| 1 | c |
|---|
| 2 | c $Header$ |
|---|
| 3 | c |
|---|
| 4 | |
|---|
| 5 | SUBROUTINE clmain(dtime,itap,date0,pctsrf, |
|---|
| 6 | . t,q,u,v, |
|---|
| 7 | . jour, rmu0, |
|---|
| 8 | . ok_veget, ocean, npas, nexca, ts, |
|---|
| 9 | . soil_model,ftsoil, |
|---|
| 10 | . paprs,pplay,radsol,snow,qsol,evap,albe,fluxlat, |
|---|
| 11 | . rain_f, snow_f, solsw, sollw, sollwdown, fder, |
|---|
| 12 | . rlon, rlat, cufi, cvfi, rugos, |
|---|
| 13 | . debut, lafin, agesno,rugoro, |
|---|
| 14 | . d_t,d_q,d_u,d_v,d_ts, |
|---|
| 15 | . flux_t,flux_q,flux_u,flux_v,cdragh,cdragm, |
|---|
| 16 | . dflux_t,dflux_q, |
|---|
| 17 | . zcoefh,zu1,zv1) |
|---|
| 18 | cAA . itr, tr, flux_surf, d_tr) |
|---|
| 19 | cAA REM: |
|---|
| 20 | cAA----- |
|---|
| 21 | cAA Tout ce qui a trait au traceurs est dans phytrac maintenant |
|---|
| 22 | cAA pour l'instant le calcul de la couche limite pour les traceurs |
|---|
| 23 | cAA se fait avec cltrac et ne tient pas compte de la differentiation |
|---|
| 24 | cAA des sous-fraction de sol. |
|---|
| 25 | cAA REM bis : |
|---|
| 26 | cAA---------- |
|---|
| 27 | cAA Pour pouvoir extraire les coefficient d'echanges et le vent |
|---|
| 28 | cAA dans la premiere couche, 3 champs supplementaires ont ete crees |
|---|
| 29 | cAA zcoefh,zu1 et zv1. Pour l'instant nous avons moyenne les valeurs |
|---|
| 30 | cAA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir |
|---|
| 31 | cAA si les informations des subsurfaces doivent etre prises en compte |
|---|
| 32 | cAA il faudra sortir ces memes champs en leur ajoutant une dimension, |
|---|
| 33 | cAA c'est a dire nbsrf (nbre de subsurface). |
|---|
| 34 | USE ioipsl |
|---|
| 35 | USE interface_surf |
|---|
| 36 | IMPLICIT none |
|---|
| 37 | c====================================================================== |
|---|
| 38 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
|---|
| 39 | c Objet: interface de "couche limite" (diffusion verticale) |
|---|
| 40 | c Arguments: |
|---|
| 41 | c dtime----input-R- interval du temps (secondes) |
|---|
| 42 | c itap-----input-I- numero du pas de temps |
|---|
| 43 | c date0----input-R- jour initial |
|---|
| 44 | c t--------input-R- temperature (K) |
|---|
| 45 | c q--------input-R- vapeur d'eau (kg/kg) |
|---|
| 46 | c u--------input-R- vitesse u |
|---|
| 47 | c v--------input-R- vitesse v |
|---|
| 48 | c ts-------input-R- temperature du sol (en Kelvin) |
|---|
| 49 | c paprs----input-R- pression a intercouche (Pa) |
|---|
| 50 | c pplay----input-R- pression au milieu de couche (Pa) |
|---|
| 51 | c radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2 |
|---|
| 52 | c rlat-----input-R- latitude en degree |
|---|
| 53 | c rugos----input-R- longeur de rugosite (en m) |
|---|
| 54 | c cufi-----input-R- resolution des mailles en x (m) |
|---|
| 55 | c cvfi-----input-R- resolution des mailles en y (m) |
|---|
| 56 | c |
|---|
| 57 | c d_t------output-R- le changement pour "t" |
|---|
| 58 | c d_q------output-R- le changement pour "q" |
|---|
| 59 | c d_u------output-R- le changement pour "u" |
|---|
| 60 | c d_v------output-R- le changement pour "v" |
|---|
| 61 | c d_ts-----output-R- le changement pour "ts" |
|---|
| 62 | c flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) |
|---|
| 63 | c (orientation positive vers le bas) |
|---|
| 64 | c flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) |
|---|
| 65 | c flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal |
|---|
| 66 | c flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal |
|---|
| 67 | c dflux_t derive du flux sensible |
|---|
| 68 | c dflux_q derive du flux latent |
|---|
| 69 | cAA on rajoute en output yu1 et yv1 qui sont les vents dans |
|---|
| 70 | cAA la premiere couche |
|---|
| 71 | cAA ces 4 variables sont maintenant traites dans phytrac |
|---|
| 72 | c itr--------input-I- nombre de traceurs |
|---|
| 73 | c tr---------input-R- q. de traceurs |
|---|
| 74 | c flux_surf--input-R- flux de traceurs a la surface |
|---|
| 75 | c d_tr-------output-R tendance de traceurs |
|---|
| 76 | c====================================================================== |
|---|
| 77 | #include "dimensions.h" |
|---|
| 78 | #include "dimphy.h" |
|---|
| 79 | #include "indicesol.h" |
|---|
| 80 | c$$$ PB ajout pour soil |
|---|
| 81 | #include "dimsoil.h" |
|---|
| 82 | c |
|---|
| 83 | REAL dtime |
|---|
| 84 | real date0 |
|---|
| 85 | integer itap |
|---|
| 86 | REAL t(klon,klev), q(klon,klev) |
|---|
| 87 | REAL u(klon,klev), v(klon,klev) |
|---|
| 88 | REAL paprs(klon,klev+1), pplay(klon,klev), radsol(klon) |
|---|
| 89 | REAL rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
|---|
| 90 | REAL d_t(klon, klev), d_q(klon, klev) |
|---|
| 91 | REAL d_u(klon, klev), d_v(klon, klev) |
|---|
| 92 | REAL flux_t(klon,klev, nbsrf), flux_q(klon,klev, nbsrf) |
|---|
| 93 | REAL dflux_t(klon), dflux_q(klon) |
|---|
| 94 | REAL flux_u(klon,klev, nbsrf), flux_v(klon,klev, nbsrf) |
|---|
| 95 | REAL rugmer(klon), agesno(klon,nbsrf),rugoro(klon) |
|---|
| 96 | REAL cdragh(klon), cdragm(klon) |
|---|
| 97 | integer jour ! jour de l'annee en cours |
|---|
| 98 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
|---|
| 99 | LOGICAL debut, lafin, ok_veget |
|---|
| 100 | character*6 ocean |
|---|
| 101 | integer npas, nexca |
|---|
| 102 | cAA INTEGER itr |
|---|
| 103 | cAA REAL tr(klon,klev,nbtr) |
|---|
| 104 | cAA REAL d_tr(klon,klev,nbtr) |
|---|
| 105 | cAA REAL flux_surf(klon,nbtr) |
|---|
| 106 | c |
|---|
| 107 | REAL pctsrf(klon,nbsrf) |
|---|
| 108 | REAL ts(klon,nbsrf) |
|---|
| 109 | REAL d_ts(klon,nbsrf) |
|---|
| 110 | REAL snow(klon,nbsrf) |
|---|
| 111 | REAL qsol(klon,nbsrf) |
|---|
| 112 | REAL evap(klon,nbsrf) |
|---|
| 113 | REAL albe(klon,nbsrf) |
|---|
| 114 | c$$$ PB |
|---|
| 115 | REAL fluxlat(klon,nbsrf) |
|---|
| 116 | C |
|---|
| 117 | real rain_f(klon), snow_f(klon) |
|---|
| 118 | REAL fder(klon) |
|---|
| 119 | REAL sollw(klon), solsw(klon), sollwdown(klon) |
|---|
| 120 | REAL rugos(klon,nbsrf) |
|---|
| 121 | C la nouvelle repartition des surfaces sortie de l'interface |
|---|
| 122 | REAL pctsrf_new(klon,nbsrf) |
|---|
| 123 | cAA |
|---|
| 124 | REAL zcoefh(klon,klev) |
|---|
| 125 | REAL zu1(klon) |
|---|
| 126 | REAL zv1(klon) |
|---|
| 127 | cAA |
|---|
| 128 | c$$$ PB ajout pour soil |
|---|
| 129 | LOGICAL soil_model |
|---|
| 130 | REAL ftsoil(klon,nsoilmx,nbsrf) |
|---|
| 131 | REAL ytsoil(klon,nsoilmx) |
|---|
| 132 | c====================================================================== |
|---|
| 133 | EXTERNAL clqh, clvent, coefkz, calbeta, cltrac |
|---|
| 134 | c====================================================================== |
|---|
| 135 | REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) |
|---|
| 136 | REAL yalb(klon) |
|---|
| 137 | REAL yu1(klon), yv1(klon) |
|---|
| 138 | real ysnow(klon), yqsol(klon), yagesno(klon) |
|---|
| 139 | real yrain_f(klon), ysnow_f(klon) |
|---|
| 140 | real ysollw(klon), ysolsw(klon), ysollwdown(klon) |
|---|
| 141 | real yfder(klon), ytaux(klon), ytauy(klon) |
|---|
| 142 | REAL yrugm(klon), yrads(klon),yrugoro(klon) |
|---|
| 143 | c$$$ PB |
|---|
| 144 | REAL yfluxlat(klon) |
|---|
| 145 | C |
|---|
| 146 | REAL y_d_ts(klon) |
|---|
| 147 | REAL y_d_t(klon, klev), y_d_q(klon, klev) |
|---|
| 148 | REAL y_d_u(klon, klev), y_d_v(klon, klev) |
|---|
| 149 | REAL y_flux_t(klon,klev), y_flux_q(klon,klev) |
|---|
| 150 | REAL y_flux_u(klon,klev), y_flux_v(klon,klev) |
|---|
| 151 | REAL y_dflux_t(klon), y_dflux_q(klon) |
|---|
| 152 | REAL ycoefh(klon,klev), ycoefm(klon,klev) |
|---|
| 153 | REAL yu(klon,klev), yv(klon,klev) |
|---|
| 154 | REAL yt(klon,klev), yq(klon,klev) |
|---|
| 155 | REAL ypaprs(klon,klev+1), ypplay(klon,klev), ydelp(klon,klev) |
|---|
| 156 | cAA REAL ytr(klon,klev,nbtr) |
|---|
| 157 | cAA REAL y_d_tr(klon,klev,nbtr) |
|---|
| 158 | cAA REAL yflxsrf(klon,nbtr) |
|---|
| 159 | c |
|---|
| 160 | LOGICAL contreg |
|---|
| 161 | PARAMETER (contreg=.TRUE.) |
|---|
| 162 | c |
|---|
| 163 | LOGICAL ok_nonloc |
|---|
| 164 | PARAMETER (ok_nonloc=.FALSE.) |
|---|
| 165 | REAL ycoefm0(klon,klev), ycoefh0(klon,klev) |
|---|
| 166 | c |
|---|
| 167 | #include "YOMCST.h" |
|---|
| 168 | REAL u1lay(klon), v1lay(klon) |
|---|
| 169 | REAL delp(klon,klev) |
|---|
| 170 | REAL totalflu(klon) |
|---|
| 171 | INTEGER i, k, nsrf |
|---|
| 172 | cAA INTEGER it |
|---|
| 173 | INTEGER ni(klon), knon, j |
|---|
| 174 | c Introduction d'une variable "pourcentage potentiel" pour tenir compte |
|---|
| 175 | c des eventuelles apparitions et/ou disparitions de la glace de mer |
|---|
| 176 | REAL pctsrf_pot(klon,nbsrf) |
|---|
| 177 | |
|---|
| 178 | c====================================================================== |
|---|
| 179 | REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. |
|---|
| 180 | c====================================================================== |
|---|
| 181 | c |
|---|
| 182 | c maf pour sorties IOISPL en cas de debugagage |
|---|
| 183 | c |
|---|
| 184 | CHARACTER*80 cldebug |
|---|
| 185 | SAVE cldebug |
|---|
| 186 | CHARACTER*8 cl_surf(nbsrf) |
|---|
| 187 | SAVE cl_surf |
|---|
| 188 | INTEGER nhoridbg, nidbg |
|---|
| 189 | SAVE nhoridbg, nidbg |
|---|
| 190 | INTEGER ndexbg(iim*(jjm+1)) |
|---|
| 191 | REAL zx_lon(iim,jjm+1), zx_lat(iim,jjm+1), zjulian |
|---|
| 192 | REAL tabindx(klon) |
|---|
| 193 | REAL debugtab(iim,jjm+1) |
|---|
| 194 | LOGICAL first_appel |
|---|
| 195 | SAVE first_appel |
|---|
| 196 | DATA first_appel/.true./ |
|---|
| 197 | LOGICAL debugindex |
|---|
| 198 | SAVE debugindex |
|---|
| 199 | DATA debugindex/.true./ |
|---|
| 200 | #include "temps.h" |
|---|
| 201 | |
|---|
| 202 | IF (first_appel) THEN |
|---|
| 203 | first_appel=.false. |
|---|
| 204 | ! |
|---|
| 205 | ! initialisation sorties netcdf |
|---|
| 206 | ! |
|---|
| 207 | CALL ymds2ju(anne_ini, 1, 1, 0.0, zjulian) |
|---|
| 208 | zjulian = zjulian + day_ini |
|---|
| 209 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
|---|
| 210 | DO i = 1, iim |
|---|
| 211 | zx_lon(i,1) = rlon(i+1) |
|---|
| 212 | zx_lon(i,jjm+1) = rlon(i+1) |
|---|
| 213 | ENDDO |
|---|
| 214 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
|---|
| 215 | cldebug='sous_index' |
|---|
| 216 | CALL histbeg(cldebug, iim,zx_lon,jjm+1,zx_lat,1,iim,1,jjm |
|---|
| 217 | $ +1, 0,zjulian,dtime,nhoridbg,nidbg) |
|---|
| 218 | ! no vertical axis |
|---|
| 219 | cl_surf(1)='ter' |
|---|
| 220 | cl_surf(2)='lic' |
|---|
| 221 | cl_surf(3)='oce' |
|---|
| 222 | cl_surf(4)='sic' |
|---|
| 223 | DO nsrf=1,nbsrf |
|---|
| 224 | CALL histdef(nidbg, cl_surf(nsrf),cl_surf(nsrf), "-",iim, |
|---|
| 225 | $ jjm+1,nhoridbg, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
|---|
| 226 | END DO |
|---|
| 227 | CALL histend(nidbg) |
|---|
| 228 | CALL histsync(nidbg) |
|---|
| 229 | ENDIF |
|---|
| 230 | |
|---|
| 231 | DO k = 1, klev ! epaisseur de couche |
|---|
| 232 | DO i = 1, klon |
|---|
| 233 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
|---|
| 234 | ENDDO |
|---|
| 235 | ENDDO |
|---|
| 236 | DO i = 1, klon ! vent de la premiere couche |
|---|
| 237 | ccc zx_alf1 = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
|---|
| 238 | zx_alf1 = 1.0 |
|---|
| 239 | zx_alf2 = 1.0 - zx_alf1 |
|---|
| 240 | u1lay(i) = u(i,1)*zx_alf1 + u(i,2)*zx_alf2 |
|---|
| 241 | v1lay(i) = v(i,1)*zx_alf1 + v(i,2)*zx_alf2 |
|---|
| 242 | ENDDO |
|---|
| 243 | c |
|---|
| 244 | c initialisation: |
|---|
| 245 | c |
|---|
| 246 | DO i = 1, klon |
|---|
| 247 | rugmer(i) = 0.0 |
|---|
| 248 | cdragh(i) = 0.0 |
|---|
| 249 | cdragm(i) = 0.0 |
|---|
| 250 | dflux_t(i) = 0.0 |
|---|
| 251 | dflux_q(i) = 0.0 |
|---|
| 252 | zu1(i) = 0.0 |
|---|
| 253 | zv1(i) = 0.0 |
|---|
| 254 | ENDDO |
|---|
| 255 | ypct = 0.0 |
|---|
| 256 | yts = 0.0 |
|---|
| 257 | ysnow = 0.0 |
|---|
| 258 | yqsol = 0.0 |
|---|
| 259 | yalb = 0.0 |
|---|
| 260 | yrain_f = 0.0 |
|---|
| 261 | ysnow_f = 0.0 |
|---|
| 262 | yfder = 0.0 |
|---|
| 263 | ytaux = 0.0 |
|---|
| 264 | ytauy = 0.0 |
|---|
| 265 | ysolsw = 0.0 |
|---|
| 266 | ysollw = 0.0 |
|---|
| 267 | ysollwdown = 0.0 |
|---|
| 268 | yrugos = 0.0 |
|---|
| 269 | yu1 = 0.0 |
|---|
| 270 | yv1 = 0.0 |
|---|
| 271 | yrads = 0.0 |
|---|
| 272 | ypaprs = 0.0 |
|---|
| 273 | ypaprs = 0.0 |
|---|
| 274 | ypplay = 0.0 |
|---|
| 275 | ydelp = 0.0 |
|---|
| 276 | yu = 0.0 |
|---|
| 277 | yv = 0.0 |
|---|
| 278 | yt = 0.0 |
|---|
| 279 | yq = 0.0 |
|---|
| 280 | pctsrf_new = 0.0 |
|---|
| 281 | y_flux_u = 0.0 |
|---|
| 282 | y_flux_v = 0.0 |
|---|
| 283 | ytsoil = 999999. |
|---|
| 284 | |
|---|
| 285 | DO nsrf = 1, nbsrf |
|---|
| 286 | DO i = 1, klon |
|---|
| 287 | d_ts(i,nsrf) = 0.0 |
|---|
| 288 | ENDDO |
|---|
| 289 | END DO |
|---|
| 290 | C§§§ PB |
|---|
| 291 | yfluxlat=0. |
|---|
| 292 | flux_t = 0. |
|---|
| 293 | flux_q = 0. |
|---|
| 294 | flux_u = 0. |
|---|
| 295 | flux_v = 0. |
|---|
| 296 | DO k = 1, klev |
|---|
| 297 | DO i = 1, klon |
|---|
| 298 | d_t(i,k) = 0.0 |
|---|
| 299 | d_q(i,k) = 0.0 |
|---|
| 300 | c$$$ flux_t(i,k) = 0.0 |
|---|
| 301 | c$$$ flux_q(i,k) = 0.0 |
|---|
| 302 | d_u(i,k) = 0.0 |
|---|
| 303 | d_v(i,k) = 0.0 |
|---|
| 304 | c$$$ flux_u(i,k) = 0.0 |
|---|
| 305 | c$$$ flux_v(i,k) = 0.0 |
|---|
| 306 | zcoefh(i,k) = 0.0 |
|---|
| 307 | ENDDO |
|---|
| 308 | ENDDO |
|---|
| 309 | cAA IF (itr.GE.1) THEN |
|---|
| 310 | cAA DO it = 1, itr |
|---|
| 311 | cAA DO k = 1, klev |
|---|
| 312 | cAA DO i = 1, klon |
|---|
| 313 | cAA d_tr(i,k,it) = 0.0 |
|---|
| 314 | cAA ENDDO |
|---|
| 315 | cAA ENDDO |
|---|
| 316 | cAA ENDDO |
|---|
| 317 | cAA ENDIF |
|---|
| 318 | |
|---|
| 319 | c |
|---|
| 320 | c Boucler sur toutes les sous-fractions du sol: |
|---|
| 321 | c |
|---|
| 322 | C Initialisation des "pourcentages potentiels". On considere ici qu'on |
|---|
| 323 | C peut avoir potentiellementdela glace sur tout le domaine oceanique |
|---|
| 324 | C (a affiner) |
|---|
| 325 | |
|---|
| 326 | pctsrf_pot = pctsrf |
|---|
| 327 | pctsrf_pot(:,is_oce) = 1. - zmasq(:) |
|---|
| 328 | pctsrf_pot(:,is_sic) = 1. - zmasq(:) |
|---|
| 329 | |
|---|
| 330 | DO 99999 nsrf = 1, nbsrf |
|---|
| 331 | totalflu = radsol |
|---|
| 332 | |
|---|
| 333 | c chercher les indices: |
|---|
| 334 | DO j = 1, klon |
|---|
| 335 | ni(j) = 0 |
|---|
| 336 | ENDDO |
|---|
| 337 | knon = 0 |
|---|
| 338 | DO i = 1, klon |
|---|
| 339 | |
|---|
| 340 | C pour determiner le domaine a traiter on utilise les surfaces "potentielles" |
|---|
| 341 | C |
|---|
| 342 | IF (pctsrf_pot(i,nsrf).GT.epsfra) THEN |
|---|
| 343 | knon = knon + 1 |
|---|
| 344 | ni(knon) = i |
|---|
| 345 | ENDIF |
|---|
| 346 | ENDDO |
|---|
| 347 | c |
|---|
| 348 | write(*,*)'CLMAIN, nsrf, knon =',nsrf, knon |
|---|
| 349 | c |
|---|
| 350 | c variables pour avoir une sortie IOIPSL des INDEX |
|---|
| 351 | c |
|---|
| 352 | IF (debugindex) THEN |
|---|
| 353 | tabindx(:)=0. |
|---|
| 354 | c tabindx(1:knon)=(/FLOAT(i),i=1:knon/) |
|---|
| 355 | DO i=1,knon |
|---|
| 356 | tabindx(1:knon)=FLOAT(i) |
|---|
| 357 | END DO |
|---|
| 358 | debugtab(:,:)=0. |
|---|
| 359 | ndexbg(:)=0 |
|---|
| 360 | CALL gath2cpl(tabindx,debugtab,klon,knon,iim,jjm,ni) |
|---|
| 361 | CALL histwrite(nidbg,cl_surf(nsrf),itap,debugtab,iim*(jjm+1) |
|---|
| 362 | $ ,ndexbg) |
|---|
| 363 | ENDIF |
|---|
| 364 | IF (knon.EQ.0) GOTO 99999 |
|---|
| 365 | DO j = 1, knon |
|---|
| 366 | i = ni(j) |
|---|
| 367 | ypct(j) = pctsrf(i,nsrf) |
|---|
| 368 | yts(j) = ts(i,nsrf) |
|---|
| 369 | ysnow(j) = snow(i,nsrf) |
|---|
| 370 | yqsol(j) = qsol(i,nsrf) |
|---|
| 371 | yalb(j) = albe(i,nsrf) |
|---|
| 372 | yrain_f(j) = rain_f(i) |
|---|
| 373 | ysnow_f(j) = snow_f(i) |
|---|
| 374 | yagesno(j) = agesno(i,nsrf) |
|---|
| 375 | yfder(j) = fder(i) |
|---|
| 376 | ytaux(j) = flux_u(i,1,nsrf) |
|---|
| 377 | ytauy(j) = flux_v(i,1,nsrf) |
|---|
| 378 | c$$$ ysolsw(j) = solsw(i) |
|---|
| 379 | ysolsw(j) = (1 - albe(i,nsrf)) |
|---|
| 380 | $ /(1 - pctsrf(i,is_ter) * albe(i,is_ter) |
|---|
| 381 | $ - pctsrf(i, is_lic) *albe(i,is_lic) |
|---|
| 382 | $ - pctsrf(i, is_oce) *albe(i,is_oce) |
|---|
| 383 | $ - pctsrf(i, is_sic) *albe(i,is_sic) |
|---|
| 384 | $ ) * solsw(i) |
|---|
| 385 | ysollw(j) = sollw(i) |
|---|
| 386 | ysollwdown(j) = sollwdown(i) |
|---|
| 387 | yrugos(j) = rugos(i,nsrf) |
|---|
| 388 | yrugoro(j) = rugoro(i) |
|---|
| 389 | yu1(j) = u1lay(i) |
|---|
| 390 | yv1(j) = v1lay(i) |
|---|
| 391 | c$$$ yrads(j) = totalflu(i) |
|---|
| 392 | yrads(j) = (1 - albe(i,nsrf)) |
|---|
| 393 | $ /(1 - pctsrf(i,is_ter) * albe(i,is_ter) |
|---|
| 394 | $ - pctsrf(i, is_lic) *albe(i,is_lic) |
|---|
| 395 | $ - pctsrf(i, is_oce) *albe(i,is_oce) |
|---|
| 396 | $ - pctsrf(i, is_sic) *albe(i,is_sic) |
|---|
| 397 | $ ) * solsw(i) + sollw(i) |
|---|
| 398 | ypaprs(j,klev+1) = paprs(i,klev+1) |
|---|
| 399 | END DO |
|---|
| 400 | c$$$ PB ajour pour soil |
|---|
| 401 | DO k = 1, nsoilmx |
|---|
| 402 | DO j = 1, knon |
|---|
| 403 | i = ni(j) |
|---|
| 404 | ytsoil(j,k) = ftsoil(i,k,nsrf) |
|---|
| 405 | END DO |
|---|
| 406 | END DO |
|---|
| 407 | DO k = 1, klev |
|---|
| 408 | DO j = 1, knon |
|---|
| 409 | i = ni(j) |
|---|
| 410 | ypaprs(j,k) = paprs(i,k) |
|---|
| 411 | ypplay(j,k) = pplay(i,k) |
|---|
| 412 | ydelp(j,k) = delp(i,k) |
|---|
| 413 | yu(j,k) = u(i,k) |
|---|
| 414 | yv(j,k) = v(i,k) |
|---|
| 415 | yt(j,k) = t(i,k) |
|---|
| 416 | yq(j,k) = q(i,k) |
|---|
| 417 | ENDDO |
|---|
| 418 | ENDDO |
|---|
| 419 | c |
|---|
| 420 | c |
|---|
| 421 | c calculer Cdrag et les coefficients d'echange |
|---|
| 422 | CALL coefkz(nsrf, knon, ypaprs, ypplay, |
|---|
| 423 | . yts, yrugos, yu, yv, yt, yq, |
|---|
| 424 | . ycoefm, ycoefh) |
|---|
| 425 | CALL coefkz2(nsrf, knon, ypaprs, ypplay,yt, |
|---|
| 426 | . ycoefm0, ycoefh0) |
|---|
| 427 | DO k = 1, klev |
|---|
| 428 | DO i = 1, knon |
|---|
| 429 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
|---|
| 430 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
|---|
| 431 | ENDDO |
|---|
| 432 | ENDDO |
|---|
| 433 | c |
|---|
| 434 | c |
|---|
| 435 | c calculer la diffusion des vitesses "u" et "v" |
|---|
| 436 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yu,ypaprs,ypplay,ydelp, |
|---|
| 437 | s y_d_u,y_flux_u) |
|---|
| 438 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yv,ypaprs,ypplay,ydelp, |
|---|
| 439 | s y_d_v,y_flux_v) |
|---|
| 440 | |
|---|
| 441 | c pour le couplage |
|---|
| 442 | ytaux = y_flux_u(:,1) |
|---|
| 443 | ytauy = y_flux_v(:,1) |
|---|
| 444 | |
|---|
| 445 | c calculer la diffusion de "q" et de "h" |
|---|
| 446 | CALL clqh(dtime, itap, date0,jour, debut,lafin, |
|---|
| 447 | e rlon, rlat, cufi, cvfi, |
|---|
| 448 | e knon, nsrf, ni, pctsrf, |
|---|
| 449 | e soil_model, ytsoil, |
|---|
| 450 | e ok_veget, ocean, npas, nexca, |
|---|
| 451 | e rmu0, yrugos, yrugoro, |
|---|
| 452 | e yu1, yv1, ycoefh, |
|---|
| 453 | e yt,yq,yts,ypaprs,ypplay, |
|---|
| 454 | e ydelp,yrads,yalb, ysnow, yqsol, |
|---|
| 455 | e yrain_f, ysnow_f, yfder, ytaux, ytauy, |
|---|
| 456 | c$$$ e ysollw, ysolsw, |
|---|
| 457 | e ysollw, ysollwdown, ysolsw,yfluxlat, |
|---|
| 458 | s pctsrf_new, yagesno, |
|---|
| 459 | s y_d_t, y_d_q, y_d_ts, yz0_new, |
|---|
| 460 | s y_flux_t, y_flux_q, y_dflux_t, y_dflux_q) |
|---|
| 461 | c |
|---|
| 462 | c calculer la longueur de rugosite sur ocean |
|---|
| 463 | IF (nsrf.EQ.is_oce) THEN |
|---|
| 464 | DO j = 1, knon |
|---|
| 465 | yrugm(j) = 0.018*ycoefm(j,1) * (yu1(j)**2+yv1(j)**2)/RG |
|---|
| 466 | yrugm(j) = MAX(1.5e-05,yrugm(j)) |
|---|
| 467 | ENDDO |
|---|
| 468 | ENDIF |
|---|
| 469 | DO j = 1, knon |
|---|
| 470 | y_dflux_t(j) = y_dflux_t(j) * ypct(j) |
|---|
| 471 | y_dflux_q(j) = y_dflux_q(j) * ypct(j) |
|---|
| 472 | yu1(j) = yu1(j) * ypct(j) |
|---|
| 473 | yv1(j) = yv1(j) * ypct(j) |
|---|
| 474 | ENDDO |
|---|
| 475 | c |
|---|
| 476 | DO k = 1, klev |
|---|
| 477 | DO j = 1, knon |
|---|
| 478 | i = ni(j) |
|---|
| 479 | ycoefh(j,k) = ycoefh(j,k) * ypct(j) |
|---|
| 480 | ycoefm(j,k) = ycoefm(j,k) * ypct(j) |
|---|
| 481 | y_d_t(j,k) = y_d_t(j,k) * ypct(j) |
|---|
| 482 | y_d_q(j,k) = y_d_q(j,k) * ypct(j) |
|---|
| 483 | C§§§ PB |
|---|
| 484 | flux_t(i,k,nsrf) = y_flux_t(j,k) |
|---|
| 485 | flux_q(i,k,nsrf) = y_flux_q(j,k) |
|---|
| 486 | flux_u(i,k,nsrf) = y_flux_u(j,k) |
|---|
| 487 | flux_v(i,k,nsrf) = y_flux_v(j,k) |
|---|
| 488 | c$$$ PB y_flux_t(j,k) = y_flux_t(j,k) * ypct(j) |
|---|
| 489 | c$$$ PB y_flux_q(j,k) = y_flux_q(j,k) * ypct(j) |
|---|
| 490 | y_d_u(j,k) = y_d_u(j,k) * ypct(j) |
|---|
| 491 | y_d_v(j,k) = y_d_v(j,k) * ypct(j) |
|---|
| 492 | c$$$ PB y_flux_u(j,k) = y_flux_u(j,k) * ypct(j) |
|---|
| 493 | c$$$ PB y_flux_v(j,k) = y_flux_v(j,k) * ypct(j) |
|---|
| 494 | ENDDO |
|---|
| 495 | ENDDO |
|---|
| 496 | |
|---|
| 497 | |
|---|
| 498 | evap(:,nsrf) = - flux_q(:,1,nsrf) |
|---|
| 499 | c |
|---|
| 500 | albe(:, nsrf) = 0. |
|---|
| 501 | snow(:, nsrf) = 0. |
|---|
| 502 | qsol(:, nsrf) = 0. |
|---|
| 503 | rugos(:, nsrf) = 0. |
|---|
| 504 | fluxlat(:,nsrf) = 0. |
|---|
| 505 | DO j = 1, knon |
|---|
| 506 | i = ni(j) |
|---|
| 507 | d_ts(i,nsrf) = y_d_ts(j) |
|---|
| 508 | albe(i,nsrf) = yalb(j) |
|---|
| 509 | snow(i,nsrf) = ysnow(j) |
|---|
| 510 | qsol(i,nsrf) = yqsol(j) |
|---|
| 511 | rugos(i,nsrf) = yz0_new(j) |
|---|
| 512 | fluxlat(i,nsrf) = yfluxlat(j) |
|---|
| 513 | c$$$ pb rugmer(i) = yrugm(j) |
|---|
| 514 | IF (nsrf .EQ. is_oce) then |
|---|
| 515 | rugmer(i) = yrugm(j) |
|---|
| 516 | rugos(i,nsrf) = yrugm(i) |
|---|
| 517 | endif |
|---|
| 518 | cdragh(i) = cdragh(i) + ycoefh(j,1) |
|---|
| 519 | cdragm(i) = cdragm(i) + ycoefm(j,1) |
|---|
| 520 | dflux_t(i) = dflux_t(i) + y_dflux_t(j) |
|---|
| 521 | dflux_q(i) = dflux_q(i) + y_dflux_q(j) |
|---|
| 522 | zu1(i) = zu1(i) + yu1(j) |
|---|
| 523 | zv1(i) = zv1(i) + yv1(j) |
|---|
| 524 | END DO |
|---|
| 525 | c$$$ PB ajout pour soil |
|---|
| 526 | ftsoil(:,:,nsrf) = 0. |
|---|
| 527 | DO k = 1, nsoilmx |
|---|
| 528 | DO j = 1, knon |
|---|
| 529 | i = ni(j) |
|---|
| 530 | ftsoil(i, k, nsrf) = ytsoil(j,k) |
|---|
| 531 | END DO |
|---|
| 532 | END DO |
|---|
| 533 | c |
|---|
| 534 | #ifdef CRAY |
|---|
| 535 | DO k = 1, klev |
|---|
| 536 | DO j = 1, knon |
|---|
| 537 | i = ni(j) |
|---|
| 538 | #else |
|---|
| 539 | DO j = 1, knon |
|---|
| 540 | i = ni(j) |
|---|
| 541 | DO k = 1, klev |
|---|
| 542 | #endif |
|---|
| 543 | d_t(i,k) = d_t(i,k) + y_d_t(j,k) |
|---|
| 544 | d_q(i,k) = d_q(i,k) + y_d_q(j,k) |
|---|
| 545 | c$$$ PB flux_t(i,k) = flux_t(i,k) + y_flux_t(j,k) |
|---|
| 546 | c$$$ flux_q(i,k) = flux_q(i,k) + y_flux_q(j,k) |
|---|
| 547 | d_u(i,k) = d_u(i,k) + y_d_u(j,k) |
|---|
| 548 | d_v(i,k) = d_v(i,k) + y_d_v(j,k) |
|---|
| 549 | c$$$ PB flux_u(i,k) = flux_u(i,k) + y_flux_u(j,k) |
|---|
| 550 | c$$$ flux_v(i,k) = flux_v(i,k) + y_flux_v(j,k) |
|---|
| 551 | zcoefh(i,k) = zcoefh(i,k) + ycoefh(j,k) |
|---|
| 552 | ENDDO |
|---|
| 553 | ENDDO |
|---|
| 554 | c |
|---|
| 555 | 99999 CONTINUE |
|---|
| 556 | c |
|---|
| 557 | C |
|---|
| 558 | C On utilise les nouvelles surfaces |
|---|
| 559 | C A rajouter: conservation de l'albedo |
|---|
| 560 | C |
|---|
| 561 | rugos(:,is_oce) = rugmer |
|---|
| 562 | pctsrf = pctsrf_new |
|---|
| 563 | |
|---|
| 564 | RETURN |
|---|
| 565 | END |
|---|
| 566 | SUBROUTINE clqh(dtime,itime, date0,jour,debut,lafin, |
|---|
| 567 | e rlon, rlat, cufi, cvfi, |
|---|
| 568 | e knon, nisurf, knindex, pctsrf, |
|---|
| 569 | $ soil_model,tsoil, |
|---|
| 570 | e ok_veget, ocean, npas, nexca, |
|---|
| 571 | e rmu0, rugos, rugoro, |
|---|
| 572 | e u1lay,v1lay,coef, |
|---|
| 573 | e t,q,ts,paprs,pplay, |
|---|
| 574 | e delp,radsol,albedo,snow,qsol, |
|---|
| 575 | e precip_rain, precip_snow, fder, taux, tauy, |
|---|
| 576 | $ sollw, sollwdown, swdown,fluxlat, |
|---|
| 577 | s pctsrf_new, agesno, |
|---|
| 578 | s d_t, d_q, d_ts, z0_new, |
|---|
| 579 | s flux_t, flux_q,dflux_s,dflux_l) |
|---|
| 580 | |
|---|
| 581 | USE interface_surf |
|---|
| 582 | |
|---|
| 583 | IMPLICIT none |
|---|
| 584 | c====================================================================== |
|---|
| 585 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
|---|
| 586 | c Objet: diffusion verticale de "q" et de "h" |
|---|
| 587 | c====================================================================== |
|---|
| 588 | #include "dimensions.h" |
|---|
| 589 | #include "dimphy.h" |
|---|
| 590 | #include "YOMCST.h" |
|---|
| 591 | #include "YOETHF.h" |
|---|
| 592 | #include "FCTTRE.h" |
|---|
| 593 | #include "indicesol.h" |
|---|
| 594 | #include "dimsoil.h" |
|---|
| 595 | c Arguments: |
|---|
| 596 | INTEGER knon |
|---|
| 597 | REAL dtime ! intervalle du temps (s) |
|---|
| 598 | real date0 |
|---|
| 599 | REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s) |
|---|
| 600 | REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s) |
|---|
| 601 | REAL coef(klon,klev) ! le coefficient d'echange (m**2/s) |
|---|
| 602 | c multiplie par le cisaillement du |
|---|
| 603 | c vent (dV/dz); la premiere valeur |
|---|
| 604 | c indique la valeur de Cdrag (sans unite) |
|---|
| 605 | REAL t(klon,klev) ! temperature (K) |
|---|
| 606 | REAL q(klon,klev) ! humidite specifique (kg/kg) |
|---|
| 607 | REAL ts(klon) ! temperature du sol (K) |
|---|
| 608 | REAL evap(klon) ! evaporation au sol |
|---|
| 609 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
|---|
| 610 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
|---|
| 611 | REAL delp(klon,klev) ! epaisseur de couche en pression (Pa) |
|---|
| 612 | REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2 |
|---|
| 613 | REAL albedo(klon) ! albedo de la surface |
|---|
| 614 | REAL snow(klon) ! hauteur de neige |
|---|
| 615 | REAL qsol(klon) ! humidite de la surface |
|---|
| 616 | real precip_rain(klon), precip_snow(klon) |
|---|
| 617 | REAL agesno(klon) |
|---|
| 618 | REAL rugoro(klon) |
|---|
| 619 | integer jour ! jour de l'annee en cours |
|---|
| 620 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
|---|
| 621 | real rugos(klon) ! rugosite |
|---|
| 622 | integer knindex(klon) |
|---|
| 623 | real pctsrf(klon,nbsrf) |
|---|
| 624 | real rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
|---|
| 625 | logical ok_veget |
|---|
| 626 | character*6 ocean |
|---|
| 627 | integer npas, nexca |
|---|
| 628 | |
|---|
| 629 | c |
|---|
| 630 | REAL d_t(klon,klev) ! incrementation de "t" |
|---|
| 631 | REAL d_q(klon,klev) ! incrementation de "q" |
|---|
| 632 | REAL d_ts(klon) ! incrementation de "ts" |
|---|
| 633 | REAL flux_t(klon,klev) ! (diagnostic) flux de la chaleur |
|---|
| 634 | c sensible, flux de Cp*T, positif vers |
|---|
| 635 | c le bas: j/(m**2 s) c.a.d.: W/m2 |
|---|
| 636 | REAL flux_q(klon,klev) ! flux de la vapeur d'eau:kg/(m**2 s) |
|---|
| 637 | REAL dflux_s(klon) ! derivee du flux sensible dF/dTs |
|---|
| 638 | REAL dflux_l(klon) ! derivee du flux latent dF/dTs |
|---|
| 639 | c====================================================================== |
|---|
| 640 | REAL t_grnd ! temperature de rappel pour glace de mer |
|---|
| 641 | PARAMETER (t_grnd=271.35) |
|---|
| 642 | REAL t_coup |
|---|
| 643 | PARAMETER(t_coup=273.15) |
|---|
| 644 | c====================================================================== |
|---|
| 645 | INTEGER i, k |
|---|
| 646 | REAL zx_cq(klon,klev) |
|---|
| 647 | REAL zx_dq(klon,klev) |
|---|
| 648 | REAL zx_ch(klon,klev) |
|---|
| 649 | REAL zx_dh(klon,klev) |
|---|
| 650 | REAL zx_buf1(klon) |
|---|
| 651 | REAL zx_buf2(klon) |
|---|
| 652 | REAL zx_coef(klon,klev) |
|---|
| 653 | REAL local_h(klon,klev) ! enthalpie potentielle |
|---|
| 654 | REAL local_q(klon,klev) |
|---|
| 655 | REAL local_ts(klon) |
|---|
| 656 | REAL psref(klon) ! pression de reference pour temperature potent. |
|---|
| 657 | REAL zx_pkh(klon,klev), zx_pkf(klon,klev) |
|---|
| 658 | c====================================================================== |
|---|
| 659 | c contre-gradient pour la vapeur d'eau: (kg/kg)/metre |
|---|
| 660 | REAL gamq(klon,2:klev) |
|---|
| 661 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
|---|
| 662 | REAL gamt(klon,2:klev) |
|---|
| 663 | REAL z_gamaq(klon,2:klev), z_gamah(klon,2:klev) |
|---|
| 664 | REAL zdelz |
|---|
| 665 | c====================================================================== |
|---|
| 666 | logical contreg |
|---|
| 667 | parameter (contreg=.true.) |
|---|
| 668 | c====================================================================== |
|---|
| 669 | c Rajout pour l'interface |
|---|
| 670 | integer itime |
|---|
| 671 | integer nisurf |
|---|
| 672 | logical debut, lafin |
|---|
| 673 | real zlev1(klon) |
|---|
| 674 | real fder(klon), taux(klon), tauy(klon) |
|---|
| 675 | real temp_air(klon), spechum(klon) |
|---|
| 676 | real epot_air(klon), ccanopy(klon) |
|---|
| 677 | real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) |
|---|
| 678 | real petBcoef(klon), peqBcoef(klon) |
|---|
| 679 | real sollw(klon), sollwdown(klon), swnet(klon), swdown(klon) |
|---|
| 680 | real p1lay(klon) |
|---|
| 681 | c$$$C PB ajout pour soil |
|---|
| 682 | LOGICAL soil_model |
|---|
| 683 | REAL tsoil(klon, nsoilmx) |
|---|
| 684 | |
|---|
| 685 | ! Parametres de sortie |
|---|
| 686 | real fluxsens(klon), fluxlat(klon) |
|---|
| 687 | real tsol_rad(klon), tsurf_new(klon), alb_new(klon) |
|---|
| 688 | real emis_new(klon), z0_new(klon) |
|---|
| 689 | real pctsrf_new(klon,nbsrf) |
|---|
| 690 | |
|---|
| 691 | c |
|---|
| 692 | |
|---|
| 693 | if (.not. contreg) then |
|---|
| 694 | do k = 2, klev |
|---|
| 695 | do i = 1, knon |
|---|
| 696 | gamq(i,k) = 0.0 |
|---|
| 697 | gamt(i,k) = 0.0 |
|---|
| 698 | enddo |
|---|
| 699 | enddo |
|---|
| 700 | else |
|---|
| 701 | do k = 3, klev |
|---|
| 702 | do i = 1, knon |
|---|
| 703 | gamq(i,k)= 0.0 |
|---|
| 704 | gamt(i,k)= -1.0e-03 |
|---|
| 705 | enddo |
|---|
| 706 | enddo |
|---|
| 707 | do i = 1, knon |
|---|
| 708 | gamq(i,2) = 0.0 |
|---|
| 709 | gamt(i,2) = -2.5e-03 |
|---|
| 710 | enddo |
|---|
| 711 | endif |
|---|
| 712 | |
|---|
| 713 | DO i = 1, knon |
|---|
| 714 | psref(i) = paprs(i,1) !pression de reference est celle au sol |
|---|
| 715 | local_ts(i) = ts(i) |
|---|
| 716 | ENDDO |
|---|
| 717 | DO k = 1, klev |
|---|
| 718 | DO i = 1, knon |
|---|
| 719 | zx_pkh(i,k) = (psref(i)/paprs(i,k))**RKAPPA |
|---|
| 720 | zx_pkf(i,k) = (psref(i)/pplay(i,k))**RKAPPA |
|---|
| 721 | local_h(i,k) = RCPD * t(i,k) * zx_pkf(i,k) |
|---|
| 722 | local_q(i,k) = q(i,k) |
|---|
| 723 | ENDDO |
|---|
| 724 | ENDDO |
|---|
| 725 | c |
|---|
| 726 | c Convertir les coefficients en variables convenables au calcul: |
|---|
| 727 | c |
|---|
| 728 | c |
|---|
| 729 | DO k = 2, klev |
|---|
| 730 | DO i = 1, knon |
|---|
| 731 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
|---|
| 732 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
|---|
| 733 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
|---|
| 734 | ENDDO |
|---|
| 735 | ENDDO |
|---|
| 736 | c |
|---|
| 737 | c Preparer les flux lies aux contre-gardients |
|---|
| 738 | c |
|---|
| 739 | DO k = 2, klev |
|---|
| 740 | DO i = 1, knon |
|---|
| 741 | zdelz = RD * (t(i,k-1)+t(i,k))/2.0 / RG /paprs(i,k) |
|---|
| 742 | . *(pplay(i,k-1)-pplay(i,k)) |
|---|
| 743 | z_gamaq(i,k) = gamq(i,k) * zdelz |
|---|
| 744 | z_gamah(i,k) = gamt(i,k) * zdelz *RCPD * zx_pkh(i,k) |
|---|
| 745 | ENDDO |
|---|
| 746 | ENDDO |
|---|
| 747 | DO i = 1, knon |
|---|
| 748 | zx_buf1(i) = zx_coef(i,klev) + delp(i,klev) |
|---|
| 749 | zx_cq(i,klev) = (local_q(i,klev)*delp(i,klev) |
|---|
| 750 | . -zx_coef(i,klev)*z_gamaq(i,klev))/zx_buf1(i) |
|---|
| 751 | zx_dq(i,klev) = zx_coef(i,klev) / zx_buf1(i) |
|---|
| 752 | c |
|---|
| 753 | zx_buf2(i) = delp(i,klev) + zx_coef(i,klev) |
|---|
| 754 | zx_ch(i,klev) = (local_h(i,klev)*delp(i,klev) |
|---|
| 755 | . -zx_coef(i,klev)*z_gamah(i,klev))/zx_buf2(i) |
|---|
| 756 | zx_dh(i,klev) = zx_coef(i,klev) / zx_buf2(i) |
|---|
| 757 | ENDDO |
|---|
| 758 | DO k = klev-1, 2 , -1 |
|---|
| 759 | DO i = 1, knon |
|---|
| 760 | zx_buf1(i) = delp(i,k)+zx_coef(i,k) |
|---|
| 761 | . +zx_coef(i,k+1)*(1.-zx_dq(i,k+1)) |
|---|
| 762 | zx_cq(i,k) = (local_q(i,k)*delp(i,k) |
|---|
| 763 | . +zx_coef(i,k+1)*zx_cq(i,k+1) |
|---|
| 764 | . +zx_coef(i,k+1)*z_gamaq(i,k+1) |
|---|
| 765 | . -zx_coef(i,k)*z_gamaq(i,k))/zx_buf1(i) |
|---|
| 766 | zx_dq(i,k) = zx_coef(i,k) / zx_buf1(i) |
|---|
| 767 | c |
|---|
| 768 | zx_buf2(i) = delp(i,k)+zx_coef(i,k) |
|---|
| 769 | . +zx_coef(i,k+1)*(1.-zx_dh(i,k+1)) |
|---|
| 770 | zx_ch(i,k) = (local_h(i,k)*delp(i,k) |
|---|
| 771 | . +zx_coef(i,k+1)*zx_ch(i,k+1) |
|---|
| 772 | . +zx_coef(i,k+1)*z_gamah(i,k+1) |
|---|
| 773 | . -zx_coef(i,k)*z_gamah(i,k))/zx_buf2(i) |
|---|
| 774 | zx_dh(i,k) = zx_coef(i,k) / zx_buf2(i) |
|---|
| 775 | ENDDO |
|---|
| 776 | ENDDO |
|---|
| 777 | C |
|---|
| 778 | C nouvelle formulation JL Dufresne |
|---|
| 779 | C |
|---|
| 780 | C q1 = zx_cq(i,1) + zx_dq(i,1) * Flux_Q(i,1) * dt |
|---|
| 781 | C h1 = zx_ch(i,1) + zx_dh(i,1) * Flux_H(i,1) * dt |
|---|
| 782 | C |
|---|
| 783 | DO i = 1, knon |
|---|
| 784 | zx_buf1(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dq(i,2)) |
|---|
| 785 | zx_cq(i,1) = (local_q(i,1)*delp(i,1) |
|---|
| 786 | . +zx_coef(i,2)*(z_gamaq(i,2)+zx_cq(i,2))) |
|---|
| 787 | . /zx_buf1(i) |
|---|
| 788 | zx_dq(i,1) = -1. * RG / zx_buf1(i) |
|---|
| 789 | c |
|---|
| 790 | zx_buf2(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dh(i,2)) |
|---|
| 791 | zx_ch(i,1) = (local_h(i,1)*delp(i,1) |
|---|
| 792 | . +zx_coef(i,2)*(z_gamah(i,2)+zx_ch(i,2))) |
|---|
| 793 | . /zx_buf2(i) |
|---|
| 794 | zx_dh(i,1) = -1. * RG / zx_buf2(i) |
|---|
| 795 | ENDDO |
|---|
| 796 | |
|---|
| 797 | C Appel a interfsurf (appel generique) routine d'interface avec la surface |
|---|
| 798 | |
|---|
| 799 | c do i = 1, knon |
|---|
| 800 | petAcoef=zx_ch(:,1) |
|---|
| 801 | peqAcoef=zx_cq(:,1) |
|---|
| 802 | petBcoef=zx_dh(:,1) |
|---|
| 803 | peqBcoef=zx_dq(:,1) |
|---|
| 804 | tq_cdrag=coef(:,1) |
|---|
| 805 | temp_air=t(:,1) |
|---|
| 806 | epot_air=local_h(:,1) |
|---|
| 807 | spechum=q(:,1) |
|---|
| 808 | p1lay = pplay(:,1) |
|---|
| 809 | zlev1 = delp(:,1) |
|---|
| 810 | swnet = swdown * (1. - albedo) |
|---|
| 811 | c enddo |
|---|
| 812 | c En attendant mieux |
|---|
| 813 | ccanopy = 365. |
|---|
| 814 | |
|---|
| 815 | CALL interfsurf(itime, dtime, date0, jour, rmu0, |
|---|
| 816 | e klon, iim, jjm, nisurf, knon, knindex, pctsrf, |
|---|
| 817 | e rlon, rlat, cufi, cvfi, |
|---|
| 818 | e debut, lafin, ok_veget, soil_model, nsoilmx,tsoil, |
|---|
| 819 | e zlev1, u1lay, v1lay, temp_air, spechum, epot_air, ccanopy, |
|---|
| 820 | e tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, |
|---|
| 821 | e precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, |
|---|
| 822 | e fder, taux, tauy, rugos, rugoro, |
|---|
| 823 | e albedo, snow, qsol, |
|---|
| 824 | e ts, p1lay, psref, radsol, |
|---|
| 825 | e ocean, npas, nexca, zmasq, |
|---|
| 826 | s evap, fluxsens, fluxlat, dflux_l, dflux_s, |
|---|
| 827 | s tsol_rad, tsurf_new, alb_new, emis_new, z0_new, |
|---|
| 828 | s pctsrf_new, agesno) |
|---|
| 829 | |
|---|
| 830 | |
|---|
| 831 | do i = 1, knon |
|---|
| 832 | flux_t(i,1) = fluxsens(i) |
|---|
| 833 | flux_q(i,1) = - evap(i) |
|---|
| 834 | d_ts(i) = tsurf_new(i) - ts(i) |
|---|
| 835 | albedo(i) = alb_new(i) |
|---|
| 836 | enddo |
|---|
| 837 | |
|---|
| 838 | c==== une fois on a zx_h_ts, on peut faire l'iteration ======== |
|---|
| 839 | DO i = 1, knon |
|---|
| 840 | local_h(i,1) = zx_ch(i,1) + zx_dh(i,1)*flux_t(i,1)*dtime |
|---|
| 841 | local_q(i,1) = zx_cq(i,1) + zx_dq(i,1)*flux_q(i,1)*dtime |
|---|
| 842 | ENDDO |
|---|
| 843 | DO k = 2, klev |
|---|
| 844 | DO i = 1, knon |
|---|
| 845 | local_q(i,k) = zx_cq(i,k) + zx_dq(i,k)*local_q(i,k-1) |
|---|
| 846 | local_h(i,k) = zx_ch(i,k) + zx_dh(i,k)*local_h(i,k-1) |
|---|
| 847 | ENDDO |
|---|
| 848 | ENDDO |
|---|
| 849 | c====================================================================== |
|---|
| 850 | c== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
|---|
| 851 | c== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
|---|
| 852 | DO k = 2, klev |
|---|
| 853 | DO i = 1, knon |
|---|
| 854 | flux_q(i,k) = (zx_coef(i,k)/RG/dtime) |
|---|
| 855 | . * (local_q(i,k)-local_q(i,k-1)+z_gamaq(i,k)) |
|---|
| 856 | flux_t(i,k) = (zx_coef(i,k)/RG/dtime) |
|---|
| 857 | . * (local_h(i,k)-local_h(i,k-1)+z_gamah(i,k)) |
|---|
| 858 | . / zx_pkh(i,k) |
|---|
| 859 | ENDDO |
|---|
| 860 | ENDDO |
|---|
| 861 | c====================================================================== |
|---|
| 862 | C Calcul tendances |
|---|
| 863 | DO k = 1, klev |
|---|
| 864 | DO i = 1, knon |
|---|
| 865 | d_t(i,k) = local_h(i,k)/zx_pkf(i,k)/RCPD - t(i,k) |
|---|
| 866 | d_q(i,k) = local_q(i,k) - q(i,k) |
|---|
| 867 | ENDDO |
|---|
| 868 | ENDDO |
|---|
| 869 | c |
|---|
| 870 | |
|---|
| 871 | RETURN |
|---|
| 872 | END |
|---|
| 873 | SUBROUTINE clvent(knon,dtime, u1lay,v1lay,coef,t,ven, |
|---|
| 874 | e paprs,pplay,delp, |
|---|
| 875 | s d_ven,flux_v) |
|---|
| 876 | IMPLICIT none |
|---|
| 877 | c====================================================================== |
|---|
| 878 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
|---|
| 879 | c Objet: diffusion vertical de la vitesse "ven" |
|---|
| 880 | c====================================================================== |
|---|
| 881 | c Arguments: |
|---|
| 882 | c dtime----input-R- intervalle du temps (en second) |
|---|
| 883 | c u1lay----input-R- vent u de la premiere couche (m/s) |
|---|
| 884 | c v1lay----input-R- vent v de la premiere couche (m/s) |
|---|
| 885 | c coef-----input-R- le coefficient d'echange (m**2/s) multiplie par |
|---|
| 886 | c le cisaillement du vent (dV/dz); la premiere |
|---|
| 887 | c valeur indique la valeur de Cdrag (sans unite) |
|---|
| 888 | c t--------input-R- temperature (K) |
|---|
| 889 | c ven------input-R- vitesse horizontale (m/s) |
|---|
| 890 | c paprs----input-R- pression a inter-couche (Pa) |
|---|
| 891 | c pplay----input-R- pression au milieu de couche (Pa) |
|---|
| 892 | c delp-----input-R- epaisseur de couche (Pa) |
|---|
| 893 | c |
|---|
| 894 | c |
|---|
| 895 | c d_ven----output-R- le changement de "ven" |
|---|
| 896 | c flux_v---output-R- (diagnostic) flux du vent: (kg m/s)/(m**2 s) |
|---|
| 897 | c====================================================================== |
|---|
| 898 | #include "dimensions.h" |
|---|
| 899 | #include "dimphy.h" |
|---|
| 900 | INTEGER knon |
|---|
| 901 | REAL dtime |
|---|
| 902 | REAL u1lay(klon), v1lay(klon) |
|---|
| 903 | REAL coef(klon,klev) |
|---|
| 904 | REAL t(klon,klev), ven(klon,klev) |
|---|
| 905 | REAL paprs(klon,klev+1), pplay(klon,klev), delp(klon,klev) |
|---|
| 906 | REAL d_ven(klon,klev) |
|---|
| 907 | REAL flux_v(klon,klev) |
|---|
| 908 | c====================================================================== |
|---|
| 909 | #include "YOMCST.h" |
|---|
| 910 | c====================================================================== |
|---|
| 911 | INTEGER i, k |
|---|
| 912 | REAL zx_cv(klon,2:klev) |
|---|
| 913 | REAL zx_dv(klon,2:klev) |
|---|
| 914 | REAL zx_buf(klon) |
|---|
| 915 | REAL zx_coef(klon,klev) |
|---|
| 916 | REAL local_ven(klon,klev) |
|---|
| 917 | REAL zx_alf1(klon), zx_alf2(klon) |
|---|
| 918 | c====================================================================== |
|---|
| 919 | DO k = 1, klev |
|---|
| 920 | DO i = 1, knon |
|---|
| 921 | local_ven(i,k) = ven(i,k) |
|---|
| 922 | ENDDO |
|---|
| 923 | ENDDO |
|---|
| 924 | c====================================================================== |
|---|
| 925 | DO i = 1, knon |
|---|
| 926 | ccc zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
|---|
| 927 | zx_alf1(i) = 1.0 |
|---|
| 928 | zx_alf2(i) = 1.0 - zx_alf1(i) |
|---|
| 929 | zx_coef(i,1) = coef(i,1) |
|---|
| 930 | . * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) |
|---|
| 931 | . * pplay(i,1)/(RD*t(i,1)) |
|---|
| 932 | zx_coef(i,1) = zx_coef(i,1) * dtime*RG |
|---|
| 933 | ENDDO |
|---|
| 934 | c====================================================================== |
|---|
| 935 | DO k = 2, klev |
|---|
| 936 | DO i = 1, knon |
|---|
| 937 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
|---|
| 938 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
|---|
| 939 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
|---|
| 940 | ENDDO |
|---|
| 941 | ENDDO |
|---|
| 942 | c====================================================================== |
|---|
| 943 | DO i = 1, knon |
|---|
| 944 | zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i)+zx_coef(i,2) |
|---|
| 945 | zx_cv(i,2) = local_ven(i,1)*delp(i,1) / zx_buf(i) |
|---|
| 946 | zx_dv(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) |
|---|
| 947 | . /zx_buf(i) |
|---|
| 948 | ENDDO |
|---|
| 949 | DO k = 3, klev |
|---|
| 950 | DO i = 1, knon |
|---|
| 951 | zx_buf(i) = delp(i,k-1) + zx_coef(i,k) |
|---|
| 952 | . + zx_coef(i,k-1)*(1.-zx_dv(i,k-1)) |
|---|
| 953 | zx_cv(i,k) = (local_ven(i,k-1)*delp(i,k-1) |
|---|
| 954 | . +zx_coef(i,k-1)*zx_cv(i,k-1) )/zx_buf(i) |
|---|
| 955 | zx_dv(i,k) = zx_coef(i,k)/zx_buf(i) |
|---|
| 956 | ENDDO |
|---|
| 957 | ENDDO |
|---|
| 958 | DO i = 1, knon |
|---|
| 959 | local_ven(i,klev) = ( local_ven(i,klev)*delp(i,klev) |
|---|
| 960 | . +zx_coef(i,klev)*zx_cv(i,klev) ) |
|---|
| 961 | . / ( delp(i,klev) + zx_coef(i,klev) |
|---|
| 962 | . -zx_coef(i,klev)*zx_dv(i,klev) ) |
|---|
| 963 | ENDDO |
|---|
| 964 | DO k = klev-1, 1, -1 |
|---|
| 965 | DO i = 1, knon |
|---|
| 966 | local_ven(i,k) = zx_cv(i,k+1) + zx_dv(i,k+1)*local_ven(i,k+1) |
|---|
| 967 | ENDDO |
|---|
| 968 | ENDDO |
|---|
| 969 | c====================================================================== |
|---|
| 970 | c== flux_v est le flux de moment angulaire (positif vers bas) |
|---|
| 971 | c== dont l'unite est: (kg m/s)/(m**2 s) |
|---|
| 972 | DO i = 1, knon |
|---|
| 973 | flux_v(i,1) = zx_coef(i,1)/(RG*dtime) |
|---|
| 974 | . *(local_ven(i,1)*zx_alf1(i) |
|---|
| 975 | . +local_ven(i,2)*zx_alf2(i)) |
|---|
| 976 | ENDDO |
|---|
| 977 | DO k = 2, klev |
|---|
| 978 | DO i = 1, knon |
|---|
| 979 | flux_v(i,k) = zx_coef(i,k)/(RG*dtime) |
|---|
| 980 | . * (local_ven(i,k)-local_ven(i,k-1)) |
|---|
| 981 | ENDDO |
|---|
| 982 | ENDDO |
|---|
| 983 | c |
|---|
| 984 | DO k = 1, klev |
|---|
| 985 | DO i = 1, knon |
|---|
| 986 | d_ven(i,k) = local_ven(i,k) - ven(i,k) |
|---|
| 987 | ENDDO |
|---|
| 988 | ENDDO |
|---|
| 989 | c |
|---|
| 990 | RETURN |
|---|
| 991 | END |
|---|
| 992 | SUBROUTINE coefkz(nsrf, knon, paprs, pplay, |
|---|
| 993 | . ts, rugos, |
|---|
| 994 | . u,v,t,q, |
|---|
| 995 | . pcfm, pcfh) |
|---|
| 996 | IMPLICIT none |
|---|
| 997 | c====================================================================== |
|---|
| 998 | c Auteur(s) F. Hourdin, M. Forichon, Z.X. Li (LMD/CNRS) date: 19930922 |
|---|
| 999 | c (une version strictement identique a l'ancien modele) |
|---|
| 1000 | c Objet: calculer le coefficient du frottement du sol (Cdrag) et les |
|---|
| 1001 | c coefficients d'echange turbulent dans l'atmosphere. |
|---|
| 1002 | c Arguments: |
|---|
| 1003 | c nsrf-----input-I- indicateur de la nature du sol |
|---|
| 1004 | c knon-----input-I- nombre de points a traiter |
|---|
| 1005 | c paprs----input-R- pression a chaque intercouche (en Pa) |
|---|
| 1006 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
|---|
| 1007 | c ts-------input-R- temperature du sol (en Kelvin) |
|---|
| 1008 | c rugos----input-R- longeur de rugosite (en m) |
|---|
| 1009 | c u--------input-R- vitesse u |
|---|
| 1010 | c v--------input-R- vitesse v |
|---|
| 1011 | c t--------input-R- temperature (K) |
|---|
| 1012 | c q--------input-R- vapeur d'eau (kg/kg) |
|---|
| 1013 | c |
|---|
| 1014 | c itop-----output-I- numero de couche du sommet de la couche limite |
|---|
| 1015 | c pcfm-----output-R- coefficients a calculer (vitesse) |
|---|
| 1016 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
|---|
| 1017 | c====================================================================== |
|---|
| 1018 | #include "dimensions.h" |
|---|
| 1019 | #include "dimphy.h" |
|---|
| 1020 | #include "YOMCST.h" |
|---|
| 1021 | #include "indicesol.h" |
|---|
| 1022 | c |
|---|
| 1023 | c Arguments: |
|---|
| 1024 | c |
|---|
| 1025 | INTEGER knon, nsrf |
|---|
| 1026 | REAL ts(klon) |
|---|
| 1027 | REAL paprs(klon,klev+1), pplay(klon,klev) |
|---|
| 1028 | REAL u(klon,klev), v(klon,klev), t(klon,klev), q(klon,klev) |
|---|
| 1029 | REAL rugos(klon) |
|---|
| 1030 | c |
|---|
| 1031 | REAL pcfm(klon,klev), pcfh(klon,klev) |
|---|
| 1032 | INTEGER itop(klon) |
|---|
| 1033 | c |
|---|
| 1034 | c Quelques constantes et options: |
|---|
| 1035 | c |
|---|
| 1036 | REAL cepdu2, ckap, cb, cc, cd, clam |
|---|
| 1037 | PARAMETER (cepdu2 =(0.1)**2) |
|---|
| 1038 | PARAMETER (ckap=0.35) |
|---|
| 1039 | PARAMETER (cb=5.0) |
|---|
| 1040 | PARAMETER (cc=5.0) |
|---|
| 1041 | PARAMETER (cd=5.0) |
|---|
| 1042 | PARAMETER (clam=160.0) |
|---|
| 1043 | REAL ratqs ! largeur de distribution de vapeur d'eau |
|---|
| 1044 | PARAMETER (ratqs=0.05) |
|---|
| 1045 | LOGICAL richum ! utilise le nombre de Richardson humide |
|---|
| 1046 | PARAMETER (richum=.TRUE.) |
|---|
| 1047 | REAL ric ! nombre de Richardson critique |
|---|
| 1048 | PARAMETER(ric=0.4) |
|---|
| 1049 | REAL prandtl |
|---|
| 1050 | PARAMETER (prandtl=0.4) |
|---|
| 1051 | REAL kstable ! diffusion minimale (situation stable) |
|---|
| 1052 | PARAMETER (kstable=1.0e-10) |
|---|
| 1053 | REAL mixlen ! constante controlant longueur de melange |
|---|
| 1054 | PARAMETER (mixlen=35.0) |
|---|
| 1055 | INTEGER isommet ! le sommet de la couche limite |
|---|
| 1056 | PARAMETER (isommet=klev) |
|---|
| 1057 | LOGICAL tvirtu ! calculer Ri d'une maniere plus performante |
|---|
| 1058 | PARAMETER (tvirtu=.TRUE.) |
|---|
| 1059 | LOGICAL opt_ec ! formule du Centre Europeen dans l'atmosphere |
|---|
| 1060 | PARAMETER (opt_ec=.FALSE.) |
|---|
| 1061 | LOGICAL contreg ! utiliser le contre-gradient dans Ri |
|---|
| 1062 | PARAMETER (contreg=.TRUE.) |
|---|
| 1063 | c |
|---|
| 1064 | c Variables locales: |
|---|
| 1065 | c |
|---|
| 1066 | INTEGER i, k |
|---|
| 1067 | REAL zgeop(klon,klev) |
|---|
| 1068 | REAL zmgeom(klon) |
|---|
| 1069 | REAL zri(klon) |
|---|
| 1070 | REAL zl2(klon) |
|---|
| 1071 | REAL zcfm1(klon), zcfm2(klon) |
|---|
| 1072 | REAL zcfh1(klon), zcfh2(klon) |
|---|
| 1073 | REAL zdphi, zdu2, ztvd, ztvu, ztsolv, zcdn |
|---|
| 1074 | REAL zscf, zucf, zcr |
|---|
| 1075 | REAL zt, zq, zdelta, zcvm5, zcor, zqs, zfr, zdqs |
|---|
| 1076 | REAL z2geomf, zalh2, zalm2, zscfh, zscfm |
|---|
| 1077 | REAL t_coup |
|---|
| 1078 | PARAMETER (t_coup=273.15) |
|---|
| 1079 | c |
|---|
| 1080 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
|---|
| 1081 | REAL gamt(2:klev) |
|---|
| 1082 | c |
|---|
| 1083 | LOGICAL appel1er |
|---|
| 1084 | SAVE appel1er |
|---|
| 1085 | c |
|---|
| 1086 | c Fonctions thermodynamiques et fonctions d'instabilite |
|---|
| 1087 | REAL fsta, fins, x |
|---|
| 1088 | LOGICAL zxli ! utiliser un jeu de fonctions simples |
|---|
| 1089 | PARAMETER (zxli=.FALSE.) |
|---|
| 1090 | c |
|---|
| 1091 | #include "YOETHF.h" |
|---|
| 1092 | #include "FCTTRE.h" |
|---|
| 1093 | fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
|---|
| 1094 | fins(x) = SQRT(1.0-18.0*x) |
|---|
| 1095 | c |
|---|
| 1096 | DATA appel1er /.TRUE./ |
|---|
| 1097 | c |
|---|
| 1098 | IF (appel1er) THEN |
|---|
| 1099 | PRINT*, 'coefkz, opt_ec:', opt_ec |
|---|
| 1100 | PRINT*, 'coefkz, richum:', richum |
|---|
| 1101 | IF (richum) PRINT*, 'coefkz, ratqs:', ratqs |
|---|
| 1102 | PRINT*, 'coefkz, isommet:', isommet |
|---|
| 1103 | PRINT*, 'coefkz, tvirtu:', tvirtu |
|---|
| 1104 | appel1er = .FALSE. |
|---|
| 1105 | ENDIF |
|---|
| 1106 | c |
|---|
| 1107 | c Initialiser les sorties |
|---|
| 1108 | c |
|---|
| 1109 | DO k = 1, klev |
|---|
| 1110 | DO i = 1, knon |
|---|
| 1111 | pcfm(i,k) = 0.0 |
|---|
| 1112 | pcfh(i,k) = 0.0 |
|---|
| 1113 | ENDDO |
|---|
| 1114 | ENDDO |
|---|
| 1115 | DO i = 1, knon |
|---|
| 1116 | itop(i) = 0 |
|---|
| 1117 | ENDDO |
|---|
| 1118 | c |
|---|
| 1119 | c Prescrire la valeur de contre-gradient |
|---|
| 1120 | c |
|---|
| 1121 | IF (.NOT.contreg) THEN |
|---|
| 1122 | DO k = 2, klev |
|---|
| 1123 | gamt(k) = 0.0 |
|---|
| 1124 | ENDDO |
|---|
| 1125 | ELSE |
|---|
| 1126 | DO k = 3, klev |
|---|
| 1127 | gamt(k) = -1.0E-03 |
|---|
| 1128 | ENDDO |
|---|
| 1129 | gamt(2) = -2.5E-03 |
|---|
| 1130 | ENDIF |
|---|
| 1131 | c |
|---|
| 1132 | c Calculer les geopotentiels de chaque couche |
|---|
| 1133 | c |
|---|
| 1134 | DO i = 1, knon |
|---|
| 1135 | zgeop(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
|---|
| 1136 | . * (paprs(i,1)-pplay(i,1)) |
|---|
| 1137 | ENDDO |
|---|
| 1138 | DO k = 2, klev |
|---|
| 1139 | DO i = 1, knon |
|---|
| 1140 | zgeop(i,k) = zgeop(i,k-1) |
|---|
| 1141 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
|---|
| 1142 | . * (pplay(i,k-1)-pplay(i,k)) |
|---|
| 1143 | ENDDO |
|---|
| 1144 | ENDDO |
|---|
| 1145 | c |
|---|
| 1146 | c Calculer le frottement au sol (Cdrag) |
|---|
| 1147 | c |
|---|
| 1148 | DO i = 1, knon |
|---|
| 1149 | zdu2=max(cepdu2,u(i,1)**2+v(i,1)**2) |
|---|
| 1150 | zdphi=zgeop(i,1) |
|---|
| 1151 | ztsolv = ts(i) * (1.0+RETV*q(i,1)) ! qsol approx = q(i,1) |
|---|
| 1152 | ztvd=(t(i,1)+zdphi/RCPD/(1.+RVTMP2*q(i,1))) |
|---|
| 1153 | . *(1.+RETV*q(i,1)) |
|---|
| 1154 | zri(i)=zgeop(i,1)*(ztvd-ztsolv)/(zdu2*ztvd) |
|---|
| 1155 | zcdn = (ckap/log(1.+zgeop(i,1)/(RG*rugos(i))))**2 |
|---|
| 1156 | IF (zri(i) .ge. 0.) THEN ! situation stable |
|---|
| 1157 | IF (.NOT.zxli) THEN |
|---|
| 1158 | zscf=SQRT(1.+cd*ABS(zri(i))) |
|---|
| 1159 | zcfm1(i) = zcdn/(1.+2.0*cb*zri(i)/zscf) |
|---|
| 1160 | zcfh1(i) = zcdn/(1.+3.0*cb*zri(i)*zscf) |
|---|
| 1161 | pcfm(i,1) = zcfm1(i) |
|---|
| 1162 | pcfh(i,1) = zcfh1(i) |
|---|
| 1163 | ELSE |
|---|
| 1164 | pcfm(i,1) = zcdn* fsta(zri(i)) |
|---|
| 1165 | pcfh(i,1) = zcdn* fsta(zri(i)) |
|---|
| 1166 | ENDIF |
|---|
| 1167 | ELSE ! situation instable |
|---|
| 1168 | IF (.NOT.zxli) THEN |
|---|
| 1169 | zucf=1./(1.+3.0*cb*cc*zcdn*SQRT(ABS(zri(i)) |
|---|
| 1170 | . *(1.0+zgeop(i,1)/(RG*rugos(i))))) |
|---|
| 1171 | zcfm2(i) = zcdn*(1.-2.0*cb*zri(i)*zucf) |
|---|
| 1172 | zcfh2(i) = zcdn*(1.-3.0*cb*zri(i)*zucf) |
|---|
| 1173 | pcfm(i,1) = zcfm2(i) |
|---|
| 1174 | pcfh(i,1) = zcfh2(i) |
|---|
| 1175 | ELSE |
|---|
| 1176 | pcfm(i,1) = zcdn* fins(zri(i)) |
|---|
| 1177 | pcfh(i,1) = zcdn* fins(zri(i)) |
|---|
| 1178 | ENDIF |
|---|
| 1179 | zcr = (0.0016/(zcdn*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) |
|---|
| 1180 | IF(nsrf.EQ.is_oce)pcfh(i,1)=zcdn*(1.0+zcr**1.25)**(1./1.25) |
|---|
| 1181 | ENDIF |
|---|
| 1182 | ENDDO |
|---|
| 1183 | |
|---|
| 1184 | c |
|---|
| 1185 | c Calculer les coefficients turbulents dans l'atmosphere |
|---|
| 1186 | c |
|---|
| 1187 | DO i = 1, knon |
|---|
| 1188 | itop(i) = isommet |
|---|
| 1189 | ENDDO |
|---|
| 1190 | |
|---|
| 1191 | DO k = 2, isommet |
|---|
| 1192 | DO i = 1, knon |
|---|
| 1193 | zdu2=MAX(cepdu2,(u(i,k)-u(i,k-1))**2 |
|---|
| 1194 | . +(v(i,k)-v(i,k-1))**2) |
|---|
| 1195 | zmgeom(i)=zgeop(i,k)-zgeop(i,k-1) |
|---|
| 1196 | zdphi =zmgeom(i) / 2.0 |
|---|
| 1197 | zt = (t(i,k)+t(i,k-1)) * 0.5 |
|---|
| 1198 | zq = (q(i,k)+q(i,k-1)) * 0.5 |
|---|
| 1199 | c |
|---|
| 1200 | c calculer Qs et dQs/dT: |
|---|
| 1201 | c |
|---|
| 1202 | IF (thermcep) THEN |
|---|
| 1203 | zdelta = MAX(0.,SIGN(1.,RTT-zt)) |
|---|
| 1204 | zcvm5 = R5LES*RLVTT/RCPD/(1.0+RVTMP2*zq)*(1.-zdelta) |
|---|
| 1205 | . + R5IES*RLSTT/RCPD/(1.0+RVTMP2*zq)*zdelta |
|---|
| 1206 | zqs = R2ES * FOEEW(zt,zdelta) / pplay(i,k) |
|---|
| 1207 | zqs = MIN(0.5,zqs) |
|---|
| 1208 | zcor = 1./(1.-RETV*zqs) |
|---|
| 1209 | zqs = zqs*zcor |
|---|
| 1210 | zdqs = FOEDE(zt,zdelta,zcvm5,zqs,zcor) |
|---|
| 1211 | ELSE |
|---|
| 1212 | IF (zt .LT. t_coup) THEN |
|---|
| 1213 | zqs = qsats(zt) / pplay(i,k) |
|---|
| 1214 | zdqs = dqsats(zt,zqs) |
|---|
| 1215 | ELSE |
|---|
| 1216 | zqs = qsatl(zt) / pplay(i,k) |
|---|
| 1217 | zdqs = dqsatl(zt,zqs) |
|---|
| 1218 | ENDIF |
|---|
| 1219 | ENDIF |
|---|
| 1220 | c |
|---|
| 1221 | c calculer la fraction nuageuse (processus humide): |
|---|
| 1222 | c |
|---|
| 1223 | zfr = (zq+ratqs*zq-zqs) / (2.0*ratqs*zq) |
|---|
| 1224 | zfr = MAX(0.0,MIN(1.0,zfr)) |
|---|
| 1225 | IF (.NOT.richum) zfr = 0.0 |
|---|
| 1226 | c |
|---|
| 1227 | c calculer le nombre de Richardson: |
|---|
| 1228 | c |
|---|
| 1229 | IF (tvirtu) THEN |
|---|
| 1230 | ztvd =( t(i,k) |
|---|
| 1231 | . + zdphi/RCPD/(1.+RVTMP2*zq) |
|---|
| 1232 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
|---|
| 1233 | . )*(1.+RETV*q(i,k)) |
|---|
| 1234 | ztvu =( t(i,k-1) |
|---|
| 1235 | . - zdphi/RCPD/(1.+RVTMP2*zq) |
|---|
| 1236 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
|---|
| 1237 | . )*(1.+RETV*q(i,k-1)) |
|---|
| 1238 | zri(i) =zmgeom(i)*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
|---|
| 1239 | zri(i) = zri(i) |
|---|
| 1240 | . + zmgeom(i)*zmgeom(i)/RG*gamt(k) |
|---|
| 1241 | . *(paprs(i,k)/101325.0)**RKAPPA |
|---|
| 1242 | . /(zdu2*0.5*(ztvd+ztvu)) |
|---|
| 1243 | c |
|---|
| 1244 | ELSE ! calcul de Ridchardson compatible LMD5 |
|---|
| 1245 | c |
|---|
| 1246 | zri(i) =(RCPD*(t(i,k)-t(i,k-1)) |
|---|
| 1247 | . -RD*0.5*(t(i,k)+t(i,k-1))/paprs(i,k) |
|---|
| 1248 | . *(pplay(i,k)-pplay(i,k-1)) |
|---|
| 1249 | . )*zmgeom(i)/(zdu2*0.5*RCPD*(t(i,k-1)+t(i,k))) |
|---|
| 1250 | zri(i) = zri(i) + |
|---|
| 1251 | . zmgeom(i)*zmgeom(i)*gamt(k)/RG |
|---|
| 1252 | cSB . /(paprs(i,k)/101325.0)**RKAPPA |
|---|
| 1253 | . *(paprs(i,k)/101325.0)**RKAPPA |
|---|
| 1254 | . /(zdu2*0.5*(t(i,k-1)+t(i,k))) |
|---|
| 1255 | ENDIF |
|---|
| 1256 | c |
|---|
| 1257 | c finalement, les coefficients d'echange sont obtenus: |
|---|
| 1258 | c |
|---|
| 1259 | zcdn=SQRT(zdu2) / zmgeom(i) * RG |
|---|
| 1260 | c |
|---|
| 1261 | IF (opt_ec) THEN |
|---|
| 1262 | z2geomf=zgeop(i,k-1)+zgeop(i,k) |
|---|
| 1263 | zalm2=(0.5*ckap/RG*z2geomf |
|---|
| 1264 | . /(1.+0.5*ckap/rg/clam*z2geomf))**2 |
|---|
| 1265 | zalh2=(0.5*ckap/rg*z2geomf |
|---|
| 1266 | . /(1.+0.5*ckap/RG/(clam*SQRT(1.5*cd))*z2geomf))**2 |
|---|
| 1267 | IF (zri(i).LT.0.0) THEN ! situation instable |
|---|
| 1268 | zscf = ((zgeop(i,k)/zgeop(i,k-1))**(1./3.)-1.)**3 |
|---|
| 1269 | . / (zmgeom(i)/RG)**3 / (zgeop(i,k-1)/RG) |
|---|
| 1270 | zscf = SQRT(-zri(i)*zscf) |
|---|
| 1271 | zscfm = 1.0 / (1.0+3.0*cb*cc*zalm2*zscf) |
|---|
| 1272 | zscfh = 1.0 / (1.0+3.0*cb*cc*zalh2*zscf) |
|---|
| 1273 | pcfm(i,k)=zcdn*zalm2*(1.-2.0*cb*zri(i)*zscfm) |
|---|
| 1274 | pcfh(i,k)=zcdn*zalh2*(1.-3.0*cb*zri(i)*zscfh) |
|---|
| 1275 | ELSE ! situation stable |
|---|
| 1276 | zscf=SQRT(1.+cd*zri(i)) |
|---|
| 1277 | pcfm(i,k)=zcdn*zalm2/(1.+2.0*cb*zri(i)/zscf) |
|---|
| 1278 | pcfh(i,k)=zcdn*zalh2/(1.+3.0*cb*zri(i)*zscf) |
|---|
| 1279 | ENDIF |
|---|
| 1280 | ELSE |
|---|
| 1281 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,itop(i)+1)) |
|---|
| 1282 | . /(paprs(i,2)-paprs(i,itop(i)+1)) ))**2 |
|---|
| 1283 | pcfm(i,k)=sqrt(max(zcdn*zcdn*(ric-zri(i))/ric, kstable)) |
|---|
| 1284 | pcfm(i,k)= zl2(i)* pcfm(i,k) |
|---|
| 1285 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
|---|
| 1286 | ENDIF |
|---|
| 1287 | ENDDO |
|---|
| 1288 | ENDDO |
|---|
| 1289 | c |
|---|
| 1290 | c Au-dela du sommet, pas de diffusion turbulente: |
|---|
| 1291 | c |
|---|
| 1292 | DO i = 1, knon |
|---|
| 1293 | IF (itop(i)+1 .LE. klev) THEN |
|---|
| 1294 | DO k = itop(i)+1, klev |
|---|
| 1295 | pcfh(i,k) = 0.0 |
|---|
| 1296 | pcfm(i,k) = 0.0 |
|---|
| 1297 | ENDDO |
|---|
| 1298 | ENDIF |
|---|
| 1299 | ENDDO |
|---|
| 1300 | c |
|---|
| 1301 | RETURN |
|---|
| 1302 | END |
|---|
| 1303 | SUBROUTINE coefkz2(nsrf, knon, paprs, pplay,t, |
|---|
| 1304 | . pcfm, pcfh) |
|---|
| 1305 | IMPLICIT none |
|---|
| 1306 | c====================================================================== |
|---|
| 1307 | c J'introduit un peu de diffusion sauf dans les endroits |
|---|
| 1308 | c ou une forte inversion est presente |
|---|
| 1309 | c On peut dire qu'il represente la convection peu profonde |
|---|
| 1310 | c |
|---|
| 1311 | c Arguments: |
|---|
| 1312 | c nsrf-----input-I- indicateur de la nature du sol |
|---|
| 1313 | c knon-----input-I- nombre de points a traiter |
|---|
| 1314 | c paprs----input-R- pression a chaque intercouche (en Pa) |
|---|
| 1315 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
|---|
| 1316 | c t--------input-R- temperature (K) |
|---|
| 1317 | c |
|---|
| 1318 | c pcfm-----output-R- coefficients a calculer (vitesse) |
|---|
| 1319 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
|---|
| 1320 | c====================================================================== |
|---|
| 1321 | #include "dimensions.h" |
|---|
| 1322 | #include "dimphy.h" |
|---|
| 1323 | #include "YOMCST.h" |
|---|
| 1324 | #include "indicesol.h" |
|---|
| 1325 | c |
|---|
| 1326 | c Arguments: |
|---|
| 1327 | c |
|---|
| 1328 | INTEGER knon, nsrf |
|---|
| 1329 | REAL paprs(klon,klev+1), pplay(klon,klev) |
|---|
| 1330 | REAL t(klon,klev) |
|---|
| 1331 | c |
|---|
| 1332 | REAL pcfm(klon,klev), pcfh(klon,klev) |
|---|
| 1333 | c |
|---|
| 1334 | c Quelques constantes et options: |
|---|
| 1335 | c |
|---|
| 1336 | REAL prandtl |
|---|
| 1337 | PARAMETER (prandtl=0.4) |
|---|
| 1338 | REAL kstable |
|---|
| 1339 | PARAMETER (kstable=0.002) |
|---|
| 1340 | ccc PARAMETER (kstable=0.001) |
|---|
| 1341 | REAL mixlen ! constante controlant longueur de melange |
|---|
| 1342 | PARAMETER (mixlen=35.0) |
|---|
| 1343 | REAL seuil ! au-dela l'inversion est consideree trop faible |
|---|
| 1344 | PARAMETER (seuil=-0.02) |
|---|
| 1345 | ccc PARAMETER (seuil=-0.04) |
|---|
| 1346 | ccc PARAMETER (seuil=-0.06) |
|---|
| 1347 | ccc PARAMETER (seuil=-0.09) |
|---|
| 1348 | c |
|---|
| 1349 | c Variables locales: |
|---|
| 1350 | c |
|---|
| 1351 | INTEGER i, k, invb(knon) |
|---|
| 1352 | REAL zl2(knon) |
|---|
| 1353 | REAL zdthmin(knon), zdthdp |
|---|
| 1354 | c |
|---|
| 1355 | c Initialiser les sorties |
|---|
| 1356 | c |
|---|
| 1357 | DO k = 1, klev |
|---|
| 1358 | DO i = 1, knon |
|---|
| 1359 | pcfm(i,k) = 0.0 |
|---|
| 1360 | pcfh(i,k) = 0.0 |
|---|
| 1361 | ENDDO |
|---|
| 1362 | ENDDO |
|---|
| 1363 | c |
|---|
| 1364 | c Chercher la zone d'inversion forte |
|---|
| 1365 | c |
|---|
| 1366 | DO i = 1, knon |
|---|
| 1367 | invb(i) = klev |
|---|
| 1368 | zdthmin(i)=0.0 |
|---|
| 1369 | ENDDO |
|---|
| 1370 | DO k = 2, klev/2-1 |
|---|
| 1371 | DO i = 1, knon |
|---|
| 1372 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
|---|
| 1373 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
|---|
| 1374 | zdthdp = zdthdp * 100.0 |
|---|
| 1375 | IF (pplay(i,k).GT.0.8*paprs(i,1) .AND. |
|---|
| 1376 | . zdthdp.LT.zdthmin(i) ) THEN |
|---|
| 1377 | zdthmin(i) = zdthdp |
|---|
| 1378 | invb(i) = k |
|---|
| 1379 | ENDIF |
|---|
| 1380 | ENDDO |
|---|
| 1381 | ENDDO |
|---|
| 1382 | c |
|---|
| 1383 | c Introduire une diffusion: |
|---|
| 1384 | c |
|---|
| 1385 | DO k = 2, klev |
|---|
| 1386 | DO i = 1, knon |
|---|
| 1387 | IF ( (nsrf.NE.is_oce) .OR. ! si ce n'est pas sur l'ocean |
|---|
| 1388 | . (invb(i).EQ.klev) .OR. ! s'il n'y a pas d'inversion |
|---|
| 1389 | . (zdthmin(i).GT.seuil) )THEN ! si l'inversion est trop faible |
|---|
| 1390 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,klev+1)) |
|---|
| 1391 | . /(paprs(i,2)-paprs(i,klev+1)) ))**2 |
|---|
| 1392 | pcfm(i,k)= zl2(i)* kstable |
|---|
| 1393 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
|---|
| 1394 | ENDIF |
|---|
| 1395 | ENDDO |
|---|
| 1396 | ENDDO |
|---|
| 1397 | c |
|---|
| 1398 | RETURN |
|---|
| 1399 | END |
|---|
| 1400 | SUBROUTINE calbeta(dtime,indice,knon,snow,qsol, |
|---|
| 1401 | . vbeta,vcal,vdif) |
|---|
| 1402 | IMPLICIT none |
|---|
| 1403 | c====================================================================== |
|---|
| 1404 | c Auteur(s): Z.X. Li (LMD/CNRS) (adaptation du GCM du LMD) |
|---|
| 1405 | c date: 19940414 |
|---|
| 1406 | c====================================================================== |
|---|
| 1407 | c |
|---|
| 1408 | c Calculer quelques parametres pour appliquer la couche limite |
|---|
| 1409 | c ------------------------------------------------------------ |
|---|
| 1410 | #include "dimensions.h" |
|---|
| 1411 | #include "dimphy.h" |
|---|
| 1412 | #include "YOMCST.h" |
|---|
| 1413 | #include "indicesol.h" |
|---|
| 1414 | REAL tau_gl ! temps de relaxation pour la glace de mer |
|---|
| 1415 | ccc PARAMETER (tau_gl=86400.0*30.0) |
|---|
| 1416 | PARAMETER (tau_gl=86400.0*5.0) |
|---|
| 1417 | REAL mx_eau_sol |
|---|
| 1418 | PARAMETER (mx_eau_sol=150.0) |
|---|
| 1419 | c |
|---|
| 1420 | REAL calsol, calsno, calice ! epaisseur du sol: 0.15 m |
|---|
| 1421 | PARAMETER (calsol=1.0/(2.5578E+06*0.15)) |
|---|
| 1422 | PARAMETER (calsno=1.0/(2.3867E+06*0.15)) |
|---|
| 1423 | PARAMETER (calice=1.0/(5.1444E+06*0.15)) |
|---|
| 1424 | C |
|---|
| 1425 | INTEGER i |
|---|
| 1426 | c |
|---|
| 1427 | REAL dtime |
|---|
| 1428 | REAL snow(klon), qsol(klon) |
|---|
| 1429 | INTEGER indice, knon |
|---|
| 1430 | C |
|---|
| 1431 | REAL vbeta(klon) |
|---|
| 1432 | REAL vcal(klon) |
|---|
| 1433 | REAL vdif(klon) |
|---|
| 1434 | C |
|---|
| 1435 | |
|---|
| 1436 | IF (indice.EQ.is_oce) THEN |
|---|
| 1437 | DO i = 1, knon |
|---|
| 1438 | vcal(i) = 0.0 |
|---|
| 1439 | vbeta(i) = 1.0 |
|---|
| 1440 | vdif(i) = 0.0 |
|---|
| 1441 | ENDDO |
|---|
| 1442 | ENDIF |
|---|
| 1443 | c |
|---|
| 1444 | IF (indice.EQ.is_sic) THEN |
|---|
| 1445 | DO i = 1, knon |
|---|
| 1446 | vcal(i) = calice |
|---|
| 1447 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
|---|
| 1448 | vbeta(i) = 1.0 |
|---|
| 1449 | vdif(i) = 1.0/tau_gl |
|---|
| 1450 | ccc vdif(i) = calice/tau_gl ! c'etait une erreur |
|---|
| 1451 | ENDDO |
|---|
| 1452 | ENDIF |
|---|
| 1453 | c |
|---|
| 1454 | IF (indice.EQ.is_ter) THEN |
|---|
| 1455 | DO i = 1, knon |
|---|
| 1456 | vcal(i) = calsol |
|---|
| 1457 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
|---|
| 1458 | vbeta(i) = MIN(2.0*qsol(i)/mx_eau_sol, 1.0) |
|---|
| 1459 | vdif(i) = 0.0 |
|---|
| 1460 | ENDDO |
|---|
| 1461 | ENDIF |
|---|
| 1462 | c |
|---|
| 1463 | IF (indice.EQ.is_lic) THEN |
|---|
| 1464 | DO i = 1, knon |
|---|
| 1465 | vcal(i) = calice |
|---|
| 1466 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
|---|
| 1467 | vbeta(i) = 1.0 |
|---|
| 1468 | vdif(i) = 0.0 |
|---|
| 1469 | ENDDO |
|---|
| 1470 | ENDIF |
|---|
| 1471 | c |
|---|
| 1472 | RETURN |
|---|
| 1473 | END |
|---|
| 1474 | C====================================================================== |
|---|
| 1475 | SUBROUTINE nonlocal(knon, paprs, pplay, |
|---|
| 1476 | . tsol,beta,u,v,t,q, |
|---|
| 1477 | . cd_h, cd_m, pcfh, pcfm, cgh, cgq) |
|---|
| 1478 | IMPLICIT none |
|---|
| 1479 | c====================================================================== |
|---|
| 1480 | c Laurent Li (LMD/CNRS), le 30 septembre 1998 |
|---|
| 1481 | c Couche limite non-locale. Adaptation du code du CCM3. |
|---|
| 1482 | c Code non teste, donc a ne pas utiliser. |
|---|
| 1483 | c====================================================================== |
|---|
| 1484 | c Nonlocal scheme that determines eddy diffusivities based on a |
|---|
| 1485 | c diagnosed boundary layer height and a turbulent velocity scale. |
|---|
| 1486 | c Also countergradient effects for heat and moisture are included. |
|---|
| 1487 | c |
|---|
| 1488 | c For more information, see Holtslag, A.A.M., and B.A. Boville, 1993: |
|---|
| 1489 | c Local versus nonlocal boundary-layer diffusion in a global climate |
|---|
| 1490 | c model. J. of Climate, vol. 6, 1825-1842. |
|---|
| 1491 | c====================================================================== |
|---|
| 1492 | #include "dimensions.h" |
|---|
| 1493 | #include "dimphy.h" |
|---|
| 1494 | #include "YOMCST.h" |
|---|
| 1495 | c |
|---|
| 1496 | c Arguments: |
|---|
| 1497 | c |
|---|
| 1498 | INTEGER knon ! nombre de points a calculer |
|---|
| 1499 | REAL tsol(klon) ! temperature du sol (K) |
|---|
| 1500 | REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1) |
|---|
| 1501 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
|---|
| 1502 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
|---|
| 1503 | REAL u(klon,klev) ! vitesse U (m/s) |
|---|
| 1504 | REAL v(klon,klev) ! vitesse V (m/s) |
|---|
| 1505 | REAL t(klon,klev) ! temperature (K) |
|---|
| 1506 | REAL q(klon,klev) ! vapeur d'eau (kg/kg) |
|---|
| 1507 | REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
|---|
| 1508 | REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
|---|
| 1509 | c |
|---|
| 1510 | INTEGER isommet |
|---|
| 1511 | PARAMETER (isommet=klev) |
|---|
| 1512 | REAL vk |
|---|
| 1513 | PARAMETER (vk=0.35) |
|---|
| 1514 | REAL ricr |
|---|
| 1515 | PARAMETER (ricr=0.4) |
|---|
| 1516 | REAL fak |
|---|
| 1517 | PARAMETER (fak=8.5) |
|---|
| 1518 | REAL fakn |
|---|
| 1519 | PARAMETER (fakn=7.2) |
|---|
| 1520 | REAL onet |
|---|
| 1521 | PARAMETER (onet=1.0/3.0) |
|---|
| 1522 | REAL t_coup |
|---|
| 1523 | PARAMETER(t_coup=273.15) |
|---|
| 1524 | REAL zkmin |
|---|
| 1525 | PARAMETER (zkmin=0.01) |
|---|
| 1526 | REAL betam |
|---|
| 1527 | PARAMETER (betam=15.0) |
|---|
| 1528 | REAL betah |
|---|
| 1529 | PARAMETER (betah=15.0) |
|---|
| 1530 | REAL betas |
|---|
| 1531 | PARAMETER (betas=5.0) |
|---|
| 1532 | REAL sffrac |
|---|
| 1533 | PARAMETER (sffrac=0.1) |
|---|
| 1534 | REAL binm |
|---|
| 1535 | PARAMETER (binm=betam*sffrac) |
|---|
| 1536 | REAL binh |
|---|
| 1537 | PARAMETER (binh=betah*sffrac) |
|---|
| 1538 | REAL ccon |
|---|
| 1539 | PARAMETER (ccon=fak*sffrac*vk) |
|---|
| 1540 | c |
|---|
| 1541 | REAL z(klon,klev) |
|---|
| 1542 | REAL pcfm(klon,klev), pcfh(klon,klev) |
|---|
| 1543 | c |
|---|
| 1544 | INTEGER i, k |
|---|
| 1545 | REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
|---|
| 1546 | REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
|---|
| 1547 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
|---|
| 1548 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
|---|
| 1549 | REAL heatv(klon) ! surface virtual heat flux |
|---|
| 1550 | REAL ustar(klon) |
|---|
| 1551 | REAL rino(klon,klev) ! bulk Richardon no. from level to ref lev |
|---|
| 1552 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
|---|
| 1553 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
|---|
| 1554 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
|---|
| 1555 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
|---|
| 1556 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
|---|
| 1557 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
|---|
| 1558 | REAL pblh(klon) |
|---|
| 1559 | REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] |
|---|
| 1560 | REAL cgq(klon,2:klev) ! counter-gradient term for constituents |
|---|
| 1561 | REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) |
|---|
| 1562 | REAL obklen(klon) |
|---|
| 1563 | REAL ztvd, ztvu, zdu2 |
|---|
| 1564 | REAL therm(klon) ! thermal virtual temperature excess |
|---|
| 1565 | REAL phiminv(klon) ! inverse phi function for momentum |
|---|
| 1566 | REAL phihinv(klon) ! inverse phi function for heat |
|---|
| 1567 | REAL wm(klon) ! turbulent velocity scale for momentum |
|---|
| 1568 | REAL fak1(klon) ! k*ustar*pblh |
|---|
| 1569 | REAL fak2(klon) ! k*wm*pblh |
|---|
| 1570 | REAL fak3(klon) ! fakn*wstr/wm |
|---|
| 1571 | REAL pblk(klon) ! level eddy diffusivity for momentum |
|---|
| 1572 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
|---|
| 1573 | REAL zl(klon) ! zmzp / Obukhov length |
|---|
| 1574 | REAL zh(klon) ! zmzp / pblh |
|---|
| 1575 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
|---|
| 1576 | REAL wstr(klon) ! w*, convective velocity scale |
|---|
| 1577 | REAL zm(klon) ! current level height |
|---|
| 1578 | REAL zp(klon) ! current level height + one level up |
|---|
| 1579 | REAL zcor, zdelta, zcvm5, zxqs |
|---|
| 1580 | REAL fac, pblmin, zmzp, term |
|---|
| 1581 | c |
|---|
| 1582 | #include "YOETHF.h" |
|---|
| 1583 | #include "FCTTRE.h" |
|---|
| 1584 | c |
|---|
| 1585 | c Initialisation |
|---|
| 1586 | c |
|---|
| 1587 | DO i = 1, klon |
|---|
| 1588 | pcfh(i,1) = cd_h(i) |
|---|
| 1589 | pcfm(i,1) = cd_m(i) |
|---|
| 1590 | ENDDO |
|---|
| 1591 | DO k = 2, klev |
|---|
| 1592 | DO i = 1, klon |
|---|
| 1593 | pcfh(i,k) = zkmin |
|---|
| 1594 | pcfm(i,k) = zkmin |
|---|
| 1595 | cgs(i,k) = 0.0 |
|---|
| 1596 | cgh(i,k) = 0.0 |
|---|
| 1597 | cgq(i,k) = 0.0 |
|---|
| 1598 | ENDDO |
|---|
| 1599 | ENDDO |
|---|
| 1600 | c |
|---|
| 1601 | c Calculer les hauteurs de chaque couche |
|---|
| 1602 | c |
|---|
| 1603 | DO i = 1, knon |
|---|
| 1604 | z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
|---|
| 1605 | . * (paprs(i,1)-pplay(i,1)) / RG |
|---|
| 1606 | ENDDO |
|---|
| 1607 | DO k = 2, klev |
|---|
| 1608 | DO i = 1, knon |
|---|
| 1609 | z(i,k) = z(i,k-1) |
|---|
| 1610 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
|---|
| 1611 | . * (pplay(i,k-1)-pplay(i,k)) / RG |
|---|
| 1612 | ENDDO |
|---|
| 1613 | ENDDO |
|---|
| 1614 | c |
|---|
| 1615 | DO i = 1, knon |
|---|
| 1616 | IF (thermcep) THEN |
|---|
| 1617 | zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) |
|---|
| 1618 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
|---|
| 1619 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
|---|
| 1620 | zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) |
|---|
| 1621 | zxqs=MIN(0.5,zxqs) |
|---|
| 1622 | zcor=1./(1.-retv*zxqs) |
|---|
| 1623 | zxqs=zxqs*zcor |
|---|
| 1624 | ELSE |
|---|
| 1625 | IF (tsol(i).LT.t_coup) THEN |
|---|
| 1626 | zxqs = qsats(tsol(i)) / paprs(i,1) |
|---|
| 1627 | ELSE |
|---|
| 1628 | zxqs = qsatl(tsol(i)) / paprs(i,1) |
|---|
| 1629 | ENDIF |
|---|
| 1630 | ENDIF |
|---|
| 1631 | zx_alf1 = 1.0 |
|---|
| 1632 | zx_alf2 = 1.0 - zx_alf1 |
|---|
| 1633 | zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) |
|---|
| 1634 | . *(1.+RETV*q(i,1))*zx_alf1 |
|---|
| 1635 | . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) |
|---|
| 1636 | . *(1.+RETV*q(i,2))*zx_alf2 |
|---|
| 1637 | zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 |
|---|
| 1638 | zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 |
|---|
| 1639 | zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 |
|---|
| 1640 | zxmod = 1.0+SQRT(zxu**2+zxv**2) |
|---|
| 1641 | khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) |
|---|
| 1642 | kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) |
|---|
| 1643 | heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) |
|---|
| 1644 | taux = zxu *zxmod*cd_m(i) |
|---|
| 1645 | tauy = zxv *zxmod*cd_m(i) |
|---|
| 1646 | ustar(i) = SQRT(taux**2+tauy**2) |
|---|
| 1647 | ustar(i) = MAX(SQRT(ustar(i)),0.01) |
|---|
| 1648 | ENDDO |
|---|
| 1649 | c |
|---|
| 1650 | DO i = 1, knon |
|---|
| 1651 | rino(i,1) = 0.0 |
|---|
| 1652 | check(i) = .TRUE. |
|---|
| 1653 | pblh(i) = z(i,1) |
|---|
| 1654 | obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) |
|---|
| 1655 | ENDDO |
|---|
| 1656 | |
|---|
| 1657 | C |
|---|
| 1658 | C PBL height calculation: |
|---|
| 1659 | C Search for level of pbl. Scan upward until the Richardson number between |
|---|
| 1660 | C the first level and the current level exceeds the "critical" value. |
|---|
| 1661 | C |
|---|
| 1662 | fac = 100.0 |
|---|
| 1663 | DO k = 1, isommet |
|---|
| 1664 | DO i = 1, knon |
|---|
| 1665 | IF (check(i)) THEN |
|---|
| 1666 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
|---|
| 1667 | zdu2 = max(zdu2,1.0e-20) |
|---|
| 1668 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
|---|
| 1669 | . *(1.+RETV*q(i,k)) |
|---|
| 1670 | ztvu =(t(i,1)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
|---|
| 1671 | . *(1.+RETV*q(i,1)) |
|---|
| 1672 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
|---|
| 1673 | . /(zdu2*0.5*(ztvd+ztvu)) |
|---|
| 1674 | IF (rino(i,k).GE.ricr) THEN |
|---|
| 1675 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
|---|
| 1676 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
|---|
| 1677 | check(i) = .FALSE. |
|---|
| 1678 | ENDIF |
|---|
| 1679 | ENDIF |
|---|
| 1680 | ENDDO |
|---|
| 1681 | ENDDO |
|---|
| 1682 | |
|---|
| 1683 | C |
|---|
| 1684 | C Set pbl height to maximum value where computation exceeds number of |
|---|
| 1685 | C layers allowed |
|---|
| 1686 | C |
|---|
| 1687 | DO i = 1, knon |
|---|
| 1688 | if (check(i)) pblh(i) = z(i,isommet) |
|---|
| 1689 | ENDDO |
|---|
| 1690 | C |
|---|
| 1691 | C Improve estimate of pbl height for the unstable points. |
|---|
| 1692 | C Find unstable points (sensible heat flux is upward): |
|---|
| 1693 | C |
|---|
| 1694 | DO i = 1, knon |
|---|
| 1695 | IF (heatv(i) .GT. 0.) THEN |
|---|
| 1696 | unstbl(i) = .TRUE. |
|---|
| 1697 | check(i) = .TRUE. |
|---|
| 1698 | ELSE |
|---|
| 1699 | unstbl(i) = .FALSE. |
|---|
| 1700 | check(i) = .FALSE. |
|---|
| 1701 | ENDIF |
|---|
| 1702 | ENDDO |
|---|
| 1703 | C |
|---|
| 1704 | C For the unstable case, compute velocity scale and the |
|---|
| 1705 | C convective temperature excess: |
|---|
| 1706 | C |
|---|
| 1707 | DO i = 1, knon |
|---|
| 1708 | IF (check(i)) THEN |
|---|
| 1709 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
|---|
| 1710 | wm(i)= ustar(i)*phiminv(i) |
|---|
| 1711 | therm(i) = heatv(i)*fak/wm(i) |
|---|
| 1712 | rino(i,1) = 0.0 |
|---|
| 1713 | ENDIF |
|---|
| 1714 | ENDDO |
|---|
| 1715 | C |
|---|
| 1716 | C Improve pblh estimate for unstable conditions using the |
|---|
| 1717 | C convective temperature excess: |
|---|
| 1718 | C |
|---|
| 1719 | DO k = 1, isommet |
|---|
| 1720 | DO i = 1, knon |
|---|
| 1721 | IF (check(i)) THEN |
|---|
| 1722 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
|---|
| 1723 | zdu2 = max(zdu2,1.0e-20) |
|---|
| 1724 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
|---|
| 1725 | . *(1.+RETV*q(i,k)) |
|---|
| 1726 | ztvu =(t(i,1)+therm(i)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
|---|
| 1727 | . *(1.+RETV*q(i,1)) |
|---|
| 1728 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
|---|
| 1729 | . /(zdu2*0.5*(ztvd+ztvu)) |
|---|
| 1730 | IF (rino(i,k).GE.ricr) THEN |
|---|
| 1731 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
|---|
| 1732 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
|---|
| 1733 | check(i) = .FALSE. |
|---|
| 1734 | ENDIF |
|---|
| 1735 | ENDIF |
|---|
| 1736 | ENDDO |
|---|
| 1737 | ENDDO |
|---|
| 1738 | C |
|---|
| 1739 | C Set pbl height to maximum value where computation exceeds number of |
|---|
| 1740 | C layers allowed |
|---|
| 1741 | C |
|---|
| 1742 | DO i = 1, knon |
|---|
| 1743 | if (check(i)) pblh(i) = z(i,isommet) |
|---|
| 1744 | ENDDO |
|---|
| 1745 | C |
|---|
| 1746 | C Points for which pblh exceeds number of pbl layers allowed; |
|---|
| 1747 | C set to maximum |
|---|
| 1748 | C |
|---|
| 1749 | DO i = 1, knon |
|---|
| 1750 | IF (check(i)) pblh(i) = z(i,isommet) |
|---|
| 1751 | ENDDO |
|---|
| 1752 | C |
|---|
| 1753 | C PBL height must be greater than some minimum mechanical mixing depth |
|---|
| 1754 | C Several investigators have proposed minimum mechanical mixing depth |
|---|
| 1755 | C relationships as a function of the local friction velocity, u*. We |
|---|
| 1756 | C make use of a linear relationship of the form h = c u* where c=700. |
|---|
| 1757 | C The scaling arguments that give rise to this relationship most often |
|---|
| 1758 | C represent the coefficient c as some constant over the local coriolis |
|---|
| 1759 | C parameter. Here we make use of the experimental results of Koracin |
|---|
| 1760 | C and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
|---|
| 1761 | C where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
|---|
| 1762 | C latitude value for f so that c = 0.07/f = 700. |
|---|
| 1763 | C |
|---|
| 1764 | DO i = 1, knon |
|---|
| 1765 | pblmin = 700.0*ustar(i) |
|---|
| 1766 | pblh(i) = MAX(pblh(i),pblmin) |
|---|
| 1767 | ENDDO |
|---|
| 1768 | C |
|---|
| 1769 | C pblh is now available; do preparation for diffusivity calculation: |
|---|
| 1770 | C |
|---|
| 1771 | DO i = 1, knon |
|---|
| 1772 | pblk(i) = 0.0 |
|---|
| 1773 | fak1(i) = ustar(i)*pblh(i)*vk |
|---|
| 1774 | C |
|---|
| 1775 | C Do additional preparation for unstable cases only, set temperature |
|---|
| 1776 | C and moisture perturbations depending on stability. |
|---|
| 1777 | C |
|---|
| 1778 | IF (unstbl(i)) THEN |
|---|
| 1779 | zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
|---|
| 1780 | . *(1.+RETV*q(i,1)) |
|---|
| 1781 | phiminv(i) = (1. - binm*pblh(i)/obklen(i))**onet |
|---|
| 1782 | phihinv(i) = sqrt(1. - binh*pblh(i)/obklen(i)) |
|---|
| 1783 | wm(i) = ustar(i)*phiminv(i) |
|---|
| 1784 | fak2(i) = wm(i)*pblh(i)*vk |
|---|
| 1785 | wstr(i) = (heatv(i)*RG*pblh(i)/zxt)**onet |
|---|
| 1786 | fak3(i) = fakn*wstr(i)/wm(i) |
|---|
| 1787 | ENDIF |
|---|
| 1788 | ENDDO |
|---|
| 1789 | |
|---|
| 1790 | C Main level loop to compute the diffusivities and |
|---|
| 1791 | C counter-gradient terms: |
|---|
| 1792 | C |
|---|
| 1793 | DO 1000 k = 2, isommet |
|---|
| 1794 | C |
|---|
| 1795 | C Find levels within boundary layer: |
|---|
| 1796 | C |
|---|
| 1797 | DO i = 1, knon |
|---|
| 1798 | unslev(i) = .FALSE. |
|---|
| 1799 | stblev(i) = .FALSE. |
|---|
| 1800 | zm(i) = z(i,k-1) |
|---|
| 1801 | zp(i) = z(i,k) |
|---|
| 1802 | IF (zkmin.EQ.0.0 .AND. zp(i).GT.pblh(i)) zp(i) = pblh(i) |
|---|
| 1803 | IF (zm(i) .LT. pblh(i)) THEN |
|---|
| 1804 | zmzp = 0.5*(zm(i) + zp(i)) |
|---|
| 1805 | zh(i) = zmzp/pblh(i) |
|---|
| 1806 | zl(i) = zmzp/obklen(i) |
|---|
| 1807 | zzh(i) = 0. |
|---|
| 1808 | IF (zh(i).LE.1.0) zzh(i) = (1. - zh(i))**2 |
|---|
| 1809 | C |
|---|
| 1810 | C stblev for points zm < plbh and stable and neutral |
|---|
| 1811 | C unslev for points zm < plbh and unstable |
|---|
| 1812 | C |
|---|
| 1813 | IF (unstbl(i)) THEN |
|---|
| 1814 | unslev(i) = .TRUE. |
|---|
| 1815 | ELSE |
|---|
| 1816 | stblev(i) = .TRUE. |
|---|
| 1817 | ENDIF |
|---|
| 1818 | ENDIF |
|---|
| 1819 | ENDDO |
|---|
| 1820 | C |
|---|
| 1821 | C Stable and neutral points; set diffusivities; counter-gradient |
|---|
| 1822 | C terms zero for stable case: |
|---|
| 1823 | C |
|---|
| 1824 | DO i = 1, knon |
|---|
| 1825 | IF (stblev(i)) THEN |
|---|
| 1826 | IF (zl(i).LE.1.) THEN |
|---|
| 1827 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1. + betas*zl(i)) |
|---|
| 1828 | ELSE |
|---|
| 1829 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas + zl(i)) |
|---|
| 1830 | ENDIF |
|---|
| 1831 | pcfm(i,k) = pblk(i) |
|---|
| 1832 | pcfh(i,k) = pcfm(i,k) |
|---|
| 1833 | ENDIF |
|---|
| 1834 | ENDDO |
|---|
| 1835 | C |
|---|
| 1836 | C unssrf, unstable within surface layer of pbl |
|---|
| 1837 | C unsout, unstable within outer layer of pbl |
|---|
| 1838 | C |
|---|
| 1839 | DO i = 1, knon |
|---|
| 1840 | unssrf(i) = .FALSE. |
|---|
| 1841 | unsout(i) = .FALSE. |
|---|
| 1842 | IF (unslev(i)) THEN |
|---|
| 1843 | IF (zh(i).lt.sffrac) THEN |
|---|
| 1844 | unssrf(i) = .TRUE. |
|---|
| 1845 | ELSE |
|---|
| 1846 | unsout(i) = .TRUE. |
|---|
| 1847 | ENDIF |
|---|
| 1848 | ENDIF |
|---|
| 1849 | ENDDO |
|---|
| 1850 | C |
|---|
| 1851 | C Unstable for surface layer; counter-gradient terms zero |
|---|
| 1852 | C |
|---|
| 1853 | DO i = 1, knon |
|---|
| 1854 | IF (unssrf(i)) THEN |
|---|
| 1855 | term = (1. - betam*zl(i))**onet |
|---|
| 1856 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
|---|
| 1857 | pr(i) = term/sqrt(1. - betah*zl(i)) |
|---|
| 1858 | ENDIF |
|---|
| 1859 | ENDDO |
|---|
| 1860 | C |
|---|
| 1861 | C Unstable for outer layer; counter-gradient terms non-zero: |
|---|
| 1862 | C |
|---|
| 1863 | DO i = 1, knon |
|---|
| 1864 | IF (unsout(i)) THEN |
|---|
| 1865 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
|---|
| 1866 | cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) |
|---|
| 1867 | cgh(i,k) = khfs(i)*cgs(i,k) |
|---|
| 1868 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
|---|
| 1869 | cgq(i,k) = kqfs(i)*cgs(i,k) |
|---|
| 1870 | ENDIF |
|---|
| 1871 | ENDDO |
|---|
| 1872 | C |
|---|
| 1873 | C For all unstable layers, set diffusivities |
|---|
| 1874 | C |
|---|
| 1875 | DO i = 1, knon |
|---|
| 1876 | IF (unslev(i)) THEN |
|---|
| 1877 | pcfm(i,k) = pblk(i) |
|---|
| 1878 | pcfh(i,k) = pblk(i)/pr(i) |
|---|
| 1879 | ENDIF |
|---|
| 1880 | ENDDO |
|---|
| 1881 | 1000 continue ! end of level loop |
|---|
| 1882 | |
|---|
| 1883 | RETURN |
|---|
| 1884 | END |
|---|