| 1 | ! |
|---|
| 2 | ! $Header$ |
|---|
| 3 | ! |
|---|
| 4 | SUBROUTINE conccm (dtime,paprs,pplay,t,q,conv_q, |
|---|
| 5 | s d_t, d_q, rain, snow, kbascm, ktopcm) |
|---|
| 6 | c |
|---|
| 7 | IMPLICIT none |
|---|
| 8 | c====================================================================== |
|---|
| 9 | c Auteur(s): Z.X. Li (LMD/CNRS) date: le 14 mars 1996 |
|---|
| 10 | c Objet: Schema simple (avec flux de masse) pour la convection |
|---|
| 11 | c (schema standard du modele NCAR CCM2) |
|---|
| 12 | c====================================================================== |
|---|
| 13 | #include "dimensions.h" |
|---|
| 14 | #include "dimphy.h" |
|---|
| 15 | #include "YOMCST.h" |
|---|
| 16 | #include "YOETHF.h" |
|---|
| 17 | c |
|---|
| 18 | c Entree: |
|---|
| 19 | REAL dtime ! pas d'integration |
|---|
| 20 | REAL paprs(klon,klev+1) ! pression inter-couche (Pa) |
|---|
| 21 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
|---|
| 22 | REAL t(klon,klev) ! temperature (K) |
|---|
| 23 | REAL q(klon,klev) ! humidite specifique (g/g) |
|---|
| 24 | REAL conv_q(klon,klev) ! taux de convergence humidite (g/g/s) |
|---|
| 25 | c Sortie: |
|---|
| 26 | REAL d_t(klon,klev) ! incrementation temperature |
|---|
| 27 | REAL d_q(klon,klev) ! incrementation vapeur |
|---|
| 28 | REAL rain(klon) ! pluie (mm/s) |
|---|
| 29 | REAL snow(klon) ! neige (mm/s) |
|---|
| 30 | INTEGER kbascm(klon) ! niveau du bas de convection |
|---|
| 31 | INTEGER ktopcm(klon) ! niveau du haut de convection |
|---|
| 32 | c |
|---|
| 33 | REAL pt(klon,klev) |
|---|
| 34 | REAL pq(klon,klev) |
|---|
| 35 | REAL pres(klon,klev) |
|---|
| 36 | REAL dp(klon,klev) |
|---|
| 37 | REAL zgeom(klon,klev) |
|---|
| 38 | REAL cmfprs(klon) |
|---|
| 39 | REAL cmfprt(klon) |
|---|
| 40 | INTEGER ntop(klon) |
|---|
| 41 | INTEGER nbas(klon) |
|---|
| 42 | INTEGER i, k |
|---|
| 43 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
|---|
| 44 | c |
|---|
| 45 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
|---|
| 46 | PARAMETER (usekuo=.TRUE.) |
|---|
| 47 | c |
|---|
| 48 | REAL d_t_bis(klon,klev) |
|---|
| 49 | REAL d_q_bis(klon,klev) |
|---|
| 50 | REAL rain_bis(klon) |
|---|
| 51 | REAL snow_bis(klon) |
|---|
| 52 | INTEGER ibas_bis(klon) |
|---|
| 53 | INTEGER itop_bis(klon) |
|---|
| 54 | REAL d_ql_bis(klon,klev) |
|---|
| 55 | REAL rneb_bis(klon,klev) |
|---|
| 56 | c |
|---|
| 57 | c initialiser les variables de sortie (pour securite) |
|---|
| 58 | DO i = 1, klon |
|---|
| 59 | rain(i) = 0.0 |
|---|
| 60 | snow(i) = 0.0 |
|---|
| 61 | kbascm(i) = 0 |
|---|
| 62 | ktopcm(i) = 0 |
|---|
| 63 | ENDDO |
|---|
| 64 | DO k = 1, klev |
|---|
| 65 | DO i = 1, klon |
|---|
| 66 | d_t(i,k) = 0.0 |
|---|
| 67 | d_q(i,k) = 0.0 |
|---|
| 68 | ENDDO |
|---|
| 69 | ENDDO |
|---|
| 70 | c |
|---|
| 71 | c preparer les variables d'entree (attention: l'ordre des niveaux |
|---|
| 72 | c verticaux augmente du haut vers le bas) |
|---|
| 73 | DO k = 1, klev |
|---|
| 74 | DO i = 1, klon |
|---|
| 75 | pt(i,k) = t(i,klev-k+1) |
|---|
| 76 | pq(i,k) = q(i,klev-k+1) |
|---|
| 77 | pres(i,k) = pplay(i,klev-k+1) |
|---|
| 78 | dp(i,k) = paprs(i,klev+1-k)-paprs(i,klev+1-k+1) |
|---|
| 79 | ENDDO |
|---|
| 80 | ENDDO |
|---|
| 81 | DO i = 1, klon |
|---|
| 82 | zgeom(i,klev) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
|---|
| 83 | . * (paprs(i,1)-pplay(i,1)) |
|---|
| 84 | ENDDO |
|---|
| 85 | DO k = 2, klev |
|---|
| 86 | DO i = 1, klon |
|---|
| 87 | zgeom(i,klev+1-k) = zgeom(i,klev+1-k+1) |
|---|
| 88 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
|---|
| 89 | . * (pplay(i,k-1)-pplay(i,k)) |
|---|
| 90 | ENDDO |
|---|
| 91 | ENDDO |
|---|
| 92 | c |
|---|
| 93 | CALL cmfmca(dtime, pres, dp, zgeom, pt, pq, |
|---|
| 94 | $ cmfprt, cmfprs, ntop, nbas) |
|---|
| 95 | C |
|---|
| 96 | DO k = 1, klev |
|---|
| 97 | DO i = 1, klon |
|---|
| 98 | d_q(i,klev+1-k) = pq(i,k) - q(i,klev+1-k) |
|---|
| 99 | d_t(i,klev+1-k) = pt(i,k) - t(i,klev+1-k) |
|---|
| 100 | ENDDO |
|---|
| 101 | ENDDO |
|---|
| 102 | c |
|---|
| 103 | DO i = 1, klon |
|---|
| 104 | rain(i) = cmfprt(i) * rhoh2o |
|---|
| 105 | snow(i) = cmfprs(i) * rhoh2o |
|---|
| 106 | kbascm(i) = klev+1 - nbas(i) |
|---|
| 107 | ktopcm(i) = klev+1 - ntop(i) |
|---|
| 108 | ENDDO |
|---|
| 109 | c |
|---|
| 110 | IF (usekuo) THEN |
|---|
| 111 | CALL conkuo(dtime, paprs, pplay, t, q, conv_q, |
|---|
| 112 | s d_t_bis, d_q_bis, d_ql_bis, rneb_bis, |
|---|
| 113 | s rain_bis, snow_bis, ibas_bis, itop_bis) |
|---|
| 114 | DO k = 1, klev |
|---|
| 115 | DO i = 1, klon |
|---|
| 116 | d_t(i,k) = d_t(i,k) + d_t_bis(i,k) |
|---|
| 117 | d_q(i,k) = d_q(i,k) + d_q_bis(i,k) |
|---|
| 118 | ENDDO |
|---|
| 119 | ENDDO |
|---|
| 120 | DO i = 1, klon |
|---|
| 121 | rain(i) = rain(i) + rain_bis(i) |
|---|
| 122 | snow(i) = snow(i) + snow_bis(i) |
|---|
| 123 | kbascm(i) = MIN(kbascm(i),ibas_bis(i)) |
|---|
| 124 | ktopcm(i) = MAX(ktopcm(i),itop_bis(i)) |
|---|
| 125 | ENDDO |
|---|
| 126 | DO k = 1, klev ! eau liquide convective est |
|---|
| 127 | DO i = 1, klon ! dispersee dans l'air |
|---|
| 128 | zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q(i,k)) |
|---|
| 129 | zlsdcp=RLSTT/RCPD/(1.0+RVTMP2*q(i,k)) |
|---|
| 130 | zdelta = MAX(0.,SIGN(1.,RTT-t(i,k))) |
|---|
| 131 | zz = d_ql_bis(i,k) ! re-evap. de l'eau liquide |
|---|
| 132 | zb = MAX(0.0,zz) |
|---|
| 133 | za = - MAX(0.0,zz) * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
|---|
| 134 | d_t(i,k) = d_t(i,k) + za |
|---|
| 135 | d_q(i,k) = d_q(i,k) + zb |
|---|
| 136 | ENDDO |
|---|
| 137 | ENDDO |
|---|
| 138 | ENDIF |
|---|
| 139 | c |
|---|
| 140 | RETURN |
|---|
| 141 | END |
|---|
| 142 | SUBROUTINE cmfmca(deltat, p, dp, gz, |
|---|
| 143 | $ tb, shb, |
|---|
| 144 | $ cmfprt, cmfprs, cnt, cnb) |
|---|
| 145 | IMPLICIT none |
|---|
| 146 | C----------------------------------------------------------------------- |
|---|
| 147 | C Moist convective mass flux procedure: |
|---|
| 148 | C If stratification is unstable to nonentraining parcel ascent, |
|---|
| 149 | C complete an adjustment making use of a simple cloud model |
|---|
| 150 | C |
|---|
| 151 | C Code generalized to allow specification of parcel ("updraft") |
|---|
| 152 | C properties, as well as convective transport of an arbitrary |
|---|
| 153 | C number of passive constituents (see cmrb array). |
|---|
| 154 | C----------------------------Code History------------------------------- |
|---|
| 155 | C Original version: J. J. Hack, March 22, 1990 |
|---|
| 156 | C Standardized: J. Rosinski, June 1992 |
|---|
| 157 | C Reviewed: J. Hack, G. Taylor, August 1992 |
|---|
| 158 | c Adaptation au LMD: Z.X. Li, mars 1996 (reference: Hack 1994, |
|---|
| 159 | c J. Geophys. Res. vol 99, D3, 5551-5568). J'ai |
|---|
| 160 | c introduit les constantes et les fonctions thermo- |
|---|
| 161 | c dynamiques du Centre Europeen. J'ai elimine le |
|---|
| 162 | c re-indicage du code en esperant que cela pourra |
|---|
| 163 | c simplifier la lecture et la comprehension. |
|---|
| 164 | C----------------------------------------------------------------------- |
|---|
| 165 | #include "dimensions.h" |
|---|
| 166 | #include "dimphy.h" |
|---|
| 167 | INTEGER pcnst ! nombre de traceurs passifs |
|---|
| 168 | PARAMETER (pcnst=1) |
|---|
| 169 | C------------------------------Arguments-------------------------------- |
|---|
| 170 | C Input arguments |
|---|
| 171 | C |
|---|
| 172 | REAL deltat ! time step (seconds) |
|---|
| 173 | REAL p(klon,klev) ! pressure |
|---|
| 174 | REAL dp(klon,klev) ! delta-p |
|---|
| 175 | REAL gz(klon,klev) ! geopotential (a partir du sol) |
|---|
| 176 | c |
|---|
| 177 | REAL thtap(klon) ! PBL perturbation theta |
|---|
| 178 | REAL shp(klon) ! PBL perturbation specific humidity |
|---|
| 179 | REAL pblh(klon) ! PBL height (provided by PBL routine) |
|---|
| 180 | REAL cmrp(klon,pcnst) ! constituent perturbations in PBL |
|---|
| 181 | c |
|---|
| 182 | c Updated arguments: |
|---|
| 183 | c |
|---|
| 184 | REAL tb(klon,klev) ! temperature (t bar) |
|---|
| 185 | REAL shb(klon,klev) ! specific humidity (sh bar) |
|---|
| 186 | REAL cmrb(klon,klev,pcnst) ! constituent mixing ratios (cmr bar) |
|---|
| 187 | C |
|---|
| 188 | C Output arguments |
|---|
| 189 | C |
|---|
| 190 | REAL cmfdt(klon,klev) ! dT/dt due to moist convection |
|---|
| 191 | REAL cmfdq(klon,klev) ! dq/dt due to moist convection |
|---|
| 192 | REAL cmfmc(klon,klev ) ! moist convection cloud mass flux |
|---|
| 193 | REAL cmfdqr(klon,klev) ! dq/dt due to convective rainout |
|---|
| 194 | REAL cmfsl(klon,klev ) ! convective lw static energy flux |
|---|
| 195 | REAL cmflq(klon,klev ) ! convective total water flux |
|---|
| 196 | REAL cmfprt(klon) ! convective precipitation rate |
|---|
| 197 | REAL cmfprs(klon) ! convective snowfall rate |
|---|
| 198 | REAL qc(klon,klev) ! dq/dt due to rainout terms |
|---|
| 199 | INTEGER cnt(klon) ! top level of convective activity |
|---|
| 200 | INTEGER cnb(klon) ! bottom level of convective activity |
|---|
| 201 | C------------------------------Parameters------------------------------- |
|---|
| 202 | REAL c0 ! rain water autoconversion coefficient |
|---|
| 203 | PARAMETER (c0=1.0e-4) |
|---|
| 204 | REAL dzmin ! minimum convective depth for precipitation |
|---|
| 205 | PARAMETER (dzmin=0.0) |
|---|
| 206 | REAL betamn ! minimum overshoot parameter |
|---|
| 207 | PARAMETER (betamn=0.10) |
|---|
| 208 | REAL cmftau ! characteristic adjustment time scale |
|---|
| 209 | PARAMETER (cmftau=3600.) |
|---|
| 210 | INTEGER limcnv ! top interface level limit for convection |
|---|
| 211 | PARAMETER (limcnv=1) |
|---|
| 212 | REAL tpmax ! maximum acceptable t perturbation (degrees C) |
|---|
| 213 | PARAMETER (tpmax=1.50) |
|---|
| 214 | REAL shpmax ! maximum acceptable q perturbation (g/g) |
|---|
| 215 | PARAMETER (shpmax=1.50e-3) |
|---|
| 216 | REAL tiny ! arbitrary small num used in transport estimates |
|---|
| 217 | PARAMETER (tiny=1.0e-36) |
|---|
| 218 | REAL eps ! convergence criteria (machine dependent) |
|---|
| 219 | PARAMETER (eps=1.0e-13) |
|---|
| 220 | REAL tmelt ! freezing point of water(req'd for rain vs snow) |
|---|
| 221 | PARAMETER (tmelt=273.15) |
|---|
| 222 | REAL ssfac ! supersaturation bound (detrained air) |
|---|
| 223 | PARAMETER (ssfac=1.001) |
|---|
| 224 | C |
|---|
| 225 | C---------------------------Local workspace----------------------------- |
|---|
| 226 | REAL gam(klon,klev) ! L/cp (d(qsat)/dT) |
|---|
| 227 | REAL sb(klon,klev) ! dry static energy (s bar) |
|---|
| 228 | REAL hb(klon,klev) ! moist static energy (h bar) |
|---|
| 229 | REAL shbs(klon,klev) ! sat. specific humidity (sh bar star) |
|---|
| 230 | REAL hbs(klon,klev) ! sat. moist static energy (h bar star) |
|---|
| 231 | REAL shbh(klon,klev+1) ! specific humidity on interfaces |
|---|
| 232 | REAL sbh(klon,klev+1) ! s bar on interfaces |
|---|
| 233 | REAL hbh(klon,klev+1) ! h bar on interfaces |
|---|
| 234 | REAL cmrh(klon,klev+1) ! interface constituent mixing ratio |
|---|
| 235 | REAL prec(klon) ! instantaneous total precipitation |
|---|
| 236 | REAL dzcld(klon) ! depth of convective layer (m) |
|---|
| 237 | REAL beta(klon) ! overshoot parameter (fraction) |
|---|
| 238 | REAL betamx ! local maximum on overshoot |
|---|
| 239 | REAL eta(klon) ! convective mass flux (kg/m^2 s) |
|---|
| 240 | REAL etagdt ! eta*grav*deltat |
|---|
| 241 | REAL cldwtr(klon) ! cloud water (mass) |
|---|
| 242 | REAL rnwtr(klon) ! rain water (mass) |
|---|
| 243 | REAL sc (klon) ! dry static energy ("in-cloud") |
|---|
| 244 | REAL shc (klon) ! specific humidity ("in-cloud") |
|---|
| 245 | REAL hc (klon) ! moist static energy ("in-cloud") |
|---|
| 246 | REAL cmrc(klon) ! constituent mix rat ("in-cloud") |
|---|
| 247 | REAL dq1(klon) ! shb convective change (lower lvl) |
|---|
| 248 | REAL dq2(klon) ! shb convective change (mid level) |
|---|
| 249 | REAL dq3(klon) ! shb convective change (upper lvl) |
|---|
| 250 | REAL ds1(klon) ! sb convective change (lower lvl) |
|---|
| 251 | REAL ds2(klon) ! sb convective change (mid level) |
|---|
| 252 | REAL ds3(klon) ! sb convective change (upper lvl) |
|---|
| 253 | REAL dcmr1(klon) ! cmrb convective change (lower lvl) |
|---|
| 254 | REAL dcmr2(klon) ! cmrb convective change (mid level) |
|---|
| 255 | REAL dcmr3(klon) ! cmrb convective change (upper lvl) |
|---|
| 256 | REAL flotab(klon) ! hc - hbs (mesure d'instabilite) |
|---|
| 257 | LOGICAL ldcum(klon) ! .true. si la convection existe |
|---|
| 258 | LOGICAL etagt0 ! true if eta > 0.0 |
|---|
| 259 | REAL dt ! current 2 delta-t (model time step) |
|---|
| 260 | REAL cats ! modified characteristic adj. time |
|---|
| 261 | REAL rdt ! 1./dt |
|---|
| 262 | REAL qprime ! modified specific humidity pert. |
|---|
| 263 | REAL tprime ! modified thermal perturbation |
|---|
| 264 | REAL pblhgt ! bounded pbl height (max[pblh,1m]) |
|---|
| 265 | REAL fac1 ! intermediate scratch variable |
|---|
| 266 | REAL shprme ! intermediate specific humidity pert. |
|---|
| 267 | REAL qsattp ! saturation mixing ratio for |
|---|
| 268 | C ! thermally perturbed PBL parcels |
|---|
| 269 | REAL dz ! local layer depth |
|---|
| 270 | REAL b1 ! bouyancy measure in detrainment lvl |
|---|
| 271 | REAL b2 ! bouyancy measure in condensation lvl |
|---|
| 272 | REAL g ! bounded vertical gradient of hb |
|---|
| 273 | REAL tmass ! total mass available for convective exchange |
|---|
| 274 | REAL denom ! intermediate scratch variable |
|---|
| 275 | REAL qtest1! used in negative q test (middle lvl) |
|---|
| 276 | REAL qtest2! used in negative q test (lower lvl) |
|---|
| 277 | REAL fslkp ! flux lw static energy (bot interface) |
|---|
| 278 | REAL fslkm ! flux lw static energy (top interface) |
|---|
| 279 | REAL fqlkp ! flux total water (bottom interface) |
|---|
| 280 | REAL fqlkm ! flux total water (top interface) |
|---|
| 281 | REAL botflx! bottom constituent mixing ratio flux |
|---|
| 282 | REAL topflx! top constituent mixing ratio flux |
|---|
| 283 | REAL efac1 ! ratio cmrb to convectively induced change (bot lvl) |
|---|
| 284 | REAL efac2 ! ratio cmrb to convectively induced change (mid lvl) |
|---|
| 285 | REAL efac3 ! ratio cmrb to convectively induced change (top lvl) |
|---|
| 286 | c |
|---|
| 287 | INTEGER i,k ! indices horizontal et vertical |
|---|
| 288 | INTEGER km1 ! k-1 (index offset) |
|---|
| 289 | INTEGER kp1 ! k+1 (index offset) |
|---|
| 290 | INTEGER m ! constituent index |
|---|
| 291 | INTEGER ktp ! temporary index used to track top |
|---|
| 292 | INTEGER is ! nombre de points a ajuster |
|---|
| 293 | C |
|---|
| 294 | REAL tmp1, tmp2, tmp3, tmp4 |
|---|
| 295 | REAL zx_t, zx_p, zx_q, zx_qs, zx_gam |
|---|
| 296 | REAL zcor, zdelta, zcvm5 |
|---|
| 297 | C |
|---|
| 298 | REAL qhalf, sh1, sh2, shbs1, shbs2 |
|---|
| 299 | #include "YOMCST.h" |
|---|
| 300 | #include "YOETHF.h" |
|---|
| 301 | #include "FCTTRE.h" |
|---|
| 302 | qhalf(sh1,sh2,shbs1,shbs2) = MIN(MAX(sh1,sh2), |
|---|
| 303 | $ (shbs2*sh1 + shbs1*sh2)/(shbs1+shbs2)) |
|---|
| 304 | C |
|---|
| 305 | C----------------------------------------------------------------------- |
|---|
| 306 | c pas de traceur pour l'instant |
|---|
| 307 | DO m = 1, pcnst |
|---|
| 308 | DO k = 1, klev |
|---|
| 309 | DO i = 1, klon |
|---|
| 310 | cmrb(i,k,m) = 0.0 |
|---|
| 311 | ENDDO |
|---|
| 312 | ENDDO |
|---|
| 313 | ENDDO |
|---|
| 314 | c |
|---|
| 315 | c Les perturbations de la couche limite sont zero pour l'instant |
|---|
| 316 | c |
|---|
| 317 | DO m = 1, pcnst |
|---|
| 318 | DO i = 1, klon |
|---|
| 319 | cmrp(i,m) = 0.0 |
|---|
| 320 | ENDDO |
|---|
| 321 | ENDDO |
|---|
| 322 | DO i = 1, klon |
|---|
| 323 | thtap(i) = 0.0 |
|---|
| 324 | shp(i) = 0.0 |
|---|
| 325 | pblh(i) = 1.0 |
|---|
| 326 | ENDDO |
|---|
| 327 | C |
|---|
| 328 | C Ensure that characteristic adjustment time scale (cmftau) assumed |
|---|
| 329 | C in estimate of eta isn't smaller than model time scale (deltat) |
|---|
| 330 | C |
|---|
| 331 | dt = deltat |
|---|
| 332 | cats = MAX(dt,cmftau) |
|---|
| 333 | rdt = 1.0/dt |
|---|
| 334 | C |
|---|
| 335 | C Compute sb,hb,shbs,hbs |
|---|
| 336 | C |
|---|
| 337 | DO k = 1, klev |
|---|
| 338 | DO i = 1, klon |
|---|
| 339 | zx_t = tb(i,k) |
|---|
| 340 | zx_p = p(i,k) |
|---|
| 341 | zx_q = shb(i,k) |
|---|
| 342 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
|---|
| 343 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
|---|
| 344 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
|---|
| 345 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
|---|
| 346 | zx_qs=MIN(0.5,zx_qs) |
|---|
| 347 | zcor=1./(1.-retv*zx_qs) |
|---|
| 348 | zx_qs=zx_qs*zcor |
|---|
| 349 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
|---|
| 350 | shbs(i,k) = zx_qs |
|---|
| 351 | gam(i,k) = zx_gam |
|---|
| 352 | ENDDO |
|---|
| 353 | ENDDO |
|---|
| 354 | C |
|---|
| 355 | DO k=limcnv,klev |
|---|
| 356 | DO i=1,klon |
|---|
| 357 | sb (i,k) = RCPD*tb(i,k) + gz(i,k) |
|---|
| 358 | hb (i,k) = sb(i,k) + RLVTT*shb(i,k) |
|---|
| 359 | hbs(i,k) = sb(i,k) + RLVTT*shbs(i,k) |
|---|
| 360 | ENDDO |
|---|
| 361 | ENDDO |
|---|
| 362 | C |
|---|
| 363 | C Compute sbh, shbh |
|---|
| 364 | C |
|---|
| 365 | DO k=limcnv+1,klev |
|---|
| 366 | km1 = k - 1 |
|---|
| 367 | DO i=1,klon |
|---|
| 368 | sbh (i,k) =0.5*(sb(i,km1) + sb(i,k)) |
|---|
| 369 | shbh(i,k) =qhalf(shb(i,km1),shb(i,k),shbs(i,km1),shbs(i,k)) |
|---|
| 370 | hbh (i,k) =sbh(i,k) + RLVTT*shbh(i,k) |
|---|
| 371 | ENDDO |
|---|
| 372 | ENDDO |
|---|
| 373 | C |
|---|
| 374 | C Specify properties at top of model (not used, but filling anyway) |
|---|
| 375 | C |
|---|
| 376 | DO i=1,klon |
|---|
| 377 | sbh (i,limcnv) = sb(i,limcnv) |
|---|
| 378 | shbh(i,limcnv) = shb(i,limcnv) |
|---|
| 379 | hbh (i,limcnv) = hb(i,limcnv) |
|---|
| 380 | ENDDO |
|---|
| 381 | C |
|---|
| 382 | C Zero vertically independent control, tendency & diagnostic arrays |
|---|
| 383 | C |
|---|
| 384 | DO i=1,klon |
|---|
| 385 | prec(i) = 0.0 |
|---|
| 386 | dzcld(i) = 0.0 |
|---|
| 387 | cnb(i) = 0 |
|---|
| 388 | cnt(i) = klev+1 |
|---|
| 389 | ENDDO |
|---|
| 390 | |
|---|
| 391 | DO k = 1, klev |
|---|
| 392 | DO i = 1,klon |
|---|
| 393 | cmfdt(i,k) = 0. |
|---|
| 394 | cmfdq(i,k) = 0. |
|---|
| 395 | cmfdqr(i,k) = 0. |
|---|
| 396 | cmfmc(i,k) = 0. |
|---|
| 397 | cmfsl(i,k) = 0. |
|---|
| 398 | cmflq(i,k) = 0. |
|---|
| 399 | ENDDO |
|---|
| 400 | ENDDO |
|---|
| 401 | C |
|---|
| 402 | C Begin moist convective mass flux adjustment procedure. |
|---|
| 403 | C Formalism ensures that negative cloud liquid water can never occur |
|---|
| 404 | C |
|---|
| 405 | DO 70 k=klev-1,limcnv+1,-1 |
|---|
| 406 | km1 = k - 1 |
|---|
| 407 | kp1 = k + 1 |
|---|
| 408 | DO 10 i=1,klon |
|---|
| 409 | eta (i) = 0.0 |
|---|
| 410 | beta (i) = 0.0 |
|---|
| 411 | ds1 (i) = 0.0 |
|---|
| 412 | ds2 (i) = 0.0 |
|---|
| 413 | ds3 (i) = 0.0 |
|---|
| 414 | dq1 (i) = 0.0 |
|---|
| 415 | dq2 (i) = 0.0 |
|---|
| 416 | dq3 (i) = 0.0 |
|---|
| 417 | C |
|---|
| 418 | C Specification of "cloud base" conditions |
|---|
| 419 | C |
|---|
| 420 | qprime = 0.0 |
|---|
| 421 | tprime = 0.0 |
|---|
| 422 | C |
|---|
| 423 | C Assign tprime within the PBL to be proportional to the quantity |
|---|
| 424 | C thtap (which will be bounded by tpmax), passed to this routine by |
|---|
| 425 | C the PBL routine. Don't allow perturbation to produce a dry |
|---|
| 426 | C adiabatically unstable parcel. Assign qprime within the PBL to be |
|---|
| 427 | C an appropriately modified value of the quantity shp (which will be |
|---|
| 428 | C bounded by shpmax) passed to this routine by the PBL routine. The |
|---|
| 429 | C quantity qprime should be less than the local saturation value |
|---|
| 430 | C (qsattp=qsat[t+tprime,p]). In both cases, thtap and shp are |
|---|
| 431 | C linearly reduced toward zero as the PBL top is approached. |
|---|
| 432 | C |
|---|
| 433 | pblhgt = MAX(pblh(i),1.0) |
|---|
| 434 | IF (gz(i,kp1)/RG.LE.pblhgt .AND. dzcld(i).EQ.0.0) THEN |
|---|
| 435 | fac1 = MAX(0.0,1.0-gz(i,kp1)/RG/pblhgt) |
|---|
| 436 | tprime = MIN(thtap(i),tpmax)*fac1 |
|---|
| 437 | qsattp = shbs(i,kp1) + RCPD/RLVTT*gam(i,kp1)*tprime |
|---|
| 438 | shprme = MIN(MIN(shp(i),shpmax)*fac1, |
|---|
| 439 | $ MAX(qsattp-shb(i,kp1),0.0)) |
|---|
| 440 | qprime = MAX(qprime,shprme) |
|---|
| 441 | ELSE |
|---|
| 442 | tprime = 0.0 |
|---|
| 443 | qprime = 0.0 |
|---|
| 444 | ENDIF |
|---|
| 445 | C |
|---|
| 446 | C Specify "updraft" (in-cloud) thermodynamic properties |
|---|
| 447 | C |
|---|
| 448 | sc (i) = sb (i,kp1) + RCPD*tprime |
|---|
| 449 | shc(i) = shb(i,kp1) + qprime |
|---|
| 450 | hc (i) = sc (i ) + RLVTT*shc(i) |
|---|
| 451 | flotab(i) = hc(i) - hbs(i,k) |
|---|
| 452 | dz = dp(i,k)*RD*tb(i,k)/RG/p(i,k) |
|---|
| 453 | IF (flotab(i).gt.0.0) THEN |
|---|
| 454 | dzcld(i) = dzcld(i) + dz |
|---|
| 455 | ELSE |
|---|
| 456 | dzcld(i) = 0.0 |
|---|
| 457 | ENDIF |
|---|
| 458 | 10 CONTINUE |
|---|
| 459 | C |
|---|
| 460 | C Check on moist convective instability |
|---|
| 461 | C |
|---|
| 462 | is = 0 |
|---|
| 463 | DO i = 1, klon |
|---|
| 464 | IF (flotab(i).GT.0.0) THEN |
|---|
| 465 | ldcum(i) = .TRUE. |
|---|
| 466 | is = is + 1 |
|---|
| 467 | ELSE |
|---|
| 468 | ldcum(i) = .FALSE. |
|---|
| 469 | ENDIF |
|---|
| 470 | ENDDO |
|---|
| 471 | C |
|---|
| 472 | IF (is.EQ.0) THEN |
|---|
| 473 | DO i=1,klon |
|---|
| 474 | dzcld(i) = 0.0 |
|---|
| 475 | ENDDO |
|---|
| 476 | GOTO 70 |
|---|
| 477 | ENDIF |
|---|
| 478 | C |
|---|
| 479 | C Current level just below top level => no overshoot |
|---|
| 480 | C |
|---|
| 481 | IF (k.le.limcnv+1) THEN |
|---|
| 482 | DO i=1,klon |
|---|
| 483 | IF (ldcum(i)) THEN |
|---|
| 484 | cldwtr(i) = sb(i,k)-sc(i)+flotab(i)/(1.0+gam(i,k)) |
|---|
| 485 | cldwtr(i) = MAX(0.0,cldwtr(i)) |
|---|
| 486 | beta(i) = 0.0 |
|---|
| 487 | ENDIF |
|---|
| 488 | ENDDO |
|---|
| 489 | GOTO 20 |
|---|
| 490 | ENDIF |
|---|
| 491 | C |
|---|
| 492 | C First guess at overshoot parameter using crude buoyancy closure |
|---|
| 493 | C 10% overshoot assumed as a minimum and 1-c0*dz maximum to start |
|---|
| 494 | C If pre-existing supersaturation in detrainment layer, beta=0 |
|---|
| 495 | C cldwtr is temporarily equal to RLVTT*l (l=> liquid water) |
|---|
| 496 | C |
|---|
| 497 | DO i=1,klon |
|---|
| 498 | IF (ldcum(i)) THEN |
|---|
| 499 | cldwtr(i) = sb(i,k)-sc(i)+flotab(i)/(1.0+gam(i,k)) |
|---|
| 500 | cldwtr(i) = MAX(0.0,cldwtr(i)) |
|---|
| 501 | betamx = 1.0 - c0*MAX(0.0,(dzcld(i)-dzmin)) |
|---|
| 502 | b1 = (hc(i) - hbs(i,km1))*dp(i,km1) |
|---|
| 503 | b2 = (hc(i) - hbs(i,k ))*dp(i,k ) |
|---|
| 504 | beta(i) = MAX(betamn,MIN(betamx, 1.0+b1/b2)) |
|---|
| 505 | IF (hbs(i,km1).le.hb(i,km1)) beta(i) = 0.0 |
|---|
| 506 | ENDIF |
|---|
| 507 | ENDDO |
|---|
| 508 | C |
|---|
| 509 | C Bound maximum beta to ensure physically realistic solutions |
|---|
| 510 | C |
|---|
| 511 | C First check constrains beta so that eta remains positive |
|---|
| 512 | C (assuming that eta is already positive for beta equal zero) |
|---|
| 513 | c La premiere contrainte de beta est que le flux eta doit etre positif. |
|---|
| 514 | C |
|---|
| 515 | DO i=1,klon |
|---|
| 516 | IF (ldcum(i)) THEN |
|---|
| 517 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
|---|
| 518 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
|---|
| 519 | tmp2 = (1.0+gam(i,k))*(sc(i)-sbh(i,k)) |
|---|
| 520 | IF ((beta(i)*tmp2-tmp1).GT.0.0) THEN |
|---|
| 521 | betamx = 0.99*(tmp1/tmp2) |
|---|
| 522 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
|---|
| 523 | ENDIF |
|---|
| 524 | C |
|---|
| 525 | C Second check involves supersaturation of "detrainment layer" |
|---|
| 526 | C small amount of supersaturation acceptable (by ssfac factor) |
|---|
| 527 | c La 2e contrainte est que la convection ne doit pas sursaturer |
|---|
| 528 | c la "detrainment layer", Neanmoins, une petite sursaturation |
|---|
| 529 | c est acceptee (facteur ssfac). |
|---|
| 530 | C |
|---|
| 531 | IF (hb(i,km1).lt.hbs(i,km1)) THEN |
|---|
| 532 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
|---|
| 533 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
|---|
| 534 | tmp1 = tmp1/dp(i,k) |
|---|
| 535 | tmp2 = gam(i,km1)*(sbh(i,k)-sc(i) + cldwtr(i)) - |
|---|
| 536 | $ hbh(i,k) + hc(i) - sc(i) + sbh(i,k) |
|---|
| 537 | tmp3 = (1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i,k) |
|---|
| 538 | tmp4 = (dt/cats)*(hc(i)-hbs(i,k))*tmp2 |
|---|
| 539 | $ / (dp(i,km1)*(hbs(i,km1)-hb(i,km1))) + tmp3 |
|---|
| 540 | IF ((beta(i)*tmp4-tmp1).GT.0.0) THEN |
|---|
| 541 | betamx = ssfac*(tmp1/tmp4) |
|---|
| 542 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
|---|
| 543 | ENDIF |
|---|
| 544 | ELSE |
|---|
| 545 | beta(i) = 0.0 |
|---|
| 546 | ENDIF |
|---|
| 547 | C |
|---|
| 548 | C Third check to avoid introducing 2 delta x thermodynamic |
|---|
| 549 | C noise in the vertical ... constrain adjusted h (or theta e) |
|---|
| 550 | C so that the adjustment doesn't contribute to "kinks" in h |
|---|
| 551 | C |
|---|
| 552 | g = MIN(0.0,hb(i,k)-hb(i,km1)) |
|---|
| 553 | tmp3 = (hb(i,k)-hb(i,km1)-g)*(cats/dt) / (hc(i)-hbs(i,k)) |
|---|
| 554 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
|---|
| 555 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
|---|
| 556 | tmp1 = tmp1/dp(i,k) |
|---|
| 557 | tmp1 = tmp3*tmp1 + (hc(i) - hbh(i,kp1))/dp(i,k) |
|---|
| 558 | tmp2 = tmp3*(1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i,k) |
|---|
| 559 | $ + (hc(i)-hbh(i,k)-cldwtr(i)) |
|---|
| 560 | $ *(1.0/dp(i,k)+1.0/dp(i,kp1)) |
|---|
| 561 | IF ((beta(i)*tmp2-tmp1).GT.0.0) THEN |
|---|
| 562 | betamx = 0.0 |
|---|
| 563 | IF (tmp2.NE.0.0) betamx = tmp1/tmp2 |
|---|
| 564 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
|---|
| 565 | ENDIF |
|---|
| 566 | ENDIF |
|---|
| 567 | ENDDO |
|---|
| 568 | C |
|---|
| 569 | C Calculate mass flux required for stabilization. |
|---|
| 570 | C |
|---|
| 571 | C Ensure that the convective mass flux, eta, is positive by |
|---|
| 572 | C setting negative values of eta to zero.. |
|---|
| 573 | C Ensure that estimated mass flux cannot move more than the |
|---|
| 574 | C minimum of total mass contained in either layer k or layer k+1. |
|---|
| 575 | C Also test for other pathological cases that result in non- |
|---|
| 576 | C physical states and adjust eta accordingly. |
|---|
| 577 | C |
|---|
| 578 | 20 CONTINUE |
|---|
| 579 | DO i=1,klon |
|---|
| 580 | IF (ldcum(i)) THEN |
|---|
| 581 | beta(i) = MAX(0.0,beta(i)) |
|---|
| 582 | tmp1 = hc(i) - hbs(i,k) |
|---|
| 583 | tmp2 = ((1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i)) - |
|---|
| 584 | $ beta(i)*(1.0+gam(i,k))*(sc(i)-sbh(i,k)))/dp(i,k) - |
|---|
| 585 | $ (hbh(i,kp1)-hc(i))/dp(i,kp1) |
|---|
| 586 | eta(i) = tmp1/(tmp2*RG*cats) |
|---|
| 587 | tmass = MIN(dp(i,k),dp(i,kp1))/RG |
|---|
| 588 | IF (eta(i).GT.tmass*rdt .OR. eta(i).LE.0.0) eta(i) = 0.0 |
|---|
| 589 | C |
|---|
| 590 | C Check on negative q in top layer (bound beta) |
|---|
| 591 | C |
|---|
| 592 | IF(shc(i)-shbh(i,k).LT.0.0 .AND. beta(i)*eta(i).NE.0.0)THEN |
|---|
| 593 | denom = eta(i)*RG*dt*(shc(i) - shbh(i,k))/dp(i,km1) |
|---|
| 594 | beta(i) = MAX(0.0,MIN(-0.999*shb(i,km1)/denom,beta(i))) |
|---|
| 595 | ENDIF |
|---|
| 596 | C |
|---|
| 597 | C Check on negative q in middle layer (zero eta) |
|---|
| 598 | C |
|---|
| 599 | qtest1 = shb(i,k) + eta(i)*RG*dt*((shc(i) - shbh(i,kp1)) - |
|---|
| 600 | $ (1.0 - beta(i))*cldwtr(i)/RLVTT - |
|---|
| 601 | $ beta(i)*(shc(i) - shbh(i,k)))/dp(i,k) |
|---|
| 602 | IF (qtest1.le.0.0) eta(i) = 0.0 |
|---|
| 603 | C |
|---|
| 604 | C Check on negative q in lower layer (bound eta) |
|---|
| 605 | C |
|---|
| 606 | fac1 = -(shbh(i,kp1) - shc(i))/dp(i,kp1) |
|---|
| 607 | qtest2 = shb(i,kp1) - eta(i)*RG*dt*fac1 |
|---|
| 608 | IF (qtest2 .lt. 0.0) THEN |
|---|
| 609 | eta(i) = 0.99*shb(i,kp1)/(RG*dt*fac1) |
|---|
| 610 | ENDIF |
|---|
| 611 | ENDIF |
|---|
| 612 | ENDDO |
|---|
| 613 | C |
|---|
| 614 | C |
|---|
| 615 | C Calculate cloud water, rain water, and thermodynamic changes |
|---|
| 616 | C |
|---|
| 617 | DO 30 i=1,klon |
|---|
| 618 | IF (ldcum(i)) THEN |
|---|
| 619 | etagdt = eta(i)*RG*dt |
|---|
| 620 | cldwtr(i) = etagdt*cldwtr(i)/RLVTT/RG |
|---|
| 621 | rnwtr(i) = (1.0 - beta(i))*cldwtr(i) |
|---|
| 622 | ds1(i) = etagdt*(sbh(i,kp1) - sc(i))/dp(i,kp1) |
|---|
| 623 | dq1(i) = etagdt*(shbh(i,kp1) - shc(i))/dp(i,kp1) |
|---|
| 624 | ds2(i) = (etagdt*(sc(i) - sbh(i,kp1)) + |
|---|
| 625 | $ RLVTT*RG*cldwtr(i) - beta(i)*etagdt* |
|---|
| 626 | $ (sc(i) - sbh(i,k)))/dp(i,k) |
|---|
| 627 | dq2(i) = (etagdt*(shc(i) - shbh(i,kp1)) - |
|---|
| 628 | $ RG*rnwtr(i) - beta(i)*etagdt* |
|---|
| 629 | $ (shc(i) - shbh(i,k)))/dp(i,k) |
|---|
| 630 | ds3(i) = beta(i)*(etagdt*(sc(i) - sbh(i,k)) - |
|---|
| 631 | $ RLVTT*RG*cldwtr(i))/dp(i,km1) |
|---|
| 632 | dq3(i) = beta(i)*etagdt*(shc(i) - shbh(i,k))/dp(i,km1) |
|---|
| 633 | C |
|---|
| 634 | C Isolate convective fluxes for later diagnostics |
|---|
| 635 | C |
|---|
| 636 | fslkp = eta(i)*(sc(i) - sbh(i,kp1)) |
|---|
| 637 | fslkm = beta(i)*(eta(i)*(sc(i) - sbh(i,k)) - |
|---|
| 638 | $ RLVTT*cldwtr(i)*rdt) |
|---|
| 639 | fqlkp = eta(i)*(shc(i) - shbh(i,kp1)) |
|---|
| 640 | fqlkm = beta(i)*eta(i)*(shc(i) - shbh(i,k)) |
|---|
| 641 | C |
|---|
| 642 | C |
|---|
| 643 | C Update thermodynamic profile (update sb, hb, & hbs later) |
|---|
| 644 | C |
|---|
| 645 | tb (i,kp1) = tb(i,kp1) + ds1(i) / RCPD |
|---|
| 646 | tb (i,k ) = tb(i,k ) + ds2(i) / RCPD |
|---|
| 647 | tb (i,km1) = tb(i,km1) + ds3(i) / RCPD |
|---|
| 648 | shb(i,kp1) = shb(i,kp1) + dq1(i) |
|---|
| 649 | shb(i,k ) = shb(i,k ) + dq2(i) |
|---|
| 650 | shb(i,km1) = shb(i,km1) + dq3(i) |
|---|
| 651 | prec(i) = prec(i) + rnwtr(i)/rhoh2o |
|---|
| 652 | C |
|---|
| 653 | C Update diagnostic information for final budget |
|---|
| 654 | C Tracking temperature & specific humidity tendencies, |
|---|
| 655 | C rainout term, convective mass flux, convective liquid |
|---|
| 656 | C water static energy flux, and convective total water flux |
|---|
| 657 | C |
|---|
| 658 | cmfdt (i,kp1) = cmfdt (i,kp1) + ds1(i)/RCPD*rdt |
|---|
| 659 | cmfdt (i,k ) = cmfdt (i,k ) + ds2(i)/RCPD*rdt |
|---|
| 660 | cmfdt (i,km1) = cmfdt (i,km1) + ds3(i)/RCPD*rdt |
|---|
| 661 | cmfdq (i,kp1) = cmfdq (i,kp1) + dq1(i)*rdt |
|---|
| 662 | cmfdq (i,k ) = cmfdq (i,k ) + dq2(i)*rdt |
|---|
| 663 | cmfdq (i,km1) = cmfdq (i,km1) + dq3(i)*rdt |
|---|
| 664 | cmfdqr(i,k ) = cmfdqr(i,k ) + (RG*rnwtr(i)/dp(i,k))*rdt |
|---|
| 665 | cmfmc (i,kp1) = cmfmc (i,kp1) + eta(i) |
|---|
| 666 | cmfmc (i,k ) = cmfmc (i,k ) + beta(i)*eta(i) |
|---|
| 667 | cmfsl (i,kp1) = cmfsl (i,kp1) + fslkp |
|---|
| 668 | cmfsl (i,k ) = cmfsl (i,k ) + fslkm |
|---|
| 669 | cmflq (i,kp1) = cmflq (i,kp1) + RLVTT*fqlkp |
|---|
| 670 | cmflq (i,k ) = cmflq (i,k ) + RLVTT*fqlkm |
|---|
| 671 | qc (i,k ) = (RG*rnwtr(i)/dp(i,k))*rdt |
|---|
| 672 | ENDIF |
|---|
| 673 | 30 CONTINUE |
|---|
| 674 | C |
|---|
| 675 | C Next, convectively modify passive constituents |
|---|
| 676 | C |
|---|
| 677 | DO 50 m=1,pcnst |
|---|
| 678 | DO 40 i=1,klon |
|---|
| 679 | IF (ldcum(i)) THEN |
|---|
| 680 | C |
|---|
| 681 | C If any of the reported values of the constituent is negative in |
|---|
| 682 | C the three adjacent levels, nothing will be done to the profile |
|---|
| 683 | C |
|---|
| 684 | IF ((cmrb(i,kp1,m).LT.0.0) .OR. |
|---|
| 685 | $ (cmrb(i,k,m).LT.0.0) .OR. |
|---|
| 686 | $ (cmrb(i,km1,m).LT.0.0)) GOTO 40 |
|---|
| 687 | C |
|---|
| 688 | C Specify constituent interface values (linear interpolation) |
|---|
| 689 | C |
|---|
| 690 | cmrh(i,k ) = 0.5*(cmrb(i,km1,m) + cmrb(i,k ,m)) |
|---|
| 691 | cmrh(i,kp1) = 0.5*(cmrb(i,k ,m) + cmrb(i,kp1,m)) |
|---|
| 692 | C |
|---|
| 693 | C Specify perturbation properties of constituents in PBL |
|---|
| 694 | C |
|---|
| 695 | pblhgt = MAX(pblh(i),1.0) |
|---|
| 696 | IF (gz(i,kp1)/RG.LE.pblhgt .AND. dzcld(i).EQ.0.) THEN |
|---|
| 697 | fac1 = MAX(0.0,1.0-gz(i,kp1)/RG/pblhgt) |
|---|
| 698 | cmrc(i) = cmrb(i,kp1,m) + cmrp(i,m)*fac1 |
|---|
| 699 | ELSE |
|---|
| 700 | cmrc(i) = cmrb(i,kp1,m) |
|---|
| 701 | ENDIF |
|---|
| 702 | C |
|---|
| 703 | C Determine fluxes, flux divergence => changes due to convection |
|---|
| 704 | C Logic must be included to avoid producing negative values. A bit |
|---|
| 705 | C messy since there are no a priori assumptions about profiles. |
|---|
| 706 | C Tendency is modified (reduced) when pending disaster detected. |
|---|
| 707 | C |
|---|
| 708 | etagdt = eta(i)*RG*dt |
|---|
| 709 | botflx = etagdt*(cmrc(i) - cmrh(i,kp1)) |
|---|
| 710 | topflx = beta(i)*etagdt*(cmrc(i)-cmrh(i,k)) |
|---|
| 711 | dcmr1(i) = -botflx/dp(i,kp1) |
|---|
| 712 | efac1 = 1.0 |
|---|
| 713 | efac2 = 1.0 |
|---|
| 714 | efac3 = 1.0 |
|---|
| 715 | C |
|---|
| 716 | IF (cmrb(i,kp1,m)+dcmr1(i) .LT. 0.0) THEN |
|---|
| 717 | efac1 = MAX(tiny,ABS(cmrb(i,kp1,m)/dcmr1(i)) - eps) |
|---|
| 718 | ENDIF |
|---|
| 719 | C |
|---|
| 720 | IF (efac1.EQ.tiny .OR. efac1.GT.1.0) efac1 = 0.0 |
|---|
| 721 | dcmr1(i) = -efac1*botflx/dp(i,kp1) |
|---|
| 722 | dcmr2(i) = (efac1*botflx - topflx)/dp(i,k) |
|---|
| 723 | C |
|---|
| 724 | IF (cmrb(i,k,m)+dcmr2(i) .LT. 0.0) THEN |
|---|
| 725 | efac2 = MAX(tiny,ABS(cmrb(i,k ,m)/dcmr2(i)) - eps) |
|---|
| 726 | ENDIF |
|---|
| 727 | C |
|---|
| 728 | IF (efac2.EQ.tiny .OR. efac2.GT.1.0) efac2 = 0.0 |
|---|
| 729 | dcmr2(i) = (efac1*botflx - efac2*topflx)/dp(i,k) |
|---|
| 730 | dcmr3(i) = efac2*topflx/dp(i,km1) |
|---|
| 731 | C |
|---|
| 732 | IF (cmrb(i,km1,m)+dcmr3(i) .LT. 0.0) THEN |
|---|
| 733 | efac3 = MAX(tiny,ABS(cmrb(i,km1,m)/dcmr3(i)) - eps) |
|---|
| 734 | ENDIF |
|---|
| 735 | C |
|---|
| 736 | IF (efac3.EQ.tiny .OR. efac3.GT.1.0) efac3 = 0.0 |
|---|
| 737 | efac3 = MIN(efac2,efac3) |
|---|
| 738 | dcmr2(i) = (efac1*botflx - efac3*topflx)/dp(i,k) |
|---|
| 739 | dcmr3(i) = efac3*topflx/dp(i,km1) |
|---|
| 740 | C |
|---|
| 741 | cmrb(i,kp1,m) = cmrb(i,kp1,m) + dcmr1(i) |
|---|
| 742 | cmrb(i,k ,m) = cmrb(i,k ,m) + dcmr2(i) |
|---|
| 743 | cmrb(i,km1,m) = cmrb(i,km1,m) + dcmr3(i) |
|---|
| 744 | ENDIF |
|---|
| 745 | 40 CONTINUE |
|---|
| 746 | 50 CONTINUE ! end of m=1,pcnst loop |
|---|
| 747 | C |
|---|
| 748 | IF (k.EQ.limcnv+1) GOTO 60 ! on ne pourra plus glisser |
|---|
| 749 | c |
|---|
| 750 | c Dans la procedure de glissage ascendant, les variables thermo- |
|---|
| 751 | c dynamiques des couches k et km1 servent au calcul des couches |
|---|
| 752 | c superieures. Elles ont donc besoin d'une mise-a-jour. |
|---|
| 753 | C |
|---|
| 754 | DO i = 1, klon |
|---|
| 755 | IF (ldcum(i)) THEN |
|---|
| 756 | zx_t = tb(i,k) |
|---|
| 757 | zx_p = p(i,k) |
|---|
| 758 | zx_q = shb(i,k) |
|---|
| 759 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
|---|
| 760 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
|---|
| 761 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
|---|
| 762 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
|---|
| 763 | zx_qs=MIN(0.5,zx_qs) |
|---|
| 764 | zcor=1./(1.-retv*zx_qs) |
|---|
| 765 | zx_qs=zx_qs*zcor |
|---|
| 766 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
|---|
| 767 | shbs(i,k) = zx_qs |
|---|
| 768 | gam(i,k) = zx_gam |
|---|
| 769 | c |
|---|
| 770 | zx_t = tb(i,km1) |
|---|
| 771 | zx_p = p(i,km1) |
|---|
| 772 | zx_q = shb(i,km1) |
|---|
| 773 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
|---|
| 774 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
|---|
| 775 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
|---|
| 776 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
|---|
| 777 | zx_qs=MIN(0.5,zx_qs) |
|---|
| 778 | zcor=1./(1.-retv*zx_qs) |
|---|
| 779 | zx_qs=zx_qs*zcor |
|---|
| 780 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
|---|
| 781 | shbs(i,km1) = zx_qs |
|---|
| 782 | gam(i,km1) = zx_gam |
|---|
| 783 | C |
|---|
| 784 | sb (i,k ) = sb(i,k ) + ds2(i) |
|---|
| 785 | sb (i,km1) = sb(i,km1) + ds3(i) |
|---|
| 786 | hb (i,k ) = sb(i,k ) + RLVTT*shb(i,k) |
|---|
| 787 | hb (i,km1) = sb(i,km1) + RLVTT*shb(i,km1) |
|---|
| 788 | hbs(i,k ) = sb(i,k ) + RLVTT*shbs(i,k ) |
|---|
| 789 | hbs(i,km1) = sb(i,km1) + RLVTT*shbs(i,km1) |
|---|
| 790 | C |
|---|
| 791 | sbh (i,k) = 0.5*(sb(i,k) + sb(i,km1)) |
|---|
| 792 | shbh(i,k) = qhalf(shb(i,km1),shb(i,k) |
|---|
| 793 | $ ,shbs(i,km1),shbs(i,k)) |
|---|
| 794 | hbh (i,k) = sbh(i,k) + RLVTT*shbh(i,k) |
|---|
| 795 | sbh (i,km1) = 0.5*(sb(i,km1) + sb(i,k-2)) |
|---|
| 796 | shbh(i,km1) = qhalf(shb(i,k-2),shb(i,km1), |
|---|
| 797 | $ shbs(i,k-2),shbs(i,km1)) |
|---|
| 798 | hbh (i,km1) = sbh(i,km1) + RLVTT*shbh(i,km1) |
|---|
| 799 | ENDIF |
|---|
| 800 | ENDDO |
|---|
| 801 | C |
|---|
| 802 | C Ensure that dzcld is reset if convective mass flux zero |
|---|
| 803 | C specify the current vertical extent of the convective activity |
|---|
| 804 | C top of convective layer determined by size of overshoot param. |
|---|
| 805 | C |
|---|
| 806 | 60 CONTINUE |
|---|
| 807 | DO i=1,klon |
|---|
| 808 | etagt0 = eta(i).gt.0.0 |
|---|
| 809 | IF (.not.etagt0) dzcld(i) = 0.0 |
|---|
| 810 | IF (etagt0 .and. beta(i).gt.betamn) THEN |
|---|
| 811 | ktp = km1 |
|---|
| 812 | ELSE |
|---|
| 813 | ktp = k |
|---|
| 814 | ENDIF |
|---|
| 815 | IF (etagt0) THEN |
|---|
| 816 | cnt(i) = MIN(cnt(i),ktp) |
|---|
| 817 | cnb(i) = MAX(cnb(i),k) |
|---|
| 818 | ENDIF |
|---|
| 819 | ENDDO |
|---|
| 820 | 70 CONTINUE ! end of k loop |
|---|
| 821 | C |
|---|
| 822 | C determine whether precipitation, prec, is frozen (snow) or not |
|---|
| 823 | C |
|---|
| 824 | DO i=1,klon |
|---|
| 825 | IF (tb(i,klev).LT.tmelt .AND. tb(i,klev-1).lt.tmelt) THEN |
|---|
| 826 | cmfprs(i) = prec(i)*rdt |
|---|
| 827 | ELSE |
|---|
| 828 | cmfprt(i) = prec(i)*rdt |
|---|
| 829 | ENDIF |
|---|
| 830 | ENDDO |
|---|
| 831 | C |
|---|
| 832 | RETURN ! we're all done ... return to calling procedure |
|---|
| 833 | END |
|---|