556 | |
---|
2557 | do k=1,ntra |
---|
2558 | do j=2,nl |
---|
2559 | do il=1,ncum |
---|
2560 | if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2561 | |
---|
2562 | if (cvflag_grav) then |
---|
2563 | ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
2564 | : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
2565 | else |
---|
2566 | ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
2567 | : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
2568 | endif |
---|
2569 | |
---|
2570 | endif |
---|
2571 | enddo |
---|
2572 | enddo |
---|
2573 | enddo |
---|
2574 | c print*,'cv3_yield apres ft' |
---|
2575 | c |
---|
2576 | c *** calculate tendencies of potential temperature and mixing ratio *** |
---|
2577 | c *** at levels above the lowest level *** |
---|
2578 | c |
---|
2579 | c *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
2580 | c *** through each level *** |
---|
2581 | c |
---|
2582 | |
---|
2583 | do 500 i=2,nl+1 ! newvecto: mettre nl au lieu nl+1? |
---|
2584 | |
---|
2585 | num1=0 |
---|
2586 | do il=1,ncum |
---|
2587 | if(i.le.inb(il) .and. iflag(il) .le. 1)num1=num1+1 |
---|
2588 | enddo |
---|
2589 | if(num1.le.0)go to 500 |
---|
2590 | |
---|
2591 | call zilch(amp1,ncum) |
---|
2592 | call zilch(ad,ncum) |
---|
2593 | |
---|
2594 | do 440 k=1,nl+1 |
---|
2595 | do 441 il=1,ncum |
---|
2596 | if(i.ge.icb(il)) then |
---|
2597 | if(k.ge.i+1.and. k.le.(inb(il)+1)) then |
---|
2598 | amp1(il)=amp1(il)+m(il,k) |
---|
2599 | endif |
---|
2600 | else |
---|
2601 | c AMP1 is the part of cbmf taken from layers I and lower |
---|
2602 | if(k.le.i) then |
---|
2603 | amp1(il)=amp1(il)+cbmf(il)*wghti(il,k) |
---|
2604 | endif |
---|
2605 | endif |
---|
2606 | 441 continue |
---|
2607 | 440 continue |
---|
2608 | |
---|
2609 | do 450 k=1,i |
---|
2610 | do 451 j=i+1,nl+1 |
---|
2611 | do 452 il=1,ncum |
---|
2612 | if (i.le.inb(il) .and. j.le.(inb(il)+1)) then |
---|
2613 | amp1(il)=amp1(il)+ment(il,k,j) |
---|
2614 | endif |
---|
2615 | 452 continue |
---|
2616 | 451 continue |
---|
2617 | 450 continue |
---|
2618 | |
---|
2619 | do 470 k=1,i-1 |
---|
2620 | do 471 j=i,nl+1 ! newvecto: nl au lieu nl+1? |
---|
2621 | do 472 il=1,ncum |
---|
2622 | if (i.le.inb(il) .and. j.le.inb(il)) then |
---|
2623 | ad(il)=ad(il)+ment(il,j,k) |
---|
2624 | endif |
---|
2625 | 472 continue |
---|
2626 | 471 continue |
---|
2627 | 470 continue |
---|
2628 | |
---|
2629 | do 1350 il=1,ncum |
---|
2630 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2631 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2632 | cpinv=1.0/cpn(il,i) |
---|
2633 | |
---|
2634 | c convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
2635 | if (cvflag_grav) then |
---|
2636 | if((0.01*grav*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
2637 | else |
---|
2638 | if((0.1*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
2639 | endif |
---|
2640 | |
---|
2641 | ! precip |
---|
2642 | ccc ft(il,i)= -0.5*sigd(il)*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
---|
2643 | ft(il,i)= -sigd(il)*lvcp(il,i)*evap(il,i) |
---|
2644 | rat=cpn(il,i-1)*cpinv |
---|
2645 | c |
---|
2646 | if (cvflag_grav) then |
---|
2647 | ft(il,i)=ft(il,i)-0.009*grav*sigd(il) |
---|
2648 | : *(mp(il,i+1)*t_wake(il,i)*b(il,i) |
---|
2649 | : -mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
---|
2650 | ft(il,i)=ft(il,i)+0.01*sigd(il)*wt(il,i)*(cl-cpd)*water(il,i+1) |
---|
2651 | : *(t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
---|
2652 | ftd(il,i)=ft(il,i) |
---|
2653 | ! fin precip |
---|
2654 | c |
---|
2655 | ! sature |
---|
2656 | ft(il,i)=ft(il,i)+0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
2657 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
2658 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
2659 | |
---|
2660 | c |
---|
2661 | IF (iflag_mix .eq. 0) then |
---|
2662 | ft(il,i)=ft(il,i)+0.01*grav*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
2663 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
2664 | ENDIF |
---|
2665 | c |
---|
2666 | else ! cvflag_grav |
---|
2667 | ft(il,i)=ft(il,i)-0.09*sigd(il) |
---|
2668 | : *(mp(il,i+1)*t_wake(il,i)*b(il,i) |
---|
2669 | : -mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
---|
2670 | ft(il,i)=ft(il,i)+0.01*sigd(il)*wt(il,i)*(cl-cpd)*water(il,i+1) |
---|
2671 | : *(t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
---|
2672 | ftd(il,i)=ft(il,i) |
---|
2673 | ! fin precip |
---|
2674 | c |
---|
2675 | ! sature |
---|
2676 | ft(il,i)=ft(il,i)+0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
2677 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
2678 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
2679 | |
---|
2680 | c |
---|
2681 | IF (iflag_mix .eq. 0) then |
---|
2682 | ft(il,i)=ft(il,i)+0.1*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
2683 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
2684 | ENDIF |
---|
2685 | endif ! cvflag_grav |
---|
2686 | |
---|
2687 | |
---|
2688 | if (cvflag_grav) then |
---|
2689 | c sb: on ne fait pas encore la correction permettant de mieux |
---|
2690 | c conserver l'eau: |
---|
2691 | c jyg: correction permettant de mieux conserver l'eau: |
---|
2692 | ccc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
---|
2693 | fr(il,i)=sigd(il)*evap(il,i) |
---|
2694 | : +0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) |
---|
2695 | : -mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
---|
2696 | fqd(il,i)=fr(il,i) ! precip |
---|
2697 | |
---|
2698 | fu(il,i)=0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
2699 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
2700 | fv(il,i)=0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
2701 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
2702 | else ! cvflag_grav |
---|
2703 | ccc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
---|
2704 | fr(il,i)=sigd(il)*evap(il,i) |
---|
2705 | : +0.1*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) |
---|
2706 | : -mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
---|
2707 | fqd(il,i)=fr(il,i) ! precip |
---|
2708 | |
---|
2709 | fu(il,i)=0.1*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
2710 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
2711 | fv(il,i)=0.1*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
2712 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
2713 | endif ! cvflag_grav |
---|
2714 | |
---|
2715 | |
---|
2716 | if (cvflag_grav) then |
---|
2717 | fr(il,i)=fr(il,i)+0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
2718 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
2719 | fu(il,i)=fu(il,i)+0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
2720 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
2721 | fv(il,i)=fv(il,i)+0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
2722 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
2723 | else ! cvflag_grav |
---|
2724 | fr(il,i)=fr(il,i)+0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
2725 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
2726 | fu(il,i)=fu(il,i)+0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
2727 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
2728 | fv(il,i)=fv(il,i)+0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
2729 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
2730 | endif ! cvflag_grav |
---|
2731 | |
---|
2732 | endif ! i |
---|
2733 | 1350 continue |
---|
2734 | |
---|
2735 | do k=1,ntra |
---|
2736 | do il=1,ncum |
---|
2737 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2738 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2739 | cpinv=1.0/cpn(il,i) |
---|
2740 | if (cvflag_grav) then |
---|
2741 | ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
2742 | : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
2743 | : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
2744 | else |
---|
2745 | ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
2746 | : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
2747 | : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
2748 | endif |
---|
2749 | endif |
---|
2750 | enddo |
---|
2751 | enddo |
---|
2752 | |
---|
2753 | do 480 k=1,i-1 |
---|
2754 | c |
---|
2755 | do il = 1,ncum |
---|
2756 | awat(il)=elij(il,k,i)-(1.-ep(il,i))*clw(il,i) |
---|
2757 | awat(il)=amax1(awat(il),0.0) |
---|
2758 | enddo |
---|
2759 | c |
---|
2760 | IF (iflag_mix .ne. 0) then |
---|
2761 | do il=1,ncum |
---|
2762 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2763 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2764 | cpinv=1.0/cpn(il,i) |
---|
2765 | if (cvflag_grav) then |
---|
2766 | ft(il,i)=ft(il,i) |
---|
2767 | : +0.01*grav*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
2768 | : +t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-Qent(il,k,i)))*cpinv |
---|
2769 | |
---|
2770 | c |
---|
2771 | c |
---|
2772 | else |
---|
2773 | ft(il,i)=ft(il,i) |
---|
2774 | : +0.1*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
2775 | : +t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-Qent(il,k,i)))*cpinv |
---|
2776 | endif !cvflag_grav |
---|
2777 | endif ! i |
---|
2778 | enddo |
---|
2779 | ENDIF |
---|
2780 | c |
---|
2781 | do 1370 il=1,ncum |
---|
2782 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2783 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2784 | cpinv=1.0/cpn(il,i) |
---|
2785 | if (cvflag_grav) then |
---|
2786 | fr(il,i)=fr(il,i) |
---|
2787 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-awat(il)-rr(il,i)) |
---|
2788 | fu(il,i)=fu(il,i) |
---|
2789 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
2790 | fv(il,i)=fv(il,i) |
---|
2791 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
2792 | else ! cvflag_grav |
---|
2793 | fr(il,i)=fr(il,i) |
---|
2794 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-awat(il)-rr(il,i)) |
---|
2795 | fu(il,i)=fu(il,i) |
---|
2796 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
2797 | fv(il,i)=fv(il,i) |
---|
2798 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
2799 | endif ! cvflag_grav |
---|
2800 | |
---|
2801 | c (saturated updrafts resulting from mixing) ! cld |
---|
2802 | qcond(il,i)=qcond(il,i)+(elij(il,k,i)-awat(il)) ! cld |
---|
2803 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
2804 | endif ! i |
---|
2805 | 1370 continue |
---|
2806 | 480 continue |
---|
2807 | |
---|
2808 | do j=1,ntra |
---|
2809 | do k=1,i-1 |
---|
2810 | do il=1,ncum |
---|
2811 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2812 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2813 | cpinv=1.0/cpn(il,i) |
---|
2814 | if (cvflag_grav) then |
---|
2815 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
2816 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2817 | else |
---|
2818 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
2819 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2820 | endif |
---|
2821 | endif |
---|
2822 | enddo |
---|
2823 | enddo |
---|
2824 | enddo |
---|
2825 | |
---|
2826 | do 490 k=i,nl+1 |
---|
2827 | c |
---|
2828 | IF (iflag_mix .ne. 0) then |
---|
2829 | do il=1,ncum |
---|
2830 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
2831 | $ .and. iflag(il) .le. 1) then |
---|
2832 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2833 | cpinv=1.0/cpn(il,i) |
---|
2834 | if (cvflag_grav) then |
---|
2835 | ft(il,i)=ft(il,i) |
---|
2836 | : +0.01*grav*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
2837 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-Qent(il,k,i)))*cpinv |
---|
2838 | c |
---|
2839 | c |
---|
2840 | else |
---|
2841 | ft(il,i)=ft(il,i) |
---|
2842 | : +0.1*dpinv*ment(il,k,i)*(hent(il,k,i)-h(il,i) |
---|
2843 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-Qent(il,k,i)))*cpinv |
---|
2844 | endif !cvflag_grav |
---|
2845 | endif ! i |
---|
2846 | enddo |
---|
2847 | ENDIF |
---|
2848 | c |
---|
2849 | do 1380 il=1,ncum |
---|
2850 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
2851 | $ .and. iflag(il) .le. 1) then |
---|
2852 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2853 | cpinv=1.0/cpn(il,i) |
---|
2854 | |
---|
2855 | if (cvflag_grav) then |
---|
2856 | fr(il,i)=fr(il,i) |
---|
2857 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
2858 | fu(il,i)=fu(il,i) |
---|
2859 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
2860 | fv(il,i)=fv(il,i) |
---|
2861 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
2862 | else ! cvflag_grav |
---|
2863 | fr(il,i)=fr(il,i) |
---|
2864 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
2865 | fu(il,i)=fu(il,i) |
---|
2866 | : +0.1*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
2867 | fv(il,i)=fv(il,i) |
---|
2868 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
2869 | endif ! cvflag_grav |
---|
2870 | endif ! i and k |
---|
2871 | 1380 continue |
---|
2872 | 490 continue |
---|
2873 | |
---|
2874 | do j=1,ntra |
---|
2875 | do k=i,nl+1 |
---|
2876 | do il=1,ncum |
---|
2877 | if (i.le.inb(il) .and. k.le.inb(il) |
---|
2878 | $ .and. iflag(il) .le. 1) then |
---|
2879 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2880 | cpinv=1.0/cpn(il,i) |
---|
2881 | if (cvflag_grav) then |
---|
2882 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
2883 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2884 | else |
---|
2885 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
2886 | : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
2887 | endif |
---|
2888 | endif ! i and k |
---|
2889 | enddo |
---|
2890 | enddo |
---|
2891 | enddo |
---|
2892 | |
---|
2893 | c sb: interface with the cloud parameterization: ! cld |
---|
2894 | |
---|
2895 | do k=i+1,nl |
---|
2896 | do il=1,ncum |
---|
2897 | if (k.le.inb(il) .and. i.le.inb(il) |
---|
2898 | $ .and. iflag(il) .le. 1) then ! cld |
---|
2899 | C (saturated downdrafts resulting from mixing) ! cld |
---|
2900 | qcond(il,i)=qcond(il,i)+elij(il,k,i) ! cld |
---|
2901 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
2902 | endif ! cld |
---|
2903 | enddo ! cld |
---|
2904 | enddo ! cld |
---|
2905 | |
---|
2906 | C (particular case: no detraining level is found) ! cld |
---|
2907 | do il=1,ncum ! cld |
---|
2908 | if (i.le.inb(il) .and. nent(il,i).eq.0 |
---|
2909 | $ .and. iflag(il) .le. 1) then ! cld |
---|
2910 | qcond(il,i)=qcond(il,i)+(1.-ep(il,i))*clw(il,i) ! cld |
---|
2911 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
2912 | endif ! cld |
---|
2913 | enddo ! cld |
---|
2914 | |
---|
2915 | do il=1,ncum ! cld |
---|
2916 | if (i.le.inb(il) .and. nqcond(il,i).ne.0 |
---|
2917 | $ .and. iflag(il) .le. 1) then ! cld |
---|
2918 | qcond(il,i)=qcond(il,i)/nqcond(il,i) ! cld |
---|
2919 | endif ! cld |
---|
2920 | enddo |
---|
2921 | |
---|
2922 | do j=1,ntra |
---|
2923 | do il=1,ncum |
---|
2924 | if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
2925 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
2926 | cpinv=1.0/cpn(il,i) |
---|
2927 | |
---|
2928 | if (cvflag_grav) then |
---|
2929 | ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
2930 | : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
2931 | : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
2932 | else |
---|
2933 | ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
2934 | : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
2935 | : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
2936 | endif |
---|
2937 | endif ! i |
---|
2938 | enddo |
---|
2939 | enddo |
---|
2940 | |
---|
2941 | |
---|
2942 | 500 continue |
---|
2943 | |
---|
2944 | |
---|
2945 | c *** move the detrainment at level inb down to level inb-1 *** |
---|
2946 | c *** in such a way as to preserve the vertically *** |
---|
2947 | c *** integrated enthalpy and water tendencies *** |
---|
2948 | c |
---|
2949 | do 503 il=1,ncum |
---|
2950 | IF (iflag(il) .le. 1) THEN |
---|
2951 | ax=0.1*ment(il,inb(il),inb(il))*(hp(il,inb(il))-h(il,inb(il)) |
---|
2952 | : +t(il,inb(il))*(cpv-cpd) |
---|
2953 | : *(rr(il,inb(il))-qent(il,inb(il),inb(il)))) |
---|
2954 | : /(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
2955 | ft(il,inb(il))=ft(il,inb(il))-ax |
---|
2956 | ft(il,inb(il)-1)=ft(il,inb(il)-1)+ax*cpn(il,inb(il)) |
---|
2957 | : *(ph(il,inb(il))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1) |
---|
2958 | : *(ph(il,inb(il)-1)-ph(il,inb(il)))) |
---|
2959 | |
---|
2960 | bx=0.1*ment(il,inb(il),inb(il))*(qent(il,inb(il),inb(il)) |
---|
2961 | : -rr(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2962 | fr(il,inb(il))=fr(il,inb(il))-bx |
---|
2963 | fr(il,inb(il)-1)=fr(il,inb(il)-1) |
---|
2964 | : +bx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2965 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
2966 | |
---|
2967 | cx=0.1*ment(il,inb(il),inb(il))*(uent(il,inb(il),inb(il)) |
---|
2968 | : -u(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2969 | fu(il,inb(il))=fu(il,inb(il))-cx |
---|
2970 | fu(il,inb(il)-1)=fu(il,inb(il)-1) |
---|
2971 | : +cx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2972 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
2973 | |
---|
2974 | dx=0.1*ment(il,inb(il),inb(il))*(vent(il,inb(il),inb(il)) |
---|
2975 | : -v(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2976 | fv(il,inb(il))=fv(il,inb(il))-dx |
---|
2977 | fv(il,inb(il)-1)=fv(il,inb(il)-1) |
---|
2978 | : +dx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2979 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
2980 | ENDIF !iflag |
---|
2981 | 503 continue |
---|
2982 | |
---|
2983 | do j=1,ntra |
---|
2984 | do il=1,ncum |
---|
2985 | IF (iflag(il) .le. 1) THEN |
---|
2986 | ex=0.1*ment(il,inb(il),inb(il)) |
---|
2987 | : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
2988 | : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
---|
2989 | ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
2990 | ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
2991 | : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
2992 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
2993 | ENDIF !iflag |
---|
2994 | enddo |
---|
2995 | enddo |
---|
2996 | |
---|
2997 | c |
---|
2998 | c *** homogenize tendencies below cloud base *** |
---|
2999 | c |
---|
3000 | c |
---|
3001 | do il=1,ncum |
---|
3002 | asum(il)=0.0 |
---|
3003 | bsum(il)=0.0 |
---|
3004 | csum(il)=0.0 |
---|
3005 | dsum(il)=0.0 |
---|
3006 | enddo |
---|
3007 | |
---|
3008 | do i=1,nl |
---|
3009 | do il=1,ncum |
---|
3010 | if (i.le.(icb(il)-1) .and. iflag(il) .le. 1) then |
---|
3011 | asum(il)=asum(il)+ft(il,i)*(ph(il,i)-ph(il,i+1)) |
---|
3012 | bsum(il)=bsum(il)+fr(il,i)*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
3013 | : *(ph(il,i)-ph(il,i+1)) |
---|
3014 | csum(il)=csum(il)+(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
3015 | : *(ph(il,i)-ph(il,i+1)) |
---|
3016 | dsum(il)=dsum(il)+t(il,i)*(ph(il,i)-ph(il,i+1))/th(il,i) |
---|
3017 | endif |
---|
3018 | enddo |
---|
3019 | enddo |
---|
3020 | |
---|
3021 | c!!! do 700 i=1,icb(il)-1 |
---|
3022 | do i=1,nl |
---|
3023 | do il=1,ncum |
---|
3024 | if (i.le.(icb(il)-1) .and. iflag(il) .le. 1) then |
---|
3025 | ft(il,i)=asum(il)*t(il,i)/(th(il,i)*dsum(il)) |
---|
3026 | fr(il,i)=bsum(il)/csum(il) |
---|
3027 | endif |
---|
3028 | enddo |
---|
3029 | enddo |
---|
3030 | |
---|
3031 | c |
---|
3032 | c *** reset counter and return *** |
---|
3033 | c |
---|
3034 | do il=1,ncum |
---|
3035 | sig(il,nd)=2.0 |
---|
3036 | enddo |
---|
3037 | |
---|
3038 | |
---|
3039 | do i=1,nd |
---|
3040 | do il=1,ncum |
---|
3041 | upwd(il,i)=0.0 |
---|
3042 | dnwd(il,i)=0.0 |
---|
3043 | enddo |
---|
3044 | enddo |
---|
3045 | |
---|
3046 | do i=1,nl |
---|
3047 | do il=1,ncum |
---|
3048 | dnwd0(il,i)=-mp(il,i) |
---|
3049 | enddo |
---|
3050 | enddo |
---|
3051 | do i=nl+1,nd |
---|
3052 | do il=1,ncum |
---|
3053 | dnwd0(il,i)=0. |
---|
3054 | enddo |
---|
3055 | enddo |
---|
3056 | |
---|
3057 | |
---|
3058 | do i=1,nl |
---|
3059 | do il=1,ncum |
---|
3060 | if (i.ge.icb(il) .and. i.le.inb(il)) then |
---|
3061 | upwd(il,i)=0.0 |
---|
3062 | dnwd(il,i)=0.0 |
---|
3063 | endif |
---|
3064 | enddo |
---|
3065 | enddo |
---|
3066 | |
---|
3067 | do i=1,nl |
---|
3068 | do k=1,nl |
---|
3069 | do il=1,ncum |
---|
3070 | up1(il,k,i)=0.0 |
---|
3071 | dn1(il,k,i)=0.0 |
---|
3072 | enddo |
---|
3073 | enddo |
---|
3074 | enddo |
---|
3075 | |
---|
3076 | do i=1,nl |
---|
3077 | do k=i,nl |
---|
3078 | do n=1,i-1 |
---|
3079 | do il=1,ncum |
---|
3080 | if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
3081 | up1(il,k,i)=up1(il,k,i)+ment(il,n,k) |
---|
3082 | dn1(il,k,i)=dn1(il,k,i)-ment(il,k,n) |
---|
3083 | endif |
---|
3084 | enddo |
---|
3085 | enddo |
---|
3086 | enddo |
---|
3087 | enddo |
---|
3088 | |
---|
3089 | do i=1,nl |
---|
3090 | do k=1,nl |
---|
3091 | do il=1,ncum |
---|
3092 | if(i.ge.icb(il)) then |
---|
3093 | if(k.ge.i.and. k.le.(inb(il))) then |
---|
3094 | upwd(il,i)=upwd(il,i)+m(il,k) |
---|
3095 | endif |
---|
3096 | else |
---|
3097 | if(k.lt.i) then |
---|
3098 | upwd(il,i)=upwd(il,i)+cbmf(il)*wghti(il,k) |
---|
3099 | endif |
---|
3100 | endif |
---|
3101 | cc print *,'cbmf',il,i,k,cbmf(il),wghti(il,k) |
---|
3102 | end do |
---|
3103 | end do |
---|
3104 | end do |
---|
3105 | |
---|
3106 | do i=2,nl |
---|
3107 | do k=i,nl |
---|
3108 | do il=1,ncum |
---|
3109 | ctest if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
3110 | if (i.le.inb(il).and.k.le.inb(il)) then |
---|
3111 | upwd(il,i)=upwd(il,i)+up1(il,k,i) |
---|
3112 | dnwd(il,i)=dnwd(il,i)+dn1(il,k,i) |
---|
3113 | endif |
---|
3114 | cc print *,'upwd',il,i,k,inb(il),upwd(il,i),m(il,k),up1(il,k,i) |
---|
3115 | enddo |
---|
3116 | enddo |
---|
3117 | enddo |
---|
3118 | |
---|
3119 | |
---|
3120 | c!!! DO il=1,ncum |
---|
3121 | c!!! do i=icb(il),inb(il) |
---|
3122 | c!!! |
---|
3123 | c!!! upwd(il,i)=0.0 |
---|
3124 | c!!! dnwd(il,i)=0.0 |
---|
3125 | c!!! do k=i,inb(il) |
---|
3126 | c!!! up1=0.0 |
---|
3127 | c!!! dn1=0.0 |
---|
3128 | c!!! do n=1,i-1 |
---|
3129 | c!!! up1=up1+ment(il,n,k) |
---|
3130 | c!!! dn1=dn1-ment(il,k,n) |
---|
3131 | c!!! enddo |
---|
3132 | c!!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
3133 | c!!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
3134 | c!!! enddo |
---|
3135 | c!!! enddo |
---|
3136 | c!!! |
---|
3137 | c!!! ENDDO |
---|
3138 | |
---|
3139 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3140 | c determination de la variation de flux ascendant entre |
---|
3141 | c deux niveau non dilue mip |
---|
3142 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3143 | |
---|
3144 | do i=1,nl |
---|
3145 | do il=1,ncum |
---|
3146 | mip(il,i)=m(il,i) |
---|
3147 | enddo |
---|
3148 | enddo |
---|
3149 | |
---|
3150 | do i=nl+1,nd |
---|
3151 | do il=1,ncum |
---|
3152 | mip(il,i)=0. |
---|
3153 | enddo |
---|
3154 | enddo |
---|
3155 | |
---|
3156 | do i=1,nd |
---|
3157 | do il=1,ncum |
---|
3158 | ma(il,i)=0 |
---|
3159 | enddo |
---|
3160 | enddo |
---|
3161 | |
---|
3162 | do i=1,nl |
---|
3163 | do j=i,nl |
---|
3164 | do il=1,ncum |
---|
3165 | ma(il,i)=ma(il,i)+m(il,j) |
---|
3166 | enddo |
---|
3167 | enddo |
---|
3168 | enddo |
---|
3169 | |
---|
3170 | do i=nl+1,nd |
---|
3171 | do il=1,ncum |
---|
3172 | ma(il,i)=0. |
---|
3173 | enddo |
---|
3174 | enddo |
---|
3175 | |
---|
3176 | do i=1,nl |
---|
3177 | do il=1,ncum |
---|
3178 | if (i.le.(icb(il)-1)) then |
---|
3179 | ma(il,i)=0 |
---|
3180 | endif |
---|
3181 | enddo |
---|
3182 | enddo |
---|
3183 | |
---|
3184 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3185 | c icb represente de niveau ou se trouve la |
---|
3186 | c base du nuage , et inb le top du nuage |
---|
3187 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3188 | |
---|
3189 | do i=1,nd |
---|
3190 | do il=1,ncum |
---|
3191 | mke(il,i)=upwd(il,i)+dnwd(il,i) |
---|
3192 | enddo |
---|
3193 | enddo |
---|
3194 | |
---|
3195 | do i=1,nd |
---|
3196 | DO 999 il=1,ncum |
---|
3197 | rdcp=(rrd*(1.-rr(il,i))-rr(il,i)*rrv) |
---|
3198 | : /(cpd*(1.-rr(il,i))+rr(il,i)*cpv) |
---|
3199 | tls(il,i)=t(il,i)*(1000.0/p(il,i))**rdcp |
---|
3200 | tps(il,i)=tp(il,i) |
---|
3201 | 999 CONTINUE |
---|
3202 | enddo |
---|
3203 | |
---|
3204 | c |
---|
3205 | c *** diagnose the in-cloud mixing ratio *** ! cld |
---|
3206 | c *** of condensed water *** ! cld |
---|
3207 | c ! cld |
---|
3208 | |
---|
3209 | do i=1,nd ! cld |
---|
3210 | do il=1,ncum ! cld |
---|
3211 | mac(il,i)=0.0 ! cld |
---|
3212 | wa(il,i)=0.0 ! cld |
---|
3213 | siga(il,i)=0.0 ! cld |
---|
3214 | sax(il,i)=0.0 ! cld |
---|
3215 | enddo ! cld |
---|
3216 | enddo ! cld |
---|
3217 | |
---|
3218 | do i=minorig, nl ! cld |
---|
3219 | do k=i+1,nl+1 ! cld |
---|
3220 | do il=1,ncum ! cld |
---|
3221 | if (i.le.inb(il) .and. k.le.(inb(il)+1) |
---|
3222 | $ .and. iflag(il) .le. 1) then ! cld |
---|
3223 | mac(il,i)=mac(il,i)+m(il,k) ! cld |
---|
3224 | endif ! cld |
---|
3225 | enddo ! cld |
---|
3226 | enddo ! cld |
---|
3227 | enddo ! cld |
---|
3228 | |
---|
3229 | do i=1,nl ! cld |
---|
3230 | do j=1,i ! cld |
---|
3231 | do il=1,ncum ! cld |
---|
3232 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
3233 | : .and. j.ge.icb(il) |
---|
3234 | : .and. iflag(il) .le. 1 ) then ! cld |
---|
3235 | sax(il,i)=sax(il,i)+rrd*(tvp(il,j)-tv(il,j)) ! cld |
---|
3236 | : *(ph(il,j)-ph(il,j+1))/p(il,j) ! cld |
---|
3237 | endif ! cld |
---|
3238 | enddo ! cld |
---|
3239 | enddo ! cld |
---|
3240 | enddo ! cld |
---|
3241 | |
---|
3242 | do i=1,nl ! cld |
---|
3243 | do il=1,ncum ! cld |
---|
3244 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
3245 | : .and. sax(il,i).gt.0.0 |
---|
3246 | : .and. iflag(il) .le. 1 ) then ! cld |
---|
3247 | wa(il,i)=sqrt(2.*sax(il,i)) ! cld |
---|
3248 | endif ! cld |
---|
3249 | enddo ! cld |
---|
3250 | enddo ! cld |
---|
3251 | |
---|
3252 | do i=1,nl ! cld |
---|
3253 | do il=1,ncum ! cld |
---|
3254 | if (wa(il,i).gt.0.0 .and. iflag(il) .le. 1) ! cld |
---|
3255 | : siga(il,i)=mac(il,i)/wa(il,i) ! cld |
---|
3256 | : *rrd*tvp(il,i)/p(il,i)/100./delta ! cld |
---|
3257 | siga(il,i) = min(siga(il,i),1.0) ! cld |
---|
3258 | cIM cf. FH |
---|
3259 | if (iflag_clw.eq.0) then |
---|
3260 | qcondc(il,i)=siga(il,i)*clw(il,i)*(1.-ep(il,i)) ! cld |
---|
3261 | : + (1.-siga(il,i))*qcond(il,i) ! cld |
---|
3262 | else if (iflag_clw.eq.1) then |
---|
3263 | qcondc(il,i)=qcond(il,i) ! cld |
---|
3264 | endif |
---|
3265 | |
---|
3266 | enddo ! cld |
---|
3267 | enddo |
---|
3268 | c print*,'cv3_yield fin' |
---|
3269 | ! cld |
---|
3270 | return |
---|
3271 | end |
---|
3272 | |
---|
3273 | |
---|
3274 | SUBROUTINE cv3_uncompress(nloc,len,ncum,nd,ntra,idcum |
---|
3275 | : ,iflag |
---|
3276 | : ,precip,sig,w0 |
---|
3277 | : ,ft,fq,fu,fv,ftra |
---|
3278 | : ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape |
---|
3279 | : ,iflag1 |
---|
3280 | : ,precip1,sig1,w01 |
---|
3281 | : ,ft1,fq1,fu1,fv1,ftra1 |
---|
3282 | : ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1 |
---|
3283 | : ) |
---|
3284 | implicit none |
---|
3285 | |
---|
3286 | #include "cv3param.h" |
---|
3287 | |
---|
3288 | c inputs: |
---|
3289 | integer len, ncum, nd, ntra, nloc |
---|
3290 | integer idcum(nloc) |
---|
3291 | integer iflag(nloc) |
---|
3292 | real precip(nloc) |
---|
3293 | real sig(nloc,nd), w0(nloc,nd) |
---|
3294 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
3295 | real ftra(nloc,nd,ntra) |
---|
3296 | real Ma(nloc,nd) |
---|
3297 | real upwd(nloc,nd),dnwd(nloc,nd),dnwd0(nloc,nd) |
---|
3298 | real qcondc(nloc,nd) |
---|
3299 | real wd(nloc),cape(nloc) |
---|
3300 | |
---|
3301 | c outputs: |
---|
3302 | integer iflag1(len) |
---|
3303 | real precip1(len) |
---|
3304 | real sig1(len,nd), w01(len,nd) |
---|
3305 | real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) |
---|
3306 | real ftra1(len,nd,ntra) |
---|
3307 | real Ma1(len,nd) |
---|
3308 | real upwd1(len,nd),dnwd1(len,nd),dnwd01(len,nd) |
---|
3309 | real qcondc1(nloc,nd) |
---|
3310 | real wd1(nloc),cape1(nloc) |
---|
3311 | |
---|
3312 | c local variables: |
---|
3313 | integer i,k,j |
---|
3314 | |
---|
3315 | do 2000 i=1,ncum |
---|
3316 | precip1(idcum(i))=precip(i) |
---|
3317 | iflag1(idcum(i))=iflag(i) |
---|
3318 | wd1(idcum(i))=wd(i) |
---|
3319 | cape1(idcum(i))=cape(i) |
---|
3320 | 2000 continue |
---|
3321 | |
---|
3322 | do 2020 k=1,nl |
---|
3323 | do 2010 i=1,ncum |
---|
3324 | sig1(idcum(i),k)=sig(i,k) |
---|
3325 | w01(idcum(i),k)=w0(i,k) |
---|
3326 | ft1(idcum(i),k)=ft(i,k) |
---|
3327 | fq1(idcum(i),k)=fq(i,k) |
---|
3328 | fu1(idcum(i),k)=fu(i,k) |
---|
3329 | fv1(idcum(i),k)=fv(i,k) |
---|
3330 | Ma1(idcum(i),k)=Ma(i,k) |
---|
3331 | upwd1(idcum(i),k)=upwd(i,k) |
---|
3332 | dnwd1(idcum(i),k)=dnwd(i,k) |
---|
3333 | dnwd01(idcum(i),k)=dnwd0(i,k) |
---|
3334 | qcondc1(idcum(i),k)=qcondc(i,k) |
---|
3335 | 2010 continue |
---|
3336 | 2020 continue |
---|
3337 | |
---|
3338 | do 2200 i=1,ncum |
---|
3339 | sig1(idcum(i),nd)=sig(i,nd) |
---|
3340 | 2200 continue |
---|
3341 | |
---|
3342 | |
---|
3343 | do 2100 j=1,ntra |
---|
3344 | c oct3 do 2110 k=1,nl |
---|
3345 | do 2110 k=1,nd ! oct3 |
---|
3346 | do 2120 i=1,ncum |
---|
3347 | ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
3348 | 2120 continue |
---|
3349 | 2110 continue |
---|
3350 | 2100 continue |
---|
3351 | return |
---|
3352 | end |
---|
3353 | |
---|