1 | SUBROUTINE clmain(dtime,itap,date0,pctsrf, |
---|
2 | . t,q,u,v, |
---|
3 | . jour, rmu0, |
---|
4 | . ok_veget, ocean, npas, nexca, ts, |
---|
5 | . soil_model,ftsoil, |
---|
6 | . paprs,pplay,radsol,snow,qsol,evap,albe,fluxlat, |
---|
7 | . rain_f, snow_f, solsw, sollw, sollwdown, fder, |
---|
8 | . rlon, rlat, cufi, cvfi, rugos, |
---|
9 | . debut, lafin, agesno,rugoro, |
---|
10 | . d_t,d_q,d_u,d_v,d_ts, |
---|
11 | . flux_t,flux_q,flux_u,flux_v,cdragh,cdragm, |
---|
12 | . dflux_t,dflux_q, |
---|
13 | . zcoefh,zu1,zv1) |
---|
14 | cAA . itr, tr, flux_surf, d_tr) |
---|
15 | cAA REM: |
---|
16 | cAA----- |
---|
17 | cAA Tout ce qui a trait au traceurs est dans phytrac maintenant |
---|
18 | cAA pour l'instant le calcul de la couche limite pour les traceurs |
---|
19 | cAA se fait avec cltrac et ne tient pas compte de la differentiation |
---|
20 | cAA des sous-fraction de sol. |
---|
21 | cAA REM bis : |
---|
22 | cAA---------- |
---|
23 | cAA Pour pouvoir extraire les coefficient d'echanges et le vent |
---|
24 | cAA dans la premiere couche, 3 champs supplementaires ont ete crees |
---|
25 | cAA zcoefh,zu1 et zv1. Pour l'instant nous avons moyenne les valeurs |
---|
26 | cAA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir |
---|
27 | cAA si les informations des subsurfaces doivent etre prises en compte |
---|
28 | cAA il faudra sortir ces memes champs en leur ajoutant une dimension, |
---|
29 | cAA c'est a dire nbsrf (nbre de subsurface). |
---|
30 | USE ioipsl |
---|
31 | USE interface_surf |
---|
32 | IMPLICIT none |
---|
33 | c====================================================================== |
---|
34 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
35 | c Objet: interface de "couche limite" (diffusion verticale) |
---|
36 | c Arguments: |
---|
37 | c dtime----input-R- interval du temps (secondes) |
---|
38 | c itap-----input-I- numero du pas de temps |
---|
39 | c date0----input-R- jour initial |
---|
40 | c t--------input-R- temperature (K) |
---|
41 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
42 | c u--------input-R- vitesse u |
---|
43 | c v--------input-R- vitesse v |
---|
44 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
45 | c paprs----input-R- pression a intercouche (Pa) |
---|
46 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
47 | c radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2 |
---|
48 | c rlat-----input-R- latitude en degree |
---|
49 | c rugos----input-R- longeur de rugosite (en m) |
---|
50 | c cufi-----input-R- resolution des mailles en x (m) |
---|
51 | c cvfi-----input-R- resolution des mailles en y (m) |
---|
52 | c |
---|
53 | c d_t------output-R- le changement pour "t" |
---|
54 | c d_q------output-R- le changement pour "q" |
---|
55 | c d_u------output-R- le changement pour "u" |
---|
56 | c d_v------output-R- le changement pour "v" |
---|
57 | c d_ts-----output-R- le changement pour "ts" |
---|
58 | c flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) |
---|
59 | c (orientation positive vers le bas) |
---|
60 | c flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) |
---|
61 | c flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal |
---|
62 | c flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal |
---|
63 | c dflux_t derive du flux sensible |
---|
64 | c dflux_q derive du flux latent |
---|
65 | cAA on rajoute en output yu1 et yv1 qui sont les vents dans |
---|
66 | cAA la premiere couche |
---|
67 | cAA ces 4 variables sont maintenant traites dans phytrac |
---|
68 | c itr--------input-I- nombre de traceurs |
---|
69 | c tr---------input-R- q. de traceurs |
---|
70 | c flux_surf--input-R- flux de traceurs a la surface |
---|
71 | c d_tr-------output-R tendance de traceurs |
---|
72 | c====================================================================== |
---|
73 | #include "dimensions.h" |
---|
74 | #include "dimphy.h" |
---|
75 | #include "indicesol.h" |
---|
76 | c$$$ PB ajout pour soil |
---|
77 | #include "dimsoil.h" |
---|
78 | c |
---|
79 | REAL dtime |
---|
80 | real date0 |
---|
81 | integer itap |
---|
82 | REAL t(klon,klev), q(klon,klev) |
---|
83 | REAL u(klon,klev), v(klon,klev) |
---|
84 | REAL paprs(klon,klev+1), pplay(klon,klev), radsol(klon) |
---|
85 | REAL rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
---|
86 | REAL d_t(klon, klev), d_q(klon, klev) |
---|
87 | REAL d_u(klon, klev), d_v(klon, klev) |
---|
88 | REAL flux_t(klon,klev, nbsrf), flux_q(klon,klev, nbsrf) |
---|
89 | REAL dflux_t(klon), dflux_q(klon) |
---|
90 | REAL flux_u(klon,klev, nbsrf), flux_v(klon,klev, nbsrf) |
---|
91 | REAL rugmer(klon), agesno(klon),rugoro(klon) |
---|
92 | REAL cdragh(klon), cdragm(klon) |
---|
93 | integer jour ! jour de l'annee en cours |
---|
94 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
---|
95 | LOGICAL debut, lafin, ok_veget |
---|
96 | character*6 ocean |
---|
97 | integer npas, nexca |
---|
98 | cAA INTEGER itr |
---|
99 | cAA REAL tr(klon,klev,nbtr) |
---|
100 | cAA REAL d_tr(klon,klev,nbtr) |
---|
101 | cAA REAL flux_surf(klon,nbtr) |
---|
102 | c |
---|
103 | REAL pctsrf(klon,nbsrf) |
---|
104 | REAL ts(klon,nbsrf) |
---|
105 | REAL d_ts(klon,nbsrf) |
---|
106 | REAL snow(klon,nbsrf) |
---|
107 | REAL qsol(klon,nbsrf) |
---|
108 | REAL evap(klon,nbsrf) |
---|
109 | REAL albe(klon,nbsrf) |
---|
110 | c$$$ PB |
---|
111 | REAL fluxlat(klon,nbsrf) |
---|
112 | C |
---|
113 | real rain_f(klon), snow_f(klon) |
---|
114 | REAL fder(klon) |
---|
115 | REAL sollw(klon), solsw(klon), sollwdown(klon) |
---|
116 | REAL rugos(klon,nbsrf) |
---|
117 | C la nouvelle repartition des surfaces sortie de l'interface |
---|
118 | REAL pctsrf_new(klon,nbsrf) |
---|
119 | cAA |
---|
120 | REAL zcoefh(klon,klev) |
---|
121 | REAL zu1(klon) |
---|
122 | REAL zv1(klon) |
---|
123 | cAA |
---|
124 | c$$$ PB ajout pour soil |
---|
125 | LOGICAL soil_model |
---|
126 | REAL ftsoil(klon,nsoilmx,nbsrf) |
---|
127 | REAL ytsoil(klon,nsoilmx) |
---|
128 | c====================================================================== |
---|
129 | EXTERNAL clqh, clvent, coefkz, calbeta, cltrac |
---|
130 | c====================================================================== |
---|
131 | REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) |
---|
132 | REAL yalb(klon),yevap(klon) |
---|
133 | REAL yu1(klon), yv1(klon) |
---|
134 | real ysnow(klon), yqsol(klon) |
---|
135 | real yrain_f(klon), ysnow_f(klon) |
---|
136 | real ysollw(klon), ysolsw(klon), ysollwdown(klon) |
---|
137 | real yfder(klon), ytaux(klon), ytauy(klon) |
---|
138 | REAL yrugm(klon), yrads(klon),yrugoro(klon) |
---|
139 | c$$$ PB |
---|
140 | REAL yfluxlat(klon) |
---|
141 | C |
---|
142 | REAL y_d_ts(klon) |
---|
143 | REAL y_d_t(klon, klev), y_d_q(klon, klev) |
---|
144 | REAL y_d_u(klon, klev), y_d_v(klon, klev) |
---|
145 | REAL y_flux_t(klon,klev), y_flux_q(klon,klev) |
---|
146 | REAL y_flux_u(klon,klev), y_flux_v(klon,klev) |
---|
147 | REAL y_dflux_t(klon), y_dflux_q(klon) |
---|
148 | REAL ycoefh(klon,klev), ycoefm(klon,klev) |
---|
149 | REAL yu(klon,klev), yv(klon,klev) |
---|
150 | REAL yt(klon,klev), yq(klon,klev) |
---|
151 | REAL ypaprs(klon,klev+1), ypplay(klon,klev), ydelp(klon,klev) |
---|
152 | cAA REAL ytr(klon,klev,nbtr) |
---|
153 | cAA REAL y_d_tr(klon,klev,nbtr) |
---|
154 | cAA REAL yflxsrf(klon,nbtr) |
---|
155 | c |
---|
156 | LOGICAL contreg |
---|
157 | PARAMETER (contreg=.TRUE.) |
---|
158 | c |
---|
159 | LOGICAL ok_nonloc |
---|
160 | PARAMETER (ok_nonloc=.FALSE.) |
---|
161 | REAL ycoefm0(klon,klev), ycoefh0(klon,klev) |
---|
162 | c |
---|
163 | #include "YOMCST.h" |
---|
164 | REAL u1lay(klon), v1lay(klon) |
---|
165 | REAL delp(klon,klev) |
---|
166 | REAL totalflu(klon) |
---|
167 | INTEGER i, k, nsrf |
---|
168 | cAA INTEGER it |
---|
169 | INTEGER ni(klon), knon, j |
---|
170 | c Introduction d'une variable "pourcentage potentiel" pour tenir compte |
---|
171 | c des eventuelles apparitions et/ou disparitions de la glace de mer |
---|
172 | REAL pctsrf_pot(klon,nbsrf) |
---|
173 | |
---|
174 | c====================================================================== |
---|
175 | REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. |
---|
176 | c====================================================================== |
---|
177 | c |
---|
178 | c maf pour sorties IOISPL en cas de debugagage |
---|
179 | c |
---|
180 | CHARACTER*80 cldebug |
---|
181 | SAVE cldebug |
---|
182 | CHARACTER*8 cl_surf(nbsrf) |
---|
183 | SAVE cl_surf |
---|
184 | INTEGER nhoridbg, nidbg |
---|
185 | SAVE nhoridbg, nidbg |
---|
186 | INTEGER ndexbg(iim*(jjm+1)) |
---|
187 | REAL zx_lon(iim,jjm+1), zx_lat(iim,jjm+1), zjulian |
---|
188 | REAL tabindx(klon) |
---|
189 | REAL debugtab(iim,jjm+1) |
---|
190 | LOGICAL first_appel |
---|
191 | SAVE first_appel |
---|
192 | DATA first_appel/.true./ |
---|
193 | LOGICAL debugindex |
---|
194 | SAVE debugindex |
---|
195 | DATA debugindex/.true./ |
---|
196 | #include "temps.h" |
---|
197 | |
---|
198 | IF (first_appel) THEN |
---|
199 | first_appel=.false. |
---|
200 | ! |
---|
201 | ! initialisation sorties netcdf |
---|
202 | ! |
---|
203 | CALL ymds2ju(anne_ini, 1, 1, 0.0, zjulian) |
---|
204 | zjulian = zjulian + day_ini |
---|
205 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
---|
206 | DO i = 1, iim |
---|
207 | zx_lon(i,1) = rlon(i+1) |
---|
208 | zx_lon(i,jjm+1) = rlon(i+1) |
---|
209 | ENDDO |
---|
210 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
---|
211 | cldebug='sous_index' |
---|
212 | CALL histbeg(cldebug, iim,zx_lon,jjm+1,zx_lat,1,iim,1,jjm |
---|
213 | $ +1, 0,zjulian,dtime,nhoridbg,nidbg) |
---|
214 | ! no vertical axis |
---|
215 | cl_surf(1)='ter' |
---|
216 | cl_surf(2)='lic' |
---|
217 | cl_surf(3)='oce' |
---|
218 | cl_surf(4)='sic' |
---|
219 | DO nsrf=1,nbsrf |
---|
220 | CALL histdef(nidbg, cl_surf(nsrf),cl_surf(nsrf), "-",iim, |
---|
221 | $ jjm+1,nhoridbg, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
222 | END DO |
---|
223 | CALL histend(nidbg) |
---|
224 | CALL histsync(nidbg) |
---|
225 | ENDIF |
---|
226 | |
---|
227 | DO k = 1, klev ! epaisseur de couche |
---|
228 | DO i = 1, klon |
---|
229 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
230 | ENDDO |
---|
231 | ENDDO |
---|
232 | DO i = 1, klon ! vent de la premiere couche |
---|
233 | ccc zx_alf1 = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
234 | zx_alf1 = 1.0 |
---|
235 | zx_alf2 = 1.0 - zx_alf1 |
---|
236 | u1lay(i) = u(i,1)*zx_alf1 + u(i,2)*zx_alf2 |
---|
237 | v1lay(i) = v(i,1)*zx_alf1 + v(i,2)*zx_alf2 |
---|
238 | ENDDO |
---|
239 | c |
---|
240 | c initialisation: |
---|
241 | c |
---|
242 | DO i = 1, klon |
---|
243 | rugmer(i) = 0.0 |
---|
244 | cdragh(i) = 0.0 |
---|
245 | cdragm(i) = 0.0 |
---|
246 | dflux_t(i) = 0.0 |
---|
247 | dflux_q(i) = 0.0 |
---|
248 | zu1(i) = 0.0 |
---|
249 | zv1(i) = 0.0 |
---|
250 | ENDDO |
---|
251 | ypct = 0.0 |
---|
252 | yts = 0.0 |
---|
253 | ysnow = 0.0 |
---|
254 | yevap = 0.0 |
---|
255 | yqsol = 0.0 |
---|
256 | yalb = 0.0 |
---|
257 | yrain_f = 0.0 |
---|
258 | ysnow_f = 0.0 |
---|
259 | yfder = 0.0 |
---|
260 | ytaux = 0.0 |
---|
261 | ytauy = 0.0 |
---|
262 | ysolsw = 0.0 |
---|
263 | ysollw = 0.0 |
---|
264 | ysollwdown = 0.0 |
---|
265 | yrugos = 0.0 |
---|
266 | yu1 = 0.0 |
---|
267 | yv1 = 0.0 |
---|
268 | yrads = 0.0 |
---|
269 | ypaprs = 0.0 |
---|
270 | ypaprs = 0.0 |
---|
271 | ypplay = 0.0 |
---|
272 | ydelp = 0.0 |
---|
273 | yu = 0.0 |
---|
274 | yv = 0.0 |
---|
275 | yt = 0.0 |
---|
276 | yq = 0.0 |
---|
277 | pctsrf_new = 0.0 |
---|
278 | y_flux_u = 0.0 |
---|
279 | y_flux_v = 0.0 |
---|
280 | ytsoil = 0.0 |
---|
281 | |
---|
282 | DO nsrf = 1, nbsrf |
---|
283 | DO i = 1, klon |
---|
284 | d_ts(i,nsrf) = 0.0 |
---|
285 | ENDDO |
---|
286 | END DO |
---|
287 | C§§§ PB |
---|
288 | yfluxlat=0. |
---|
289 | flux_t = 0. |
---|
290 | flux_q = 0. |
---|
291 | flux_u = 0. |
---|
292 | flux_v = 0. |
---|
293 | DO k = 1, klev |
---|
294 | DO i = 1, klon |
---|
295 | d_t(i,k) = 0.0 |
---|
296 | d_q(i,k) = 0.0 |
---|
297 | c$$$ flux_t(i,k) = 0.0 |
---|
298 | c$$$ flux_q(i,k) = 0.0 |
---|
299 | d_u(i,k) = 0.0 |
---|
300 | d_v(i,k) = 0.0 |
---|
301 | c$$$ flux_u(i,k) = 0.0 |
---|
302 | c$$$ flux_v(i,k) = 0.0 |
---|
303 | zcoefh(i,k) = 0.0 |
---|
304 | ENDDO |
---|
305 | ENDDO |
---|
306 | cAA IF (itr.GE.1) THEN |
---|
307 | cAA DO it = 1, itr |
---|
308 | cAA DO k = 1, klev |
---|
309 | cAA DO i = 1, klon |
---|
310 | cAA d_tr(i,k,it) = 0.0 |
---|
311 | cAA ENDDO |
---|
312 | cAA ENDDO |
---|
313 | cAA ENDDO |
---|
314 | cAA ENDIF |
---|
315 | |
---|
316 | c |
---|
317 | c Boucler sur toutes les sous-fractions du sol: |
---|
318 | c |
---|
319 | C Initialisation des "pourcentages potentiels". On considere ici qu'on |
---|
320 | C peut avoir potentiellementdela glace sur tout le domaine oceanique |
---|
321 | C (a affiner) |
---|
322 | |
---|
323 | pctsrf_pot = pctsrf |
---|
324 | pctsrf_pot(:,is_oce) = 1. - zmasq(:) |
---|
325 | pctsrf_pot(:,is_sic) = 1. - zmasq(:) |
---|
326 | |
---|
327 | DO 99999 nsrf = 1, nbsrf |
---|
328 | c$$$ PB totalflu = radsol |
---|
329 | |
---|
330 | c chercher les indices: |
---|
331 | DO j = 1, klon |
---|
332 | ni(j) = 0 |
---|
333 | ENDDO |
---|
334 | knon = 0 |
---|
335 | DO i = 1, klon |
---|
336 | |
---|
337 | C pour determiner le domaine a traiter on utilise les surfaces "potentielles" |
---|
338 | C |
---|
339 | IF (pctsrf_pot(i,nsrf).GT.epsfra) THEN |
---|
340 | knon = knon + 1 |
---|
341 | ni(knon) = i |
---|
342 | ENDIF |
---|
343 | ENDDO |
---|
344 | c |
---|
345 | write(*,*)'CLMAIN, nsrf, knon =',nsrf, knon |
---|
346 | c |
---|
347 | c variables pour avoir une sortie IOIPSL des INDEX |
---|
348 | c |
---|
349 | IF (debugindex) THEN |
---|
350 | tabindx(:)=0. |
---|
351 | c tabindx(1:knon)=(/FLOAT(i),i=1:knon/) |
---|
352 | DO i=1,knon |
---|
353 | tabindx(1:knon)=FLOAT(i) |
---|
354 | END DO |
---|
355 | debugtab(:,:)=0. |
---|
356 | ndexbg(:)=0 |
---|
357 | CALL gath2cpl(tabindx,debugtab,klon,knon,iim,jjm,ni) |
---|
358 | CALL histwrite(nidbg,cl_surf(nsrf),itap,debugtab,iim*(jjm+1) |
---|
359 | $ ,ndexbg) |
---|
360 | ENDIF |
---|
361 | IF (knon.EQ.0) GOTO 99999 |
---|
362 | DO j = 1, knon |
---|
363 | i = ni(j) |
---|
364 | ypct(j) = pctsrf(i,nsrf) |
---|
365 | yts(j) = ts(i,nsrf) |
---|
366 | ysnow(j) = snow(i,nsrf) |
---|
367 | yevap(j) = evap(i,nsrf) |
---|
368 | yqsol(j) = qsol(i,nsrf) |
---|
369 | yalb(j) = albe(i,nsrf) |
---|
370 | yrain_f(j) = rain_f(i) |
---|
371 | ysnow_f(j) = snow_f(i) |
---|
372 | yfder(j) = fder(i) |
---|
373 | ytaux(j) = flux_u(i,1,nsrf) |
---|
374 | ytauy(j) = flux_v(i,1,nsrf) |
---|
375 | ysolsw(j) = solsw(i) |
---|
376 | ysollw(j) = sollw(i) |
---|
377 | ysollwdown(j) = sollwdown(i) |
---|
378 | yrugos(j) = rugos(i,nsrf) |
---|
379 | yrugoro(j) = rugoro(i) |
---|
380 | yu1(j) = u1lay(i) |
---|
381 | yv1(j) = v1lay(i) |
---|
382 | c$$$ PB yrads(j) = totalflu(i) |
---|
383 | yrads(j) = (1 - albe(i,nsrf)) |
---|
384 | $ /(1 - pctsrf(i,is_ter) * albe(i,is_ter) |
---|
385 | $ - pctsrf(i, is_lic) *albe(i,is_lic) |
---|
386 | $ - pctsrf(i, is_oce) *albe(i,is_oce) |
---|
387 | $ - pctsrf(i, is_sic) *albe(i,is_sic) |
---|
388 | $ ) * solsw(i) + sollw(i) |
---|
389 | ypaprs(j,klev+1) = paprs(i,klev+1) |
---|
390 | END DO |
---|
391 | c$$$ PB ajour pour soil |
---|
392 | DO k = 1, nsoilmx |
---|
393 | DO j = 1, knon |
---|
394 | i = ni(j) |
---|
395 | ytsoil(j,k) = ftsoil(i,k,nsrf) |
---|
396 | END DO |
---|
397 | END DO |
---|
398 | DO k = 1, klev |
---|
399 | DO j = 1, knon |
---|
400 | i = ni(j) |
---|
401 | ypaprs(j,k) = paprs(i,k) |
---|
402 | ypplay(j,k) = pplay(i,k) |
---|
403 | ydelp(j,k) = delp(i,k) |
---|
404 | yu(j,k) = u(i,k) |
---|
405 | yv(j,k) = v(i,k) |
---|
406 | yt(j,k) = t(i,k) |
---|
407 | yq(j,k) = q(i,k) |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | c |
---|
411 | c |
---|
412 | c calculer Cdrag et les coefficients d'echange |
---|
413 | CALL coefkz(nsrf, knon, ypaprs, ypplay, |
---|
414 | . yts, yrugos, yu, yv, yt, yq, |
---|
415 | . ycoefm, ycoefh) |
---|
416 | CALL coefkz2(nsrf, knon, ypaprs, ypplay,yt, |
---|
417 | . ycoefm0, ycoefh0) |
---|
418 | DO k = 1, klev |
---|
419 | DO i = 1, knon |
---|
420 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
---|
421 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
---|
422 | ENDDO |
---|
423 | ENDDO |
---|
424 | c |
---|
425 | c |
---|
426 | c calculer la diffusion des vitesses "u" et "v" |
---|
427 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yu,ypaprs,ypplay,ydelp, |
---|
428 | s y_d_u,y_flux_u) |
---|
429 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yv,ypaprs,ypplay,ydelp, |
---|
430 | s y_d_v,y_flux_v) |
---|
431 | |
---|
432 | c pour le couplage |
---|
433 | ytaux = y_flux_u(:,1) |
---|
434 | ytauy = y_flux_v(:,1) |
---|
435 | |
---|
436 | c calculer la diffusion de "q" et de "h" |
---|
437 | CALL clqh(dtime, itap, date0,jour, debut,lafin, |
---|
438 | e rlon, rlat, cufi, cvfi, |
---|
439 | e knon, nsrf, ni, pctsrf, |
---|
440 | e soil_model, ytsoil, |
---|
441 | e ok_veget, ocean, npas, nexca, |
---|
442 | e rmu0, yrugos, yrugoro, |
---|
443 | e yu1, yv1, ycoefh, |
---|
444 | e yt,yq,yts,ypaprs,ypplay, |
---|
445 | e ydelp,yrads, yevap,yalb, ysnow, yqsol, |
---|
446 | e yrain_f, ysnow_f, yfder, ytaux, ytauy, |
---|
447 | c$$$ e ysollw, ysolsw, |
---|
448 | e ysollw, ysollwdown, ysolsw,yfluxlat, |
---|
449 | s pctsrf_new, agesno, |
---|
450 | s y_d_t, y_d_q, y_d_ts, yz0_new, |
---|
451 | s y_flux_t, y_flux_q, y_dflux_t, y_dflux_q) |
---|
452 | c |
---|
453 | c calculer la longueur de rugosite sur ocean |
---|
454 | IF (nsrf.EQ.is_oce) THEN |
---|
455 | DO j = 1, knon |
---|
456 | yrugm(j) = 0.018*ycoefm(j,1) * (yu1(j)**2+yv1(j)**2)/RG |
---|
457 | yrugm(j) = MAX(1.5e-05,yrugm(j)) |
---|
458 | ENDDO |
---|
459 | ENDIF |
---|
460 | DO j = 1, knon |
---|
461 | y_dflux_t(j) = y_dflux_t(j) * ypct(j) |
---|
462 | y_dflux_q(j) = y_dflux_q(j) * ypct(j) |
---|
463 | yu1(j) = yu1(j) * ypct(j) |
---|
464 | yv1(j) = yv1(j) * ypct(j) |
---|
465 | ENDDO |
---|
466 | c |
---|
467 | DO k = 1, klev |
---|
468 | DO j = 1, knon |
---|
469 | i = ni(j) |
---|
470 | ycoefh(j,k) = ycoefh(j,k) * ypct(j) |
---|
471 | ycoefm(j,k) = ycoefm(j,k) * ypct(j) |
---|
472 | y_d_t(j,k) = y_d_t(j,k) * ypct(j) |
---|
473 | y_d_q(j,k) = y_d_q(j,k) * ypct(j) |
---|
474 | C§§§ PB |
---|
475 | flux_t(i,k,nsrf) = y_flux_t(j,k) |
---|
476 | flux_q(i,k,nsrf) = y_flux_q(j,k) |
---|
477 | flux_u(i,k,nsrf) = y_flux_u(j,k) |
---|
478 | flux_v(i,k,nsrf) = y_flux_v(j,k) |
---|
479 | c$$$ PB y_flux_t(j,k) = y_flux_t(j,k) * ypct(j) |
---|
480 | c$$$ PB y_flux_q(j,k) = y_flux_q(j,k) * ypct(j) |
---|
481 | y_d_u(j,k) = y_d_u(j,k) * ypct(j) |
---|
482 | y_d_v(j,k) = y_d_v(j,k) * ypct(j) |
---|
483 | c$$$ PB y_flux_u(j,k) = y_flux_u(j,k) * ypct(j) |
---|
484 | c$$$ PB y_flux_v(j,k) = y_flux_v(j,k) * ypct(j) |
---|
485 | ENDDO |
---|
486 | ENDDO |
---|
487 | |
---|
488 | |
---|
489 | evap(:,nsrf) = - flux_q(:,1,nsrf) |
---|
490 | c |
---|
491 | DO j = 1, knon |
---|
492 | i = ni(j) |
---|
493 | d_ts(i,nsrf) = y_d_ts(j) |
---|
494 | albe(i,nsrf) = yalb(j) |
---|
495 | snow(i,nsrf) = ysnow(j) |
---|
496 | qsol(i,nsrf) = yqsol(j) |
---|
497 | rugos(i,nsrf) = yz0_new(j) |
---|
498 | fluxlat(i,nsrf) = yfluxlat(j) |
---|
499 | c$$$ pb rugmer(i) = yrugm(j) |
---|
500 | IF (nsrf .EQ. is_oce) rugmer(i) = yrugm(j) |
---|
501 | cdragh(i) = cdragh(i) + ycoefh(j,1) |
---|
502 | cdragm(i) = cdragm(i) + ycoefm(j,1) |
---|
503 | dflux_t(i) = dflux_t(i) + y_dflux_t(j) |
---|
504 | dflux_q(i) = dflux_q(i) + y_dflux_q(j) |
---|
505 | zu1(i) = zu1(i) + yu1(j) |
---|
506 | zv1(i) = zv1(i) + yv1(j) |
---|
507 | END DO |
---|
508 | c$$$ PB ajout pour soil |
---|
509 | DO k = 1, nsoilmx |
---|
510 | DO j = 1, knon |
---|
511 | i = ni(j) |
---|
512 | ftsoil(i, k, nsrf) = ytsoil(j,k) |
---|
513 | END DO |
---|
514 | END DO |
---|
515 | c |
---|
516 | #ifdef CRAY |
---|
517 | DO k = 1, klev |
---|
518 | DO j = 1, knon |
---|
519 | i = ni(j) |
---|
520 | #else |
---|
521 | DO j = 1, knon |
---|
522 | i = ni(j) |
---|
523 | DO k = 1, klev |
---|
524 | #endif |
---|
525 | d_t(i,k) = d_t(i,k) + y_d_t(j,k) |
---|
526 | d_q(i,k) = d_q(i,k) + y_d_q(j,k) |
---|
527 | c$$$ PB flux_t(i,k) = flux_t(i,k) + y_flux_t(j,k) |
---|
528 | c$$$ flux_q(i,k) = flux_q(i,k) + y_flux_q(j,k) |
---|
529 | d_u(i,k) = d_u(i,k) + y_d_u(j,k) |
---|
530 | d_v(i,k) = d_v(i,k) + y_d_v(j,k) |
---|
531 | c$$$ PB flux_u(i,k) = flux_u(i,k) + y_flux_u(j,k) |
---|
532 | c$$$ flux_v(i,k) = flux_v(i,k) + y_flux_v(j,k) |
---|
533 | zcoefh(i,k) = zcoefh(i,k) + ycoefh(j,k) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | c |
---|
537 | 99999 CONTINUE |
---|
538 | c |
---|
539 | C |
---|
540 | C On utilise les nouvelles surfaces |
---|
541 | C A rajouter: conservation de l'albedo |
---|
542 | C |
---|
543 | rugos(:,is_oce) = rugmer |
---|
544 | pctsrf = pctsrf_new |
---|
545 | |
---|
546 | RETURN |
---|
547 | END |
---|
548 | SUBROUTINE clqh(dtime,itime, date0,jour,debut,lafin, |
---|
549 | e rlon, rlat, cufi, cvfi, |
---|
550 | e knon, nisurf, knindex, pctsrf, |
---|
551 | $ soil_model,tsoil, |
---|
552 | e ok_veget, ocean, npas, nexca, |
---|
553 | e rmu0, rugos, rugoro, |
---|
554 | e u1lay,v1lay,coef, |
---|
555 | e t,q,ts,paprs,pplay, |
---|
556 | e delp,radsol,evap,albedo,snow,qsol, |
---|
557 | e precip_rain, precip_snow, fder, taux, tauy, |
---|
558 | c$$$ e lwdown, swdown, |
---|
559 | $ sollw, sollwdown, swdown,fluxlat, |
---|
560 | s pctsrf_new, agesno, |
---|
561 | s d_t, d_q, d_ts, z0_new, |
---|
562 | s flux_t, flux_q,dflux_s,dflux_l) |
---|
563 | |
---|
564 | USE interface_surf |
---|
565 | |
---|
566 | IMPLICIT none |
---|
567 | c====================================================================== |
---|
568 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
569 | c Objet: diffusion verticale de "q" et de "h" |
---|
570 | c====================================================================== |
---|
571 | #include "dimensions.h" |
---|
572 | #include "dimphy.h" |
---|
573 | #include "YOMCST.h" |
---|
574 | #include "YOETHF.h" |
---|
575 | #include "FCTTRE.h" |
---|
576 | #include "indicesol.h" |
---|
577 | #include "dimsoil.h" |
---|
578 | c Arguments: |
---|
579 | INTEGER knon |
---|
580 | REAL dtime ! intervalle du temps (s) |
---|
581 | real date0 |
---|
582 | REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s) |
---|
583 | REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s) |
---|
584 | REAL coef(klon,klev) ! le coefficient d'echange (m**2/s) |
---|
585 | c multiplie par le cisaillement du |
---|
586 | c vent (dV/dz); la premiere valeur |
---|
587 | c indique la valeur de Cdrag (sans unite) |
---|
588 | REAL t(klon,klev) ! temperature (K) |
---|
589 | REAL q(klon,klev) ! humidite specifique (kg/kg) |
---|
590 | REAL ts(klon) ! temperature du sol (K) |
---|
591 | REAL evap(klon) ! evaporation au sol |
---|
592 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
593 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
594 | REAL delp(klon,klev) ! epaisseur de couche en pression (Pa) |
---|
595 | REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2 |
---|
596 | REAL albedo(klon) ! albedo de la surface |
---|
597 | REAL snow(klon) ! hauteur de neige |
---|
598 | REAL qsol(klon) ! humidite de la surface |
---|
599 | real precip_rain(klon), precip_snow(klon) |
---|
600 | REAL agesno(klon) |
---|
601 | REAL rugoro(klon) |
---|
602 | integer jour ! jour de l'annee en cours |
---|
603 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
---|
604 | real rugos(klon) ! rugosite |
---|
605 | integer knindex(klon) |
---|
606 | real pctsrf(klon,nbsrf) |
---|
607 | real rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
---|
608 | logical ok_veget |
---|
609 | character*6 ocean |
---|
610 | integer npas, nexca |
---|
611 | |
---|
612 | c |
---|
613 | REAL d_t(klon,klev) ! incrementation de "t" |
---|
614 | REAL d_q(klon,klev) ! incrementation de "q" |
---|
615 | REAL d_ts(klon) ! incrementation de "ts" |
---|
616 | REAL flux_t(klon,klev) ! (diagnostic) flux de la chaleur |
---|
617 | c sensible, flux de Cp*T, positif vers |
---|
618 | c le bas: j/(m**2 s) c.a.d.: W/m2 |
---|
619 | REAL flux_q(klon,klev) ! flux de la vapeur d'eau:kg/(m**2 s) |
---|
620 | REAL dflux_s(klon) ! derivee du flux sensible dF/dTs |
---|
621 | REAL dflux_l(klon) ! derivee du flux latent dF/dTs |
---|
622 | c====================================================================== |
---|
623 | REAL t_grnd ! temperature de rappel pour glace de mer |
---|
624 | PARAMETER (t_grnd=271.35) |
---|
625 | REAL t_coup |
---|
626 | PARAMETER(t_coup=273.15) |
---|
627 | c====================================================================== |
---|
628 | INTEGER i, k |
---|
629 | REAL zx_cq(klon,klev) |
---|
630 | REAL zx_dq(klon,klev) |
---|
631 | REAL zx_ch(klon,klev) |
---|
632 | REAL zx_dh(klon,klev) |
---|
633 | REAL zx_buf1(klon) |
---|
634 | REAL zx_buf2(klon) |
---|
635 | REAL zx_coef(klon,klev) |
---|
636 | REAL local_h(klon,klev) ! enthalpie potentielle |
---|
637 | REAL local_q(klon,klev) |
---|
638 | REAL local_ts(klon) |
---|
639 | REAL psref(klon) ! pression de reference pour temperature potent. |
---|
640 | REAL zx_pkh(klon,klev), zx_pkf(klon,klev) |
---|
641 | c====================================================================== |
---|
642 | c contre-gradient pour la vapeur d'eau: (kg/kg)/metre |
---|
643 | REAL gamq(klon,2:klev) |
---|
644 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
645 | REAL gamt(klon,2:klev) |
---|
646 | REAL z_gamaq(klon,2:klev), z_gamah(klon,2:klev) |
---|
647 | REAL zdelz |
---|
648 | c====================================================================== |
---|
649 | logical contreg |
---|
650 | parameter (contreg=.true.) |
---|
651 | c====================================================================== |
---|
652 | c Rajout pour l'interface |
---|
653 | integer itime |
---|
654 | integer nisurf |
---|
655 | logical debut, lafin |
---|
656 | real zlev1(klon) |
---|
657 | real fder(klon), taux(klon), tauy(klon) |
---|
658 | real temp_air(klon), spechum(klon) |
---|
659 | real epot_air(klon), ccanopy(klon) |
---|
660 | real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) |
---|
661 | real petBcoef(klon), peqBcoef(klon) |
---|
662 | real sollw(klon), sollwdown(klon), swnet(klon), swdown(klon) |
---|
663 | real p1lay(klon) |
---|
664 | c$$$C PB ajout pour soil |
---|
665 | LOGICAL soil_model |
---|
666 | REAL tsoil(klon, nsoilmx) |
---|
667 | |
---|
668 | ! Parametres de sortie |
---|
669 | real fluxsens(klon), fluxlat(klon) |
---|
670 | real tsol_rad(klon), tsurf_new(klon), alb_new(klon) |
---|
671 | real emis_new(klon), z0_new(klon) |
---|
672 | real pctsrf_new(klon,nbsrf) |
---|
673 | |
---|
674 | c |
---|
675 | |
---|
676 | if (.not. contreg) then |
---|
677 | do k = 2, klev |
---|
678 | do i = 1, knon |
---|
679 | gamq(i,k) = 0.0 |
---|
680 | gamt(i,k) = 0.0 |
---|
681 | enddo |
---|
682 | enddo |
---|
683 | else |
---|
684 | do k = 3, klev |
---|
685 | do i = 1, knon |
---|
686 | gamq(i,k)= 0.0 |
---|
687 | gamt(i,k)= -1.0e-03 |
---|
688 | enddo |
---|
689 | enddo |
---|
690 | do i = 1, knon |
---|
691 | gamq(i,2) = 0.0 |
---|
692 | gamt(i,2) = -2.5e-03 |
---|
693 | enddo |
---|
694 | endif |
---|
695 | |
---|
696 | DO i = 1, knon |
---|
697 | psref(i) = paprs(i,1) !pression de reference est celle au sol |
---|
698 | local_ts(i) = ts(i) |
---|
699 | ENDDO |
---|
700 | DO k = 1, klev |
---|
701 | DO i = 1, knon |
---|
702 | zx_pkh(i,k) = (psref(i)/paprs(i,k))**RKAPPA |
---|
703 | zx_pkf(i,k) = (psref(i)/pplay(i,k))**RKAPPA |
---|
704 | local_h(i,k) = RCPD * t(i,k) * zx_pkf(i,k) |
---|
705 | local_q(i,k) = q(i,k) |
---|
706 | ENDDO |
---|
707 | ENDDO |
---|
708 | c |
---|
709 | c Convertir les coefficients en variables convenables au calcul: |
---|
710 | c |
---|
711 | c |
---|
712 | DO k = 2, klev |
---|
713 | DO i = 1, knon |
---|
714 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
715 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
716 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
717 | ENDDO |
---|
718 | ENDDO |
---|
719 | c |
---|
720 | c Preparer les flux lies aux contre-gardients |
---|
721 | c |
---|
722 | DO k = 2, klev |
---|
723 | DO i = 1, knon |
---|
724 | zdelz = RD * (t(i,k-1)+t(i,k))/2.0 / RG /paprs(i,k) |
---|
725 | . *(pplay(i,k-1)-pplay(i,k)) |
---|
726 | z_gamaq(i,k) = gamq(i,k) * zdelz |
---|
727 | z_gamah(i,k) = gamt(i,k) * zdelz *RCPD * zx_pkh(i,k) |
---|
728 | ENDDO |
---|
729 | ENDDO |
---|
730 | |
---|
731 | DO i = 1, knon |
---|
732 | zx_buf1(i) = zx_coef(i,klev) + delp(i,klev) |
---|
733 | zx_cq(i,klev) = (local_q(i,klev)*delp(i,klev) |
---|
734 | . -zx_coef(i,klev)*z_gamaq(i,klev))/zx_buf1(i) |
---|
735 | zx_dq(i,klev) = zx_coef(i,klev) / zx_buf1(i) |
---|
736 | c |
---|
737 | zx_buf2(i) = delp(i,klev) + zx_coef(i,klev) |
---|
738 | zx_ch(i,klev) = (local_h(i,klev)*delp(i,klev) |
---|
739 | . -zx_coef(i,klev)*z_gamah(i,klev))/zx_buf2(i) |
---|
740 | zx_dh(i,klev) = zx_coef(i,klev) / zx_buf2(i) |
---|
741 | ENDDO |
---|
742 | DO k = klev-1, 2 , -1 |
---|
743 | DO i = 1, knon |
---|
744 | zx_buf1(i) = delp(i,k)+zx_coef(i,k) |
---|
745 | . +zx_coef(i,k+1)*(1.-zx_dq(i,k+1)) |
---|
746 | zx_cq(i,k) = (local_q(i,k)*delp(i,k) |
---|
747 | . +zx_coef(i,k+1)*zx_cq(i,k+1) |
---|
748 | . +zx_coef(i,k+1)*z_gamaq(i,k+1) |
---|
749 | . -zx_coef(i,k)*z_gamaq(i,k))/zx_buf1(i) |
---|
750 | zx_dq(i,k) = zx_coef(i,k) / zx_buf1(i) |
---|
751 | c |
---|
752 | zx_buf2(i) = delp(i,k)+zx_coef(i,k) |
---|
753 | . +zx_coef(i,k+1)*(1.-zx_dh(i,k+1)) |
---|
754 | zx_ch(i,k) = (local_h(i,k)*delp(i,k) |
---|
755 | . +zx_coef(i,k+1)*zx_ch(i,k+1) |
---|
756 | . +zx_coef(i,k+1)*z_gamah(i,k+1) |
---|
757 | . -zx_coef(i,k)*z_gamah(i,k))/zx_buf2(i) |
---|
758 | zx_dh(i,k) = zx_coef(i,k) / zx_buf2(i) |
---|
759 | ENDDO |
---|
760 | ENDDO |
---|
761 | C |
---|
762 | C nouvelle formulation JL Dufresne |
---|
763 | C |
---|
764 | C q1 = zx_cq(i,1) + zx_dq(i,1) * Flux_Q(i,1) * dt |
---|
765 | C h1 = zx_ch(i,1) + zx_dh(i,1) * Flux_H(i,1) * dt |
---|
766 | C |
---|
767 | DO i = 1, knon |
---|
768 | zx_buf1(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dq(i,2)) |
---|
769 | zx_cq(i,1) = (local_q(i,1)*delp(i,1) |
---|
770 | . +zx_coef(i,2)*(z_gamaq(i,2)+zx_cq(i,2))) |
---|
771 | . /zx_buf1(i) |
---|
772 | zx_dq(i,1) = -1. * RG / zx_buf1(i) |
---|
773 | c |
---|
774 | zx_buf2(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dh(i,2)) |
---|
775 | zx_ch(i,1) = (local_h(i,1)*delp(i,1) |
---|
776 | . +zx_coef(i,2)*(z_gamah(i,2)+zx_ch(i,2))) |
---|
777 | . /zx_buf2(i) |
---|
778 | zx_dh(i,1) = -1. * RG / zx_buf2(i) |
---|
779 | ENDDO |
---|
780 | |
---|
781 | C Appel a interfsurf (appel generique) routine d'interface avec la surface |
---|
782 | |
---|
783 | c do i = 1, knon |
---|
784 | petAcoef=zx_ch(:,1) |
---|
785 | peqAcoef=zx_cq(:,1) |
---|
786 | petBcoef=zx_dh(:,1) |
---|
787 | peqBcoef=zx_dq(:,1) |
---|
788 | tq_cdrag=coef(:,1) |
---|
789 | temp_air=t(:,1) |
---|
790 | epot_air=local_h(:,1) |
---|
791 | spechum=q(:,1) |
---|
792 | p1lay = pplay(:,1) |
---|
793 | zlev1 = delp(:,1) |
---|
794 | swnet = swdown * (1. - albedo) |
---|
795 | c enddo |
---|
796 | c En attendant mieux |
---|
797 | ccanopy = 365. |
---|
798 | |
---|
799 | CALL interfsurf(itime, dtime, date0, jour, rmu0, |
---|
800 | e klon, iim, jjm, nisurf, knon, knindex, pctsrf, |
---|
801 | e rlon, rlat, cufi, cvfi, |
---|
802 | e debut, lafin, ok_veget, soil_model, nsoilmx,tsoil, |
---|
803 | e zlev1, u1lay, v1lay, temp_air, spechum, epot_air, ccanopy, |
---|
804 | e tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, |
---|
805 | e precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, |
---|
806 | e fder, taux, tauy, rugos, rugoro, |
---|
807 | e albedo, snow, qsol, |
---|
808 | e ts, p1lay, psref, radsol, |
---|
809 | e ocean, npas, nexca, zmasq, |
---|
810 | s evap, fluxsens, fluxlat, dflux_l, dflux_s, |
---|
811 | s tsol_rad, tsurf_new, alb_new, emis_new, z0_new, |
---|
812 | s pctsrf_new, agesno) |
---|
813 | |
---|
814 | |
---|
815 | do i = 1, knon |
---|
816 | flux_t(i,1) = fluxsens(i) |
---|
817 | flux_q(i,1) = - evap(i) |
---|
818 | d_ts(i) = tsurf_new(i) - ts(i) |
---|
819 | albedo(i) = alb_new(i) |
---|
820 | enddo |
---|
821 | |
---|
822 | c==== une fois on a zx_h_ts, on peut faire l'iteration ======== |
---|
823 | DO i = 1, knon |
---|
824 | local_h(i,1) = zx_ch(i,1) + zx_dh(i,1)*flux_t(i,1)*dtime |
---|
825 | local_q(i,1) = zx_cq(i,1) + zx_dq(i,1)*flux_q(i,1)*dtime |
---|
826 | ENDDO |
---|
827 | DO k = 2, klev |
---|
828 | DO i = 1, knon |
---|
829 | local_q(i,k) = zx_cq(i,k) + zx_dq(i,k)*local_q(i,k-1) |
---|
830 | local_h(i,k) = zx_ch(i,k) + zx_dh(i,k)*local_h(i,k-1) |
---|
831 | ENDDO |
---|
832 | ENDDO |
---|
833 | c====================================================================== |
---|
834 | c== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
835 | c== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
836 | DO k = 2, klev |
---|
837 | DO i = 1, knon |
---|
838 | flux_q(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
839 | . * (local_q(i,k)-local_q(i,k-1)+z_gamaq(i,k)) |
---|
840 | flux_t(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
841 | . * (local_h(i,k)-local_h(i,k-1)+z_gamah(i,k)) |
---|
842 | . / zx_pkh(i,k) |
---|
843 | ENDDO |
---|
844 | ENDDO |
---|
845 | c====================================================================== |
---|
846 | C Calcul tendances |
---|
847 | DO k = 1, klev |
---|
848 | DO i = 1, knon |
---|
849 | d_t(i,k) = local_h(i,k)/zx_pkf(i,k)/RCPD - t(i,k) |
---|
850 | d_q(i,k) = local_q(i,k) - q(i,k) |
---|
851 | ENDDO |
---|
852 | ENDDO |
---|
853 | c |
---|
854 | |
---|
855 | RETURN |
---|
856 | END |
---|
857 | SUBROUTINE clvent(knon,dtime, u1lay,v1lay,coef,t,ven, |
---|
858 | e paprs,pplay,delp, |
---|
859 | s d_ven,flux_v) |
---|
860 | IMPLICIT none |
---|
861 | c====================================================================== |
---|
862 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
863 | c Objet: diffusion vertical de la vitesse "ven" |
---|
864 | c====================================================================== |
---|
865 | c Arguments: |
---|
866 | c dtime----input-R- intervalle du temps (en second) |
---|
867 | c u1lay----input-R- vent u de la premiere couche (m/s) |
---|
868 | c v1lay----input-R- vent v de la premiere couche (m/s) |
---|
869 | c coef-----input-R- le coefficient d'echange (m**2/s) multiplie par |
---|
870 | c le cisaillement du vent (dV/dz); la premiere |
---|
871 | c valeur indique la valeur de Cdrag (sans unite) |
---|
872 | c t--------input-R- temperature (K) |
---|
873 | c ven------input-R- vitesse horizontale (m/s) |
---|
874 | c paprs----input-R- pression a inter-couche (Pa) |
---|
875 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
876 | c delp-----input-R- epaisseur de couche (Pa) |
---|
877 | c |
---|
878 | c |
---|
879 | c d_ven----output-R- le changement de "ven" |
---|
880 | c flux_v---output-R- (diagnostic) flux du vent: (kg m/s)/(m**2 s) |
---|
881 | c====================================================================== |
---|
882 | #include "dimensions.h" |
---|
883 | #include "dimphy.h" |
---|
884 | INTEGER knon |
---|
885 | REAL dtime |
---|
886 | REAL u1lay(klon), v1lay(klon) |
---|
887 | REAL coef(klon,klev) |
---|
888 | REAL t(klon,klev), ven(klon,klev) |
---|
889 | REAL paprs(klon,klev+1), pplay(klon,klev), delp(klon,klev) |
---|
890 | REAL d_ven(klon,klev) |
---|
891 | REAL flux_v(klon,klev) |
---|
892 | c====================================================================== |
---|
893 | #include "YOMCST.h" |
---|
894 | c====================================================================== |
---|
895 | INTEGER i, k |
---|
896 | REAL zx_cv(klon,2:klev) |
---|
897 | REAL zx_dv(klon,2:klev) |
---|
898 | REAL zx_buf(klon) |
---|
899 | REAL zx_coef(klon,klev) |
---|
900 | REAL local_ven(klon,klev) |
---|
901 | REAL zx_alf1(klon), zx_alf2(klon) |
---|
902 | c====================================================================== |
---|
903 | DO k = 1, klev |
---|
904 | DO i = 1, knon |
---|
905 | local_ven(i,k) = ven(i,k) |
---|
906 | ENDDO |
---|
907 | ENDDO |
---|
908 | c====================================================================== |
---|
909 | DO i = 1, knon |
---|
910 | ccc zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
911 | zx_alf1(i) = 1.0 |
---|
912 | zx_alf2(i) = 1.0 - zx_alf1(i) |
---|
913 | zx_coef(i,1) = coef(i,1) |
---|
914 | . * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) |
---|
915 | . * pplay(i,1)/(RD*t(i,1)) |
---|
916 | zx_coef(i,1) = zx_coef(i,1) * dtime*RG |
---|
917 | ENDDO |
---|
918 | c====================================================================== |
---|
919 | DO k = 2, klev |
---|
920 | DO i = 1, knon |
---|
921 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
922 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
923 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
924 | ENDDO |
---|
925 | ENDDO |
---|
926 | c====================================================================== |
---|
927 | DO i = 1, knon |
---|
928 | zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i)+zx_coef(i,2) |
---|
929 | zx_cv(i,2) = local_ven(i,1)*delp(i,1) / zx_buf(i) |
---|
930 | zx_dv(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) |
---|
931 | . /zx_buf(i) |
---|
932 | ENDDO |
---|
933 | DO k = 3, klev |
---|
934 | DO i = 1, knon |
---|
935 | zx_buf(i) = delp(i,k-1) + zx_coef(i,k) |
---|
936 | . + zx_coef(i,k-1)*(1.-zx_dv(i,k-1)) |
---|
937 | zx_cv(i,k) = (local_ven(i,k-1)*delp(i,k-1) |
---|
938 | . +zx_coef(i,k-1)*zx_cv(i,k-1) )/zx_buf(i) |
---|
939 | zx_dv(i,k) = zx_coef(i,k)/zx_buf(i) |
---|
940 | ENDDO |
---|
941 | ENDDO |
---|
942 | DO i = 1, knon |
---|
943 | local_ven(i,klev) = ( local_ven(i,klev)*delp(i,klev) |
---|
944 | . +zx_coef(i,klev)*zx_cv(i,klev) ) |
---|
945 | . / ( delp(i,klev) + zx_coef(i,klev) |
---|
946 | . -zx_coef(i,klev)*zx_dv(i,klev) ) |
---|
947 | ENDDO |
---|
948 | DO k = klev-1, 1, -1 |
---|
949 | DO i = 1, knon |
---|
950 | local_ven(i,k) = zx_cv(i,k+1) + zx_dv(i,k+1)*local_ven(i,k+1) |
---|
951 | ENDDO |
---|
952 | ENDDO |
---|
953 | c====================================================================== |
---|
954 | c== flux_v est le flux de moment angulaire (positif vers bas) |
---|
955 | c== dont l'unite est: (kg m/s)/(m**2 s) |
---|
956 | DO i = 1, knon |
---|
957 | flux_v(i,1) = zx_coef(i,1)/(RG*dtime) |
---|
958 | . *(local_ven(i,1)*zx_alf1(i) |
---|
959 | . +local_ven(i,2)*zx_alf2(i)) |
---|
960 | ENDDO |
---|
961 | DO k = 2, klev |
---|
962 | DO i = 1, knon |
---|
963 | flux_v(i,k) = zx_coef(i,k)/(RG*dtime) |
---|
964 | . * (local_ven(i,k)-local_ven(i,k-1)) |
---|
965 | ENDDO |
---|
966 | ENDDO |
---|
967 | c |
---|
968 | DO k = 1, klev |
---|
969 | DO i = 1, knon |
---|
970 | d_ven(i,k) = local_ven(i,k) - ven(i,k) |
---|
971 | ENDDO |
---|
972 | ENDDO |
---|
973 | c |
---|
974 | RETURN |
---|
975 | END |
---|
976 | SUBROUTINE coefkz(nsrf, knon, paprs, pplay, |
---|
977 | . ts, rugos, |
---|
978 | . u,v,t,q, |
---|
979 | . pcfm, pcfh) |
---|
980 | IMPLICIT none |
---|
981 | c====================================================================== |
---|
982 | c Auteur(s) F. Hourdin, M. Forichon, Z.X. Li (LMD/CNRS) date: 19930922 |
---|
983 | c (une version strictement identique a l'ancien modele) |
---|
984 | c Objet: calculer le coefficient du frottement du sol (Cdrag) et les |
---|
985 | c coefficients d'echange turbulent dans l'atmosphere. |
---|
986 | c Arguments: |
---|
987 | c nsrf-----input-I- indicateur de la nature du sol |
---|
988 | c knon-----input-I- nombre de points a traiter |
---|
989 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
990 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
991 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
992 | c rugos----input-R- longeur de rugosite (en m) |
---|
993 | c u--------input-R- vitesse u |
---|
994 | c v--------input-R- vitesse v |
---|
995 | c t--------input-R- temperature (K) |
---|
996 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
997 | c |
---|
998 | c itop-----output-I- numero de couche du sommet de la couche limite |
---|
999 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
1000 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
1001 | c====================================================================== |
---|
1002 | #include "dimensions.h" |
---|
1003 | #include "dimphy.h" |
---|
1004 | #include "YOMCST.h" |
---|
1005 | #include "indicesol.h" |
---|
1006 | c |
---|
1007 | c Arguments: |
---|
1008 | c |
---|
1009 | INTEGER knon, nsrf |
---|
1010 | REAL ts(klon) |
---|
1011 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
1012 | REAL u(klon,klev), v(klon,klev), t(klon,klev), q(klon,klev) |
---|
1013 | REAL rugos(klon) |
---|
1014 | c |
---|
1015 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
1016 | INTEGER itop(klon) |
---|
1017 | c |
---|
1018 | c Quelques constantes et options: |
---|
1019 | c |
---|
1020 | REAL cepdu2, ckap, cb, cc, cd, clam |
---|
1021 | PARAMETER (cepdu2 =(0.1)**2) |
---|
1022 | PARAMETER (ckap=0.35) |
---|
1023 | PARAMETER (cb=5.0) |
---|
1024 | PARAMETER (cc=5.0) |
---|
1025 | PARAMETER (cd=5.0) |
---|
1026 | PARAMETER (clam=160.0) |
---|
1027 | REAL ratqs ! largeur de distribution de vapeur d'eau |
---|
1028 | PARAMETER (ratqs=0.05) |
---|
1029 | LOGICAL richum ! utilise le nombre de Richardson humide |
---|
1030 | PARAMETER (richum=.TRUE.) |
---|
1031 | REAL ric ! nombre de Richardson critique |
---|
1032 | PARAMETER(ric=0.4) |
---|
1033 | REAL prandtl |
---|
1034 | PARAMETER (prandtl=0.4) |
---|
1035 | REAL kstable ! diffusion minimale (situation stable) |
---|
1036 | PARAMETER (kstable=1.0e-10) |
---|
1037 | REAL mixlen ! constante controlant longueur de melange |
---|
1038 | PARAMETER (mixlen=35.0) |
---|
1039 | INTEGER isommet ! le sommet de la couche limite |
---|
1040 | PARAMETER (isommet=klev) |
---|
1041 | LOGICAL tvirtu ! calculer Ri d'une maniere plus performante |
---|
1042 | PARAMETER (tvirtu=.TRUE.) |
---|
1043 | LOGICAL opt_ec ! formule du Centre Europeen dans l'atmosphere |
---|
1044 | PARAMETER (opt_ec=.FALSE.) |
---|
1045 | LOGICAL contreg ! utiliser le contre-gradient dans Ri |
---|
1046 | PARAMETER (contreg=.TRUE.) |
---|
1047 | c |
---|
1048 | c Variables locales: |
---|
1049 | c |
---|
1050 | INTEGER i, k |
---|
1051 | REAL zgeop(klon,klev) |
---|
1052 | REAL zmgeom(klon) |
---|
1053 | REAL zri(klon) |
---|
1054 | REAL zl2(klon) |
---|
1055 | REAL zcfm1(klon), zcfm2(klon) |
---|
1056 | REAL zcfh1(klon), zcfh2(klon) |
---|
1057 | REAL zdphi, zdu2, ztvd, ztvu, ztsolv, zcdn |
---|
1058 | REAL zscf, zucf, zcr |
---|
1059 | REAL zt, zq, zdelta, zcvm5, zcor, zqs, zfr, zdqs |
---|
1060 | REAL z2geomf, zalh2, zalm2, zscfh, zscfm |
---|
1061 | REAL t_coup |
---|
1062 | PARAMETER (t_coup=273.15) |
---|
1063 | c |
---|
1064 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
1065 | REAL gamt(2:klev) |
---|
1066 | c |
---|
1067 | LOGICAL appel1er |
---|
1068 | SAVE appel1er |
---|
1069 | c |
---|
1070 | c Fonctions thermodynamiques et fonctions d'instabilite |
---|
1071 | REAL fsta, fins, x |
---|
1072 | LOGICAL zxli ! utiliser un jeu de fonctions simples |
---|
1073 | PARAMETER (zxli=.FALSE.) |
---|
1074 | c |
---|
1075 | #include "YOETHF.h" |
---|
1076 | #include "FCTTRE.h" |
---|
1077 | fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
---|
1078 | fins(x) = SQRT(1.0-18.0*x) |
---|
1079 | c |
---|
1080 | DATA appel1er /.TRUE./ |
---|
1081 | c |
---|
1082 | IF (appel1er) THEN |
---|
1083 | PRINT*, 'coefkz, opt_ec:', opt_ec |
---|
1084 | PRINT*, 'coefkz, richum:', richum |
---|
1085 | IF (richum) PRINT*, 'coefkz, ratqs:', ratqs |
---|
1086 | PRINT*, 'coefkz, isommet:', isommet |
---|
1087 | PRINT*, 'coefkz, tvirtu:', tvirtu |
---|
1088 | appel1er = .FALSE. |
---|
1089 | ENDIF |
---|
1090 | c |
---|
1091 | c Initialiser les sorties |
---|
1092 | c |
---|
1093 | DO k = 1, klev |
---|
1094 | DO i = 1, knon |
---|
1095 | pcfm(i,k) = 0.0 |
---|
1096 | pcfh(i,k) = 0.0 |
---|
1097 | ENDDO |
---|
1098 | ENDDO |
---|
1099 | DO i = 1, knon |
---|
1100 | itop(i) = 0 |
---|
1101 | ENDDO |
---|
1102 | c |
---|
1103 | c Prescrire la valeur de contre-gradient |
---|
1104 | c |
---|
1105 | IF (.NOT.contreg) THEN |
---|
1106 | DO k = 2, klev |
---|
1107 | gamt(k) = 0.0 |
---|
1108 | ENDDO |
---|
1109 | ELSE |
---|
1110 | DO k = 3, klev |
---|
1111 | gamt(k) = -1.0E-03 |
---|
1112 | ENDDO |
---|
1113 | gamt(2) = -2.5E-03 |
---|
1114 | ENDIF |
---|
1115 | c |
---|
1116 | c Calculer les geopotentiels de chaque couche |
---|
1117 | c |
---|
1118 | DO i = 1, knon |
---|
1119 | zgeop(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
1120 | . * (paprs(i,1)-pplay(i,1)) |
---|
1121 | ENDDO |
---|
1122 | DO k = 2, klev |
---|
1123 | DO i = 1, knon |
---|
1124 | zgeop(i,k) = zgeop(i,k-1) |
---|
1125 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
1126 | . * (pplay(i,k-1)-pplay(i,k)) |
---|
1127 | ENDDO |
---|
1128 | ENDDO |
---|
1129 | c |
---|
1130 | c Calculer le frottement au sol (Cdrag) |
---|
1131 | c |
---|
1132 | DO i = 1, knon |
---|
1133 | zdu2=max(cepdu2,u(i,1)**2+v(i,1)**2) |
---|
1134 | zdphi=zgeop(i,1) |
---|
1135 | ztsolv = ts(i) * (1.0+RETV*q(i,1)) ! qsol approx = q(i,1) |
---|
1136 | ztvd=(t(i,1)+zdphi/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1137 | . *(1.+RETV*q(i,1)) |
---|
1138 | zri(i)=zgeop(i,1)*(ztvd-ztsolv)/(zdu2*ztvd) |
---|
1139 | zcdn = (ckap/log(1.+zgeop(i,1)/(RG*rugos(i))))**2 |
---|
1140 | IF (zri(i) .ge. 0.) THEN ! situation stable |
---|
1141 | IF (.NOT.zxli) THEN |
---|
1142 | zscf=SQRT(1.+cd*ABS(zri(i))) |
---|
1143 | zcfm1(i) = zcdn/(1.+2.0*cb*zri(i)/zscf) |
---|
1144 | zcfh1(i) = zcdn/(1.+3.0*cb*zri(i)*zscf) |
---|
1145 | pcfm(i,1) = zcfm1(i) |
---|
1146 | pcfh(i,1) = zcfh1(i) |
---|
1147 | ELSE |
---|
1148 | pcfm(i,1) = zcdn* fsta(zri(i)) |
---|
1149 | pcfh(i,1) = zcdn* fsta(zri(i)) |
---|
1150 | ENDIF |
---|
1151 | ELSE ! situation instable |
---|
1152 | IF (.NOT.zxli) THEN |
---|
1153 | zucf=1./(1.+3.0*cb*cc*zcdn*SQRT(ABS(zri(i)) |
---|
1154 | . *(1.0+zgeop(i,1)/(RG*rugos(i))))) |
---|
1155 | zcfm2(i) = zcdn*(1.-2.0*cb*zri(i)*zucf) |
---|
1156 | zcfh2(i) = zcdn*(1.-3.0*cb*zri(i)*zucf) |
---|
1157 | pcfm(i,1) = zcfm2(i) |
---|
1158 | pcfh(i,1) = zcfh2(i) |
---|
1159 | ELSE |
---|
1160 | pcfm(i,1) = zcdn* fins(zri(i)) |
---|
1161 | pcfh(i,1) = zcdn* fins(zri(i)) |
---|
1162 | ENDIF |
---|
1163 | zcr = (0.0016/(zcdn*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) |
---|
1164 | IF(nsrf.EQ.is_oce)pcfh(i,1)=zcdn*(1.0+zcr**1.25)**(1./1.25) |
---|
1165 | ENDIF |
---|
1166 | ENDDO |
---|
1167 | |
---|
1168 | c |
---|
1169 | c Calculer les coefficients turbulents dans l'atmosphere |
---|
1170 | c |
---|
1171 | DO i = 1, knon |
---|
1172 | itop(i) = isommet |
---|
1173 | ENDDO |
---|
1174 | |
---|
1175 | DO k = 2, isommet |
---|
1176 | DO i = 1, knon |
---|
1177 | zdu2=MAX(cepdu2,(u(i,k)-u(i,k-1))**2 |
---|
1178 | . +(v(i,k)-v(i,k-1))**2) |
---|
1179 | zmgeom(i)=zgeop(i,k)-zgeop(i,k-1) |
---|
1180 | zdphi =zmgeom(i) / 2.0 |
---|
1181 | zt = (t(i,k)+t(i,k-1)) * 0.5 |
---|
1182 | zq = (q(i,k)+q(i,k-1)) * 0.5 |
---|
1183 | c |
---|
1184 | c calculer Qs et dQs/dT: |
---|
1185 | c |
---|
1186 | IF (thermcep) THEN |
---|
1187 | zdelta = MAX(0.,SIGN(1.,RTT-zt)) |
---|
1188 | zcvm5 = R5LES*RLVTT/RCPD/(1.0+RVTMP2*zq)*(1.-zdelta) |
---|
1189 | . + R5IES*RLSTT/RCPD/(1.0+RVTMP2*zq)*zdelta |
---|
1190 | zqs = R2ES * FOEEW(zt,zdelta) / pplay(i,k) |
---|
1191 | zqs = MIN(0.5,zqs) |
---|
1192 | zcor = 1./(1.-RETV*zqs) |
---|
1193 | zqs = zqs*zcor |
---|
1194 | zdqs = FOEDE(zt,zdelta,zcvm5,zqs,zcor) |
---|
1195 | ELSE |
---|
1196 | IF (zt .LT. t_coup) THEN |
---|
1197 | zqs = qsats(zt) / pplay(i,k) |
---|
1198 | zdqs = dqsats(zt,zqs) |
---|
1199 | ELSE |
---|
1200 | zqs = qsatl(zt) / pplay(i,k) |
---|
1201 | zdqs = dqsatl(zt,zqs) |
---|
1202 | ENDIF |
---|
1203 | ENDIF |
---|
1204 | c |
---|
1205 | c calculer la fraction nuageuse (processus humide): |
---|
1206 | c |
---|
1207 | zfr = (zq+ratqs*zq-zqs) / (2.0*ratqs*zq) |
---|
1208 | zfr = MAX(0.0,MIN(1.0,zfr)) |
---|
1209 | IF (.NOT.richum) zfr = 0.0 |
---|
1210 | c |
---|
1211 | c calculer le nombre de Richardson: |
---|
1212 | c |
---|
1213 | IF (tvirtu) THEN |
---|
1214 | ztvd =( t(i,k) |
---|
1215 | . + zdphi/RCPD/(1.+RVTMP2*zq) |
---|
1216 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
1217 | . )*(1.+RETV*q(i,k)) |
---|
1218 | ztvu =( t(i,k-1) |
---|
1219 | . - zdphi/RCPD/(1.+RVTMP2*zq) |
---|
1220 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
1221 | . )*(1.+RETV*q(i,k-1)) |
---|
1222 | zri(i) =zmgeom(i)*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
---|
1223 | zri(i) = zri(i) |
---|
1224 | . + zmgeom(i)*zmgeom(i)/RG*gamt(k) |
---|
1225 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
1226 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1227 | c |
---|
1228 | ELSE ! calcul de Ridchardson compatible LMD5 |
---|
1229 | c |
---|
1230 | zri(i) =(RCPD*(t(i,k)-t(i,k-1)) |
---|
1231 | . -RD*0.5*(t(i,k)+t(i,k-1))/paprs(i,k) |
---|
1232 | . *(pplay(i,k)-pplay(i,k-1)) |
---|
1233 | . )*zmgeom(i)/(zdu2*0.5*RCPD*(t(i,k-1)+t(i,k))) |
---|
1234 | zri(i) = zri(i) + |
---|
1235 | . zmgeom(i)*zmgeom(i)*gamt(k)/RG |
---|
1236 | cSB . /(paprs(i,k)/101325.0)**RKAPPA |
---|
1237 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
1238 | . /(zdu2*0.5*(t(i,k-1)+t(i,k))) |
---|
1239 | ENDIF |
---|
1240 | c |
---|
1241 | c finalement, les coefficients d'echange sont obtenus: |
---|
1242 | c |
---|
1243 | zcdn=SQRT(zdu2) / zmgeom(i) * RG |
---|
1244 | c |
---|
1245 | IF (opt_ec) THEN |
---|
1246 | z2geomf=zgeop(i,k-1)+zgeop(i,k) |
---|
1247 | zalm2=(0.5*ckap/RG*z2geomf |
---|
1248 | . /(1.+0.5*ckap/rg/clam*z2geomf))**2 |
---|
1249 | zalh2=(0.5*ckap/rg*z2geomf |
---|
1250 | . /(1.+0.5*ckap/RG/(clam*SQRT(1.5*cd))*z2geomf))**2 |
---|
1251 | IF (zri(i).LT.0.0) THEN ! situation instable |
---|
1252 | zscf = ((zgeop(i,k)/zgeop(i,k-1))**(1./3.)-1.)**3 |
---|
1253 | . / (zmgeom(i)/RG)**3 / (zgeop(i,k-1)/RG) |
---|
1254 | zscf = SQRT(-zri(i)*zscf) |
---|
1255 | zscfm = 1.0 / (1.0+3.0*cb*cc*zalm2*zscf) |
---|
1256 | zscfh = 1.0 / (1.0+3.0*cb*cc*zalh2*zscf) |
---|
1257 | pcfm(i,k)=zcdn*zalm2*(1.-2.0*cb*zri(i)*zscfm) |
---|
1258 | pcfh(i,k)=zcdn*zalh2*(1.-3.0*cb*zri(i)*zscfh) |
---|
1259 | ELSE ! situation stable |
---|
1260 | zscf=SQRT(1.+cd*zri(i)) |
---|
1261 | pcfm(i,k)=zcdn*zalm2/(1.+2.0*cb*zri(i)/zscf) |
---|
1262 | pcfh(i,k)=zcdn*zalh2/(1.+3.0*cb*zri(i)*zscf) |
---|
1263 | ENDIF |
---|
1264 | ELSE |
---|
1265 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,itop(i)+1)) |
---|
1266 | . /(paprs(i,2)-paprs(i,itop(i)+1)) ))**2 |
---|
1267 | pcfm(i,k)=sqrt(max(zcdn*zcdn*(ric-zri(i))/ric, kstable)) |
---|
1268 | pcfm(i,k)= zl2(i)* pcfm(i,k) |
---|
1269 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
1270 | ENDIF |
---|
1271 | ENDDO |
---|
1272 | ENDDO |
---|
1273 | c |
---|
1274 | c Au-dela du sommet, pas de diffusion turbulente: |
---|
1275 | c |
---|
1276 | DO i = 1, knon |
---|
1277 | IF (itop(i)+1 .LE. klev) THEN |
---|
1278 | DO k = itop(i)+1, klev |
---|
1279 | pcfh(i,k) = 0.0 |
---|
1280 | pcfm(i,k) = 0.0 |
---|
1281 | ENDDO |
---|
1282 | ENDIF |
---|
1283 | ENDDO |
---|
1284 | c |
---|
1285 | RETURN |
---|
1286 | END |
---|
1287 | SUBROUTINE coefkz2(nsrf, knon, paprs, pplay,t, |
---|
1288 | . pcfm, pcfh) |
---|
1289 | IMPLICIT none |
---|
1290 | c====================================================================== |
---|
1291 | c J'introduit un peu de diffusion sauf dans les endroits |
---|
1292 | c ou une forte inversion est presente |
---|
1293 | c On peut dire qu'il represente la convection peu profonde |
---|
1294 | c |
---|
1295 | c Arguments: |
---|
1296 | c nsrf-----input-I- indicateur de la nature du sol |
---|
1297 | c knon-----input-I- nombre de points a traiter |
---|
1298 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
1299 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
1300 | c t--------input-R- temperature (K) |
---|
1301 | c |
---|
1302 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
1303 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
1304 | c====================================================================== |
---|
1305 | #include "dimensions.h" |
---|
1306 | #include "dimphy.h" |
---|
1307 | #include "YOMCST.h" |
---|
1308 | #include "indicesol.h" |
---|
1309 | c |
---|
1310 | c Arguments: |
---|
1311 | c |
---|
1312 | INTEGER knon, nsrf |
---|
1313 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
1314 | REAL t(klon,klev) |
---|
1315 | c |
---|
1316 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
1317 | c |
---|
1318 | c Quelques constantes et options: |
---|
1319 | c |
---|
1320 | REAL prandtl |
---|
1321 | PARAMETER (prandtl=0.4) |
---|
1322 | REAL kstable |
---|
1323 | PARAMETER (kstable=0.002) |
---|
1324 | ccc PARAMETER (kstable=0.001) |
---|
1325 | REAL mixlen ! constante controlant longueur de melange |
---|
1326 | PARAMETER (mixlen=35.0) |
---|
1327 | REAL seuil ! au-dela l'inversion est consideree trop faible |
---|
1328 | PARAMETER (seuil=-0.02) |
---|
1329 | ccc PARAMETER (seuil=-0.04) |
---|
1330 | ccc PARAMETER (seuil=-0.06) |
---|
1331 | ccc PARAMETER (seuil=-0.09) |
---|
1332 | c |
---|
1333 | c Variables locales: |
---|
1334 | c |
---|
1335 | INTEGER i, k, invb(knon) |
---|
1336 | REAL zl2(knon) |
---|
1337 | REAL zdthmin(knon), zdthdp |
---|
1338 | c |
---|
1339 | c Initialiser les sorties |
---|
1340 | c |
---|
1341 | DO k = 1, klev |
---|
1342 | DO i = 1, knon |
---|
1343 | pcfm(i,k) = 0.0 |
---|
1344 | pcfh(i,k) = 0.0 |
---|
1345 | ENDDO |
---|
1346 | ENDDO |
---|
1347 | c |
---|
1348 | c Chercher la zone d'inversion forte |
---|
1349 | c |
---|
1350 | DO i = 1, knon |
---|
1351 | invb(i) = klev |
---|
1352 | zdthmin(i)=0.0 |
---|
1353 | ENDDO |
---|
1354 | DO k = 2, klev/2-1 |
---|
1355 | DO i = 1, knon |
---|
1356 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
---|
1357 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
---|
1358 | zdthdp = zdthdp * 100.0 |
---|
1359 | IF (pplay(i,k).GT.0.8*paprs(i,1) .AND. |
---|
1360 | . zdthdp.LT.zdthmin(i) ) THEN |
---|
1361 | zdthmin(i) = zdthdp |
---|
1362 | invb(i) = k |
---|
1363 | ENDIF |
---|
1364 | ENDDO |
---|
1365 | ENDDO |
---|
1366 | c |
---|
1367 | c Introduire une diffusion: |
---|
1368 | c |
---|
1369 | DO k = 2, klev |
---|
1370 | DO i = 1, knon |
---|
1371 | IF ( (nsrf.NE.is_oce) .OR. ! si ce n'est pas sur l'ocean |
---|
1372 | . (invb(i).EQ.klev) .OR. ! s'il n'y a pas d'inversion |
---|
1373 | . (zdthmin(i).GT.seuil) )THEN ! si l'inversion est trop faible |
---|
1374 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,klev+1)) |
---|
1375 | . /(paprs(i,2)-paprs(i,klev+1)) ))**2 |
---|
1376 | pcfm(i,k)= zl2(i)* kstable |
---|
1377 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
1378 | ENDIF |
---|
1379 | ENDDO |
---|
1380 | ENDDO |
---|
1381 | c |
---|
1382 | RETURN |
---|
1383 | END |
---|
1384 | SUBROUTINE calbeta(dtime,indice,knon,snow,qsol, |
---|
1385 | . vbeta,vcal,vdif) |
---|
1386 | IMPLICIT none |
---|
1387 | c====================================================================== |
---|
1388 | c Auteur(s): Z.X. Li (LMD/CNRS) (adaptation du GCM du LMD) |
---|
1389 | c date: 19940414 |
---|
1390 | c====================================================================== |
---|
1391 | c |
---|
1392 | c Calculer quelques parametres pour appliquer la couche limite |
---|
1393 | c ------------------------------------------------------------ |
---|
1394 | #include "dimensions.h" |
---|
1395 | #include "dimphy.h" |
---|
1396 | #include "YOMCST.h" |
---|
1397 | #include "indicesol.h" |
---|
1398 | REAL tau_gl ! temps de relaxation pour la glace de mer |
---|
1399 | ccc PARAMETER (tau_gl=86400.0*30.0) |
---|
1400 | PARAMETER (tau_gl=86400.0*5.0) |
---|
1401 | REAL mx_eau_sol |
---|
1402 | PARAMETER (mx_eau_sol=150.0) |
---|
1403 | c |
---|
1404 | REAL calsol, calsno, calice ! epaisseur du sol: 0.15 m |
---|
1405 | PARAMETER (calsol=1.0/(2.5578E+06*0.15)) |
---|
1406 | PARAMETER (calsno=1.0/(2.3867E+06*0.15)) |
---|
1407 | PARAMETER (calice=1.0/(5.1444E+06*0.15)) |
---|
1408 | C |
---|
1409 | INTEGER i |
---|
1410 | c |
---|
1411 | REAL dtime |
---|
1412 | REAL snow(klon), qsol(klon) |
---|
1413 | INTEGER indice, knon |
---|
1414 | C |
---|
1415 | REAL vbeta(klon) |
---|
1416 | REAL vcal(klon) |
---|
1417 | REAL vdif(klon) |
---|
1418 | C |
---|
1419 | |
---|
1420 | IF (indice.EQ.is_oce) THEN |
---|
1421 | DO i = 1, knon |
---|
1422 | vcal(i) = 0.0 |
---|
1423 | vbeta(i) = 1.0 |
---|
1424 | vdif(i) = 0.0 |
---|
1425 | ENDDO |
---|
1426 | ENDIF |
---|
1427 | c |
---|
1428 | IF (indice.EQ.is_sic) THEN |
---|
1429 | DO i = 1, knon |
---|
1430 | vcal(i) = calice |
---|
1431 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
1432 | vbeta(i) = 1.0 |
---|
1433 | vdif(i) = 1.0/tau_gl |
---|
1434 | ccc vdif(i) = calice/tau_gl ! c'etait une erreur |
---|
1435 | ENDDO |
---|
1436 | ENDIF |
---|
1437 | c |
---|
1438 | IF (indice.EQ.is_ter) THEN |
---|
1439 | DO i = 1, knon |
---|
1440 | vcal(i) = calsol |
---|
1441 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
1442 | vbeta(i) = MIN(2.0*qsol(i)/mx_eau_sol, 1.0) |
---|
1443 | vdif(i) = 0.0 |
---|
1444 | ENDDO |
---|
1445 | ENDIF |
---|
1446 | c |
---|
1447 | IF (indice.EQ.is_lic) THEN |
---|
1448 | DO i = 1, knon |
---|
1449 | vcal(i) = calice |
---|
1450 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
1451 | vbeta(i) = 1.0 |
---|
1452 | vdif(i) = 0.0 |
---|
1453 | ENDDO |
---|
1454 | ENDIF |
---|
1455 | c |
---|
1456 | RETURN |
---|
1457 | END |
---|
1458 | C====================================================================== |
---|
1459 | SUBROUTINE nonlocal(knon, paprs, pplay, |
---|
1460 | . tsol,beta,u,v,t,q, |
---|
1461 | . cd_h, cd_m, pcfh, pcfm, cgh, cgq) |
---|
1462 | IMPLICIT none |
---|
1463 | c====================================================================== |
---|
1464 | c Laurent Li (LMD/CNRS), le 30 septembre 1998 |
---|
1465 | c Couche limite non-locale. Adaptation du code du CCM3. |
---|
1466 | c Code non teste, donc a ne pas utiliser. |
---|
1467 | c====================================================================== |
---|
1468 | c Nonlocal scheme that determines eddy diffusivities based on a |
---|
1469 | c diagnosed boundary layer height and a turbulent velocity scale. |
---|
1470 | c Also countergradient effects for heat and moisture are included. |
---|
1471 | c |
---|
1472 | c For more information, see Holtslag, A.A.M., and B.A. Boville, 1993: |
---|
1473 | c Local versus nonlocal boundary-layer diffusion in a global climate |
---|
1474 | c model. J. of Climate, vol. 6, 1825-1842. |
---|
1475 | c====================================================================== |
---|
1476 | #include "dimensions.h" |
---|
1477 | #include "dimphy.h" |
---|
1478 | #include "YOMCST.h" |
---|
1479 | c |
---|
1480 | c Arguments: |
---|
1481 | c |
---|
1482 | INTEGER knon ! nombre de points a calculer |
---|
1483 | REAL tsol(klon) ! temperature du sol (K) |
---|
1484 | REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1) |
---|
1485 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
1486 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
1487 | REAL u(klon,klev) ! vitesse U (m/s) |
---|
1488 | REAL v(klon,klev) ! vitesse V (m/s) |
---|
1489 | REAL t(klon,klev) ! temperature (K) |
---|
1490 | REAL q(klon,klev) ! vapeur d'eau (kg/kg) |
---|
1491 | REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
---|
1492 | REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
---|
1493 | c |
---|
1494 | INTEGER isommet |
---|
1495 | PARAMETER (isommet=klev) |
---|
1496 | REAL vk |
---|
1497 | PARAMETER (vk=0.35) |
---|
1498 | REAL ricr |
---|
1499 | PARAMETER (ricr=0.4) |
---|
1500 | REAL fak |
---|
1501 | PARAMETER (fak=8.5) |
---|
1502 | REAL fakn |
---|
1503 | PARAMETER (fakn=7.2) |
---|
1504 | REAL onet |
---|
1505 | PARAMETER (onet=1.0/3.0) |
---|
1506 | REAL t_coup |
---|
1507 | PARAMETER(t_coup=273.15) |
---|
1508 | REAL zkmin |
---|
1509 | PARAMETER (zkmin=0.01) |
---|
1510 | REAL betam |
---|
1511 | PARAMETER (betam=15.0) |
---|
1512 | REAL betah |
---|
1513 | PARAMETER (betah=15.0) |
---|
1514 | REAL betas |
---|
1515 | PARAMETER (betas=5.0) |
---|
1516 | REAL sffrac |
---|
1517 | PARAMETER (sffrac=0.1) |
---|
1518 | REAL binm |
---|
1519 | PARAMETER (binm=betam*sffrac) |
---|
1520 | REAL binh |
---|
1521 | PARAMETER (binh=betah*sffrac) |
---|
1522 | REAL ccon |
---|
1523 | PARAMETER (ccon=fak*sffrac*vk) |
---|
1524 | c |
---|
1525 | REAL z(klon,klev) |
---|
1526 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
1527 | c |
---|
1528 | INTEGER i, k |
---|
1529 | REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
---|
1530 | REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
---|
1531 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
1532 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
1533 | REAL heatv(klon) ! surface virtual heat flux |
---|
1534 | REAL ustar(klon) |
---|
1535 | REAL rino(klon,klev) ! bulk Richardon no. from level to ref lev |
---|
1536 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
1537 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
---|
1538 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
---|
1539 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
---|
1540 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
---|
1541 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
1542 | REAL pblh(klon) |
---|
1543 | REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] |
---|
1544 | REAL cgq(klon,2:klev) ! counter-gradient term for constituents |
---|
1545 | REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) |
---|
1546 | REAL obklen(klon) |
---|
1547 | REAL ztvd, ztvu, zdu2 |
---|
1548 | REAL therm(klon) ! thermal virtual temperature excess |
---|
1549 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
1550 | REAL phihinv(klon) ! inverse phi function for heat |
---|
1551 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
1552 | REAL fak1(klon) ! k*ustar*pblh |
---|
1553 | REAL fak2(klon) ! k*wm*pblh |
---|
1554 | REAL fak3(klon) ! fakn*wstr/wm |
---|
1555 | REAL pblk(klon) ! level eddy diffusivity for momentum |
---|
1556 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
---|
1557 | REAL zl(klon) ! zmzp / Obukhov length |
---|
1558 | REAL zh(klon) ! zmzp / pblh |
---|
1559 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
---|
1560 | REAL wstr(klon) ! w*, convective velocity scale |
---|
1561 | REAL zm(klon) ! current level height |
---|
1562 | REAL zp(klon) ! current level height + one level up |
---|
1563 | REAL zcor, zdelta, zcvm5, zxqs |
---|
1564 | REAL fac, pblmin, zmzp, term |
---|
1565 | c |
---|
1566 | #include "YOETHF.h" |
---|
1567 | #include "FCTTRE.h" |
---|
1568 | c |
---|
1569 | c Initialisation |
---|
1570 | c |
---|
1571 | DO i = 1, klon |
---|
1572 | pcfh(i,1) = cd_h(i) |
---|
1573 | pcfm(i,1) = cd_m(i) |
---|
1574 | ENDDO |
---|
1575 | DO k = 2, klev |
---|
1576 | DO i = 1, klon |
---|
1577 | pcfh(i,k) = zkmin |
---|
1578 | pcfm(i,k) = zkmin |
---|
1579 | cgs(i,k) = 0.0 |
---|
1580 | cgh(i,k) = 0.0 |
---|
1581 | cgq(i,k) = 0.0 |
---|
1582 | ENDDO |
---|
1583 | ENDDO |
---|
1584 | c |
---|
1585 | c Calculer les hauteurs de chaque couche |
---|
1586 | c |
---|
1587 | DO i = 1, knon |
---|
1588 | z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
1589 | . * (paprs(i,1)-pplay(i,1)) / RG |
---|
1590 | ENDDO |
---|
1591 | DO k = 2, klev |
---|
1592 | DO i = 1, knon |
---|
1593 | z(i,k) = z(i,k-1) |
---|
1594 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
1595 | . * (pplay(i,k-1)-pplay(i,k)) / RG |
---|
1596 | ENDDO |
---|
1597 | ENDDO |
---|
1598 | c |
---|
1599 | DO i = 1, knon |
---|
1600 | IF (thermcep) THEN |
---|
1601 | zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) |
---|
1602 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
1603 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
---|
1604 | zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) |
---|
1605 | zxqs=MIN(0.5,zxqs) |
---|
1606 | zcor=1./(1.-retv*zxqs) |
---|
1607 | zxqs=zxqs*zcor |
---|
1608 | ELSE |
---|
1609 | IF (tsol(i).LT.t_coup) THEN |
---|
1610 | zxqs = qsats(tsol(i)) / paprs(i,1) |
---|
1611 | ELSE |
---|
1612 | zxqs = qsatl(tsol(i)) / paprs(i,1) |
---|
1613 | ENDIF |
---|
1614 | ENDIF |
---|
1615 | zx_alf1 = 1.0 |
---|
1616 | zx_alf2 = 1.0 - zx_alf1 |
---|
1617 | zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1618 | . *(1.+RETV*q(i,1))*zx_alf1 |
---|
1619 | . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) |
---|
1620 | . *(1.+RETV*q(i,2))*zx_alf2 |
---|
1621 | zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 |
---|
1622 | zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 |
---|
1623 | zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 |
---|
1624 | zxmod = 1.0+SQRT(zxu**2+zxv**2) |
---|
1625 | khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) |
---|
1626 | kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) |
---|
1627 | heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) |
---|
1628 | taux = zxu *zxmod*cd_m(i) |
---|
1629 | tauy = zxv *zxmod*cd_m(i) |
---|
1630 | ustar(i) = SQRT(taux**2+tauy**2) |
---|
1631 | ustar(i) = MAX(SQRT(ustar(i)),0.01) |
---|
1632 | ENDDO |
---|
1633 | c |
---|
1634 | DO i = 1, knon |
---|
1635 | rino(i,1) = 0.0 |
---|
1636 | check(i) = .TRUE. |
---|
1637 | pblh(i) = z(i,1) |
---|
1638 | obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) |
---|
1639 | ENDDO |
---|
1640 | |
---|
1641 | C |
---|
1642 | C PBL height calculation: |
---|
1643 | C Search for level of pbl. Scan upward until the Richardson number between |
---|
1644 | C the first level and the current level exceeds the "critical" value. |
---|
1645 | C |
---|
1646 | fac = 100.0 |
---|
1647 | DO k = 1, isommet |
---|
1648 | DO i = 1, knon |
---|
1649 | IF (check(i)) THEN |
---|
1650 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
1651 | zdu2 = max(zdu2,1.0e-20) |
---|
1652 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
1653 | . *(1.+RETV*q(i,k)) |
---|
1654 | ztvu =(t(i,1)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1655 | . *(1.+RETV*q(i,1)) |
---|
1656 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
1657 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1658 | IF (rino(i,k).GE.ricr) THEN |
---|
1659 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
1660 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
1661 | check(i) = .FALSE. |
---|
1662 | ENDIF |
---|
1663 | ENDIF |
---|
1664 | ENDDO |
---|
1665 | ENDDO |
---|
1666 | |
---|
1667 | C |
---|
1668 | C Set pbl height to maximum value where computation exceeds number of |
---|
1669 | C layers allowed |
---|
1670 | C |
---|
1671 | DO i = 1, knon |
---|
1672 | if (check(i)) pblh(i) = z(i,isommet) |
---|
1673 | ENDDO |
---|
1674 | C |
---|
1675 | C Improve estimate of pbl height for the unstable points. |
---|
1676 | C Find unstable points (sensible heat flux is upward): |
---|
1677 | C |
---|
1678 | DO i = 1, knon |
---|
1679 | IF (heatv(i) .GT. 0.) THEN |
---|
1680 | unstbl(i) = .TRUE. |
---|
1681 | check(i) = .TRUE. |
---|
1682 | ELSE |
---|
1683 | unstbl(i) = .FALSE. |
---|
1684 | check(i) = .FALSE. |
---|
1685 | ENDIF |
---|
1686 | ENDDO |
---|
1687 | C |
---|
1688 | C For the unstable case, compute velocity scale and the |
---|
1689 | C convective temperature excess: |
---|
1690 | C |
---|
1691 | DO i = 1, knon |
---|
1692 | IF (check(i)) THEN |
---|
1693 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
1694 | wm(i)= ustar(i)*phiminv(i) |
---|
1695 | therm(i) = heatv(i)*fak/wm(i) |
---|
1696 | rino(i,1) = 0.0 |
---|
1697 | ENDIF |
---|
1698 | ENDDO |
---|
1699 | C |
---|
1700 | C Improve pblh estimate for unstable conditions using the |
---|
1701 | C convective temperature excess: |
---|
1702 | C |
---|
1703 | DO k = 1, isommet |
---|
1704 | DO i = 1, knon |
---|
1705 | IF (check(i)) THEN |
---|
1706 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
1707 | zdu2 = max(zdu2,1.0e-20) |
---|
1708 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
1709 | . *(1.+RETV*q(i,k)) |
---|
1710 | ztvu =(t(i,1)+therm(i)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1711 | . *(1.+RETV*q(i,1)) |
---|
1712 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
1713 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1714 | IF (rino(i,k).GE.ricr) THEN |
---|
1715 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
1716 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
1717 | check(i) = .FALSE. |
---|
1718 | ENDIF |
---|
1719 | ENDIF |
---|
1720 | ENDDO |
---|
1721 | ENDDO |
---|
1722 | C |
---|
1723 | C Set pbl height to maximum value where computation exceeds number of |
---|
1724 | C layers allowed |
---|
1725 | C |
---|
1726 | DO i = 1, knon |
---|
1727 | if (check(i)) pblh(i) = z(i,isommet) |
---|
1728 | ENDDO |
---|
1729 | C |
---|
1730 | C Points for which pblh exceeds number of pbl layers allowed; |
---|
1731 | C set to maximum |
---|
1732 | C |
---|
1733 | DO i = 1, knon |
---|
1734 | IF (check(i)) pblh(i) = z(i,isommet) |
---|
1735 | ENDDO |
---|
1736 | C |
---|
1737 | C PBL height must be greater than some minimum mechanical mixing depth |
---|
1738 | C Several investigators have proposed minimum mechanical mixing depth |
---|
1739 | C relationships as a function of the local friction velocity, u*. We |
---|
1740 | C make use of a linear relationship of the form h = c u* where c=700. |
---|
1741 | C The scaling arguments that give rise to this relationship most often |
---|
1742 | C represent the coefficient c as some constant over the local coriolis |
---|
1743 | C parameter. Here we make use of the experimental results of Koracin |
---|
1744 | C and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
1745 | C where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
1746 | C latitude value for f so that c = 0.07/f = 700. |
---|
1747 | C |
---|
1748 | DO i = 1, knon |
---|
1749 | pblmin = 700.0*ustar(i) |
---|
1750 | pblh(i) = MAX(pblh(i),pblmin) |
---|
1751 | ENDDO |
---|
1752 | C |
---|
1753 | C pblh is now available; do preparation for diffusivity calculation: |
---|
1754 | C |
---|
1755 | DO i = 1, knon |
---|
1756 | pblk(i) = 0.0 |
---|
1757 | fak1(i) = ustar(i)*pblh(i)*vk |
---|
1758 | C |
---|
1759 | C Do additional preparation for unstable cases only, set temperature |
---|
1760 | C and moisture perturbations depending on stability. |
---|
1761 | C |
---|
1762 | IF (unstbl(i)) THEN |
---|
1763 | zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1764 | . *(1.+RETV*q(i,1)) |
---|
1765 | phiminv(i) = (1. - binm*pblh(i)/obklen(i))**onet |
---|
1766 | phihinv(i) = sqrt(1. - binh*pblh(i)/obklen(i)) |
---|
1767 | wm(i) = ustar(i)*phiminv(i) |
---|
1768 | fak2(i) = wm(i)*pblh(i)*vk |
---|
1769 | wstr(i) = (heatv(i)*RG*pblh(i)/zxt)**onet |
---|
1770 | fak3(i) = fakn*wstr(i)/wm(i) |
---|
1771 | ENDIF |
---|
1772 | ENDDO |
---|
1773 | |
---|
1774 | C Main level loop to compute the diffusivities and |
---|
1775 | C counter-gradient terms: |
---|
1776 | C |
---|
1777 | DO 1000 k = 2, isommet |
---|
1778 | C |
---|
1779 | C Find levels within boundary layer: |
---|
1780 | C |
---|
1781 | DO i = 1, knon |
---|
1782 | unslev(i) = .FALSE. |
---|
1783 | stblev(i) = .FALSE. |
---|
1784 | zm(i) = z(i,k-1) |
---|
1785 | zp(i) = z(i,k) |
---|
1786 | IF (zkmin.EQ.0.0 .AND. zp(i).GT.pblh(i)) zp(i) = pblh(i) |
---|
1787 | IF (zm(i) .LT. pblh(i)) THEN |
---|
1788 | zmzp = 0.5*(zm(i) + zp(i)) |
---|
1789 | zh(i) = zmzp/pblh(i) |
---|
1790 | zl(i) = zmzp/obklen(i) |
---|
1791 | zzh(i) = 0. |
---|
1792 | IF (zh(i).LE.1.0) zzh(i) = (1. - zh(i))**2 |
---|
1793 | C |
---|
1794 | C stblev for points zm < plbh and stable and neutral |
---|
1795 | C unslev for points zm < plbh and unstable |
---|
1796 | C |
---|
1797 | IF (unstbl(i)) THEN |
---|
1798 | unslev(i) = .TRUE. |
---|
1799 | ELSE |
---|
1800 | stblev(i) = .TRUE. |
---|
1801 | ENDIF |
---|
1802 | ENDIF |
---|
1803 | ENDDO |
---|
1804 | C |
---|
1805 | C Stable and neutral points; set diffusivities; counter-gradient |
---|
1806 | C terms zero for stable case: |
---|
1807 | C |
---|
1808 | DO i = 1, knon |
---|
1809 | IF (stblev(i)) THEN |
---|
1810 | IF (zl(i).LE.1.) THEN |
---|
1811 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1. + betas*zl(i)) |
---|
1812 | ELSE |
---|
1813 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas + zl(i)) |
---|
1814 | ENDIF |
---|
1815 | pcfm(i,k) = pblk(i) |
---|
1816 | pcfh(i,k) = pcfm(i,k) |
---|
1817 | ENDIF |
---|
1818 | ENDDO |
---|
1819 | C |
---|
1820 | C unssrf, unstable within surface layer of pbl |
---|
1821 | C unsout, unstable within outer layer of pbl |
---|
1822 | C |
---|
1823 | DO i = 1, knon |
---|
1824 | unssrf(i) = .FALSE. |
---|
1825 | unsout(i) = .FALSE. |
---|
1826 | IF (unslev(i)) THEN |
---|
1827 | IF (zh(i).lt.sffrac) THEN |
---|
1828 | unssrf(i) = .TRUE. |
---|
1829 | ELSE |
---|
1830 | unsout(i) = .TRUE. |
---|
1831 | ENDIF |
---|
1832 | ENDIF |
---|
1833 | ENDDO |
---|
1834 | C |
---|
1835 | C Unstable for surface layer; counter-gradient terms zero |
---|
1836 | C |
---|
1837 | DO i = 1, knon |
---|
1838 | IF (unssrf(i)) THEN |
---|
1839 | term = (1. - betam*zl(i))**onet |
---|
1840 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
---|
1841 | pr(i) = term/sqrt(1. - betah*zl(i)) |
---|
1842 | ENDIF |
---|
1843 | ENDDO |
---|
1844 | C |
---|
1845 | C Unstable for outer layer; counter-gradient terms non-zero: |
---|
1846 | C |
---|
1847 | DO i = 1, knon |
---|
1848 | IF (unsout(i)) THEN |
---|
1849 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
---|
1850 | cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) |
---|
1851 | cgh(i,k) = khfs(i)*cgs(i,k) |
---|
1852 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
---|
1853 | cgq(i,k) = kqfs(i)*cgs(i,k) |
---|
1854 | ENDIF |
---|
1855 | ENDDO |
---|
1856 | C |
---|
1857 | C For all unstable layers, set diffusivities |
---|
1858 | C |
---|
1859 | DO i = 1, knon |
---|
1860 | IF (unslev(i)) THEN |
---|
1861 | pcfm(i,k) = pblk(i) |
---|
1862 | pcfh(i,k) = pblk(i)/pr(i) |
---|
1863 | ENDIF |
---|
1864 | ENDDO |
---|
1865 | 1000 continue ! end of level loop |
---|
1866 | |
---|
1867 | RETURN |
---|
1868 | END |
---|